1
|
Zhu YW, Ngowi EE, Tang AQ, Chu T, Wang Y, Shabani ZI, Paul L, Jiang T, Ji XY, Wu DD. Fluorescent probes for detecting and imaging mitochondrial hydrogen sulfide. Chem Biol Interact 2025; 407:111328. [PMID: 39638224 DOI: 10.1016/j.cbi.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Hydrogen sulfide (H2S) is a potent redox-active signaling molecule commonly dysregulated in disease states. The production of H2S and its involvement in various pathological conditions associated with mitochondrial dysfunction have extensively documented. During stress, cystathionine gamma-lyase and cystathionine beta-synthase in cytosol are copiously translocated into the mitochondria to boost H2S production, confirming its pivotal role in mitochondrial activities. However, little study has been done on H2S levels in tissues, cells and organelles, mainly due to the absence of precise and accurate detection tools. Thus, there is an urgent need to determine and monitor the levels of H2S in these important organelles. Fluorescent probes are efficient tools for detecting and monitoring various important biomolecules including biological thiols. The development of fluorescent probes is a multi-pronged approach which involves coupling fluorophores with responsive sites. The use of fluorescent probes for monitoring mitochondrial H2S levels has recently received widespread attention, resulting in numerous publications depicting their synthesis, mechanism of action, application, and potential challenges. Fluorescent probes offer precise and timely results, high sensitivity and selectivity, low biotoxicity, and minimal background interference. In this review, we aim to report designs of such probes, reaction mechanisms and their application in detecting mitochondrial H2S levels. Fluorescent probes can help uncover physio/pathological levels of H2S in essential organelles, its interactions with various biomarkers and associated consequences in biological systems.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam 2329, Tanzania
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zulfa Ismail Shabani
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam 2329, Tanzania
| | - Lucas Paul
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam 2329, Tanzania
| | - Tong Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Qin M, Ji W, Huang P, Wu FY, Mao L. Confining Thiolysis of Dinitrophenyl Ether to a Luminescent Metal-Organic Framework with a Large Stokes Shift for Highly Efficient Detection of Hydrogen Sulfide in Rat Brain. Anal Chem 2024; 96:14697-14705. [PMID: 39194639 DOI: 10.1021/acs.analchem.4c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/29/2024]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates various physiological and pathological processes in the central nervous system. It is vital to develop an effective method to detect H2S in vivo to elucidate its critical role. However, current fluorescent probes for accurate quantification of H2S still face big challenges due to complicated fabrication, small Stokes shift, unsatisfactory selectivity, and especially delayed response time. Herein, based on simple postsynthetic modification, we present an innovative strategy by confining H2S-triggered thiolysis of dinitrophenyl (DNP) ether within a luminescent metal-organic framework (MOF) to address those issues. Due to the cleavage of the DNP moiety by H2S, the nanoprobe gives rise to a remarkable fluorescence turn-on signal with a large Stokes shift of 190 nm and also provides high selectivity to H2S against various interferents including competing biothiols. In particular, by virtue of the unique structural property of the MOF, it exhibits an ultrafast sensing ability for H2S (only 5 s). Moreover, the fluorescence enhancement efficiency displays a good linear correlation with H2S concentration in the range of 0-160 μM with a detection limit of 0.29 μM. Importantly, these superior sensing performances enable the nanoprobe to measure the basal value and monitor the change of H2S level in the rat brain.
Collapse
Affiliation(s)
- Mengxia Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
4
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
5
|
Yan Q, He S, Feng L, Zhang M, Han C, Wu Y, Wang C, Ma X, Ma T. A Turn-On Fluorescent Probe for Highly Selective Detection and Visualization of Hydrogen Sulfide in Fungi. Molecules 2024; 29:577. [PMID: 38338322 PMCID: PMC10856155 DOI: 10.3390/molecules29030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Hydrogen sulfide (H2S) is a significant actor in the virulence and pathogenicity of fungi. The analysis of endogenous H2S in fungi benefits the prevention and treatment of pathogenic infections. Herein, a H2S-activated turn-on fluorescent probe named DDX-DNP was developed for the sensitive and selective detection of H2S. Using DDX-DNP, the ability of several oral fungi strains to produce H2S was identified, which was also validated using a typical chromogenic medium. In addition, DDX-DNP was successfully used for the visual sensing of endogenous H2S in fungal cells via microscope, flow cytometry, and colony imaging, along with a specific validation with the co-incubation of H2S production inhibitors in living cells. Above all, DDX-DNP could be used for H2S detection, the fluorescent imaging of fungi, and even the identification of related fungi.
Collapse
Affiliation(s)
- Qingsong Yan
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengui He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Ming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Chaoyan Han
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Yuzhuo Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Tonghui Ma
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
7
|
Yuwen Z, Zeng Q, Ye Q, Zhao Y, Zhu J, Chen K, Liu H, Yang R. A Quencher-Based Blood-Autofluorescence-Suppression Strategy Enables the Quantification of Trace Analytes in Whole Blood. Angew Chem Int Ed Engl 2023; 62:e202302957. [PMID: 37102382 DOI: 10.1002/anie.202302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600-700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2 S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2 S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2 S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qiaozhen Ye
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Jingxuan Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Kang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| |
Collapse
|
8
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Wang Z, Li Y, Zhang Q, Jing C, Jiang Y, Yang T, Han T, Xiong F. A highly selective and easily acquisitive near-infrared fluorescent probe for detection and imaging of hydrogen sulfide in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122428. [PMID: 36773422 DOI: 10.1016/j.saa.2023.122428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) plays a substantial role as a messenger in the physiological and pathological processes of many diseases. Recently, the fluorescence probe of H2S based on organic dye has attracted great attention. However, the emission of many probes is in the UV-vis region (400-600 nm), so it has the disadvantages of shallow tissue penetration and more vulnerable to spontaneous fluorescence interference. Although several H2S probes have been developed that emit more than 650 nm, there is a complex structure difficult to synthesize or unstable in storage. Aimed at simply structural and easily synthesized H2S fluorescent probes with emission wavelength more than 650 nm, a novel near-infrared (NIR) probe (NIR-H2S) here was rationally designed with 4-(2-carboxyphenyl)-7-(diethylamino)-2-(4-hydroxystyryl)chromenylium (NIR-OH) as a fluorescent dye and 2,4-dinitrophenyl moiety as a recognition group. Addition of H2S, the "turn-on" NIR fluorescence response at 736 nm of NIR-H2S was displayed, accompanied by a visual colour change from purple to green when excited at 686 nm. As an easily acquisitive H2S probe, NIR-H2S has been successfully applied to cell imaging for H2S detection with the advantages such as long fluorescence emission, low toxicity, high sensitivity and strong selectivity.
Collapse
Affiliation(s)
- Zongcheng Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Yuting Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qin Zhang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Chengyu Jing
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuren Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Tingting Yang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ting Han
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Fangjiao Xiong
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Liu X, Lei H, Hu Y, Fan X, Zhang Y, Xie L, Huang J, Cai Q. A turn-on fluorescent nanosensor for H 2S detection and imaging in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122739. [PMID: 37084684 DOI: 10.1016/j.saa.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 μM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China.
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Xinyao Fan
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qinuo Cai
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
11
|
Wu J, Chan C, Li J, Shi Y, Xue Z, Zhao L. A BODIPY-based fluorescent chemosensor with 2, 6-substitution for visual and highly selective detection of S 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122741. [PMID: 37080049 DOI: 10.1016/j.saa.2023.122741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/19/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BODIPY derivatives have often been employed as fluorescent sensors to probe toxic ions in environment and living systems, such as sulfide ion (S2-). Whilst many structure modifications have been exploited on groups at the 3, 5, 8-positions, there are quite few examples on tailoring the 2,6-substituents for chemosensor investigations. Herein, we design and synthesize a 2,6-substituted BODIPY molecule, LM-BDP, to use as a fluorescent probe for detecting S2- in aqueous media. The electronic and crystal structures of the probe are studied by density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. Spectroscopy investigations are performed in a variety of conditions, showing that LM-BDP exhibits a noticeable color change from pink to dark red and a fluorescence shift from yellow to pink channel with decreased intensity upon addition of S2-. The selectivity and sensitivity measurements show that LM-BDP can only response to S2- with a detection limit of 0.29 μM in less than 100 s. The remarkable contrast in fluorescence images in test-stripe and RAW 264.7 cell experiments indicates that the probe is a proper candidate for the application in detecting exogenous S2-.
Collapse
Affiliation(s)
- Jianwei Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaqiao Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
12
|
A chemodosimeter with high selectivity for ratiometric detection of mercury ions in buffer solution. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/13/2023]
|
13
|
Kafuti YS, Zeng S, Liu X, Han J, Qian M, Chen Q, Wang J, Peng X, Yoon J, Li H. Observing hydrogen sulfide in the endoplasmic reticulum of cancer cells and zebrafish by using an activity-based fluorescent probe. Chem Commun (Camb) 2023; 59:2493-2496. [PMID: 36752717 DOI: 10.1039/d2cc06645a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
A crucial endogenous signaling chemical, hydrogen sulfide, is involved in many physiological actions. In this work, we created the fluorescent probe ER-Nap-NBD using a naphthalimide fluorophore as the signal reporter, a 7-nitro-1,2,3-benzoxadiazole amine as the responsive moiety, and a sulfonamide part for endoplasmic reticulum targeting. ER-Nap-NBD could be detected the H2S levels in solution and in living systems (cells and zebrafish).
Collapse
Affiliation(s)
- Yves S Kafuti
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea. .,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Ming Qian
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| |
Collapse
|
14
|
Luo C, Zhang Q, Sun S, Li H, Xu Y. Research progress of auxiliary groups in improving the performance of fluorescent probes. Chem Commun (Camb) 2023; 59:2199-2207. [PMID: 36723204 DOI: 10.1039/d2cc06952k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
In the design work of fluorescent probes, it is important to consider not only the factors of fluorescence properties but also the environment in which the fluorescent molecule works. This requires the design of auxiliary groups to refine the fluorescent molecule. Nowadays, more and more fluorescent molecules are not limited to the traditional fluorescent probe consisting of a fluorophore, linker arm and recognition group, but integrate the three into one, and introduce auxiliary groups where possible. Auxiliary groups are "catalytic groups" that do not interact with the substrate, or "catalyze" the interaction of the recognition group with the substrate. The introduced auxiliary groups can improve the sensitivity and selectivity of the detection to some extent, which has attracted great interest from researchers. Although previous work has focused on this aspect, no one has summarized it systematically and comprehensively. So this review summarizes the role of auxiliary groups that are classified into three categories according to the different mechanisms between the auxiliary groups and the substance, in improving the performance of fluorescent probes in recent years (2012-2022). In particular, we generalize the mechanisms of the auxiliary groups in improving the sensitivity and selectivity of fluorescent probes. Also, the fundamental principles of auxiliary groups to improve the sensitivity and selectivity of fluorescent probes are discussed and future research directions in this field are proposed.
Collapse
Affiliation(s)
- Canxia Luo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, P. R. China, 712100.
| | - Qi Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, P. R. China, 712100.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, P. R. China, 712100.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, P. R. China, 712100.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, P. R. China, 712100.
| |
Collapse
|
15
|
Vijay N, Magesh K, M RL, Velmathi S. Recent Advancements in the Design and Development of Near Infrared (NIR) Emitting Fluorescent Probes for Sensing and their Bio-Imaging Applications. Curr Org Synth 2023; 20:114-175. [PMID: 35260055 DOI: 10.2174/1570179419666220308145901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Fluorescent bio-imaging will be the future in the medical diagnostic for visualising inner cellular and tissues. Near-infrared (NIR) emitting fluorescent probes serve dynamically for targeted fluorescent imaging of live cells and tissues. NIR imaging is advantageous because of its merits like deep tissue penetration, minimum damage to the tissue, reduced auto fluorescence from the background, and improved resolution in imaging. The Development of the NIR emitting probe was well explored recently and growing drastically. In this review, we summarise recent achievements in NIR probes in between 2018-2021. The merits and future applications have also been discussed in this review.
Collapse
Affiliation(s)
- Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Renny Louis M
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| |
Collapse
|
16
|
Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022; 10:7924-7954. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
H2S, the smallest and simplest biological thiol in living systems, is the third member of the family of signaling mediators. H2S participates in the regulation of a series of complex physiological and pathological functions in the body, making it a critical fulcrum that balances health and disease in human physiology. Small-molecule fluorescent probes have been proven to possess the unique advantages of high temporal and spatial resolution, good biocompatibility and high sensitivity, and thus their use is a powerful approach for monitoring the level and dynamics of H2S in living cells and organisms and better understanding its basic cellular functions. The field of small-molecule fluorescent probes for monitoring the complex biological activities of H2S in vivo has been thriving in recent years. Herein, we systematically summarize the latest developments in the field of fluorescent probes for the detection of H2S, illustrate their biological applications according to the classification of target-responsive sites, and emphasize the development direction and challenges of H2S-responsive fluorescent probes, hoping to give implications of researchers on fluorescent probes for future research.
Collapse
Affiliation(s)
- Lingxiu Kong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Wenjuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Xiaoli Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, China
| | - Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Jiarao Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Yanfeng Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| |
Collapse
|
17
|
A hemicyanidin-based NIR fluorescent probe for detection of H 2S and imaging study in cells and mice. Mikrochim Acta 2022; 189:291. [PMID: 35879627 DOI: 10.1007/s00604-022-05374-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
Abstract
The selective detection of hydrogen sulfide in physiological and pathological processes has gained substantial attention in recent years. However, the real-time detection of hydrogen sulfide remains an elusive goal. In this work, a new type of hemicyanidin-based fluorescent "turn-on" probe NTR-HS (Ex = 680 nm, Em = 760 nm) was developed to detected H2S in a very short time (3 min). The fluorescence quantum yield is 0.15 and accompanied with a noticeable color change from violet to blue that can be used to detect H2S in the range 1.04 × 10-7-4 × 10-5 M with a limit of detection of 1.04 x 10-7 M. The NTR-HS probe was also used for imaging of endogenous hydrogen sulfide and mitochondrial localization in HCT116 and HeLa cells. The detection mechanism was studied through fluorescence, UV-Vis, NMR, and mass analysis. Notably, the probe was successfully used to imaging H2S in mice and locating hydrogen sulfide in the large intestine of mice.
Collapse
|
18
|
Jothi D, Iyer SK. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
19
|
Zhang C, Lv X, Liu X, Chen H, He H. A reasonably constructed fluorescent chemosensor based on the dicyanoisophorone skeleton for the discriminative sensing of Fe 3+ and Hg 2+ as well as imaging in HeLa cells and zebrafish. RSC Adv 2022; 12:12355-12362. [PMID: 35480345 PMCID: PMC9037825 DOI: 10.1039/d2ra01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a new fluorescent sensor dicyanoisophorone Rhodanine-3-acetic acid (DCI-RDA) (DCI-RDA) has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+ with a large Stokes Shift (162 nm), high selectivity and sensitivity, and low LOD (1.468 μM for Fe3+ and 0.305 μM for Hg2+). In particular, DCI-RDA has a short response time (30 s). The Job's plot method in combination with 1H NMR titration and theoretical calculations was used to determine the stoichiometry of both DCI-RDA-Fe3+/Hg2+ complexes to be 1 : 1. Moreover, DCI-RDA is applied as a fluorescent probe for imaging in HeLa cells and zebrafish, indicating that it can be potentially applied for Fe3+/Hg2+ sensing in the field of biology. A new fluorescent sensor dicyanoisophorone rhodanine-3-acetic acid has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+.![]()
Collapse
Affiliation(s)
- Chuqi Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xinyan Lv
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xiuhong Liu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Hongyun Chen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Haifeng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| |
Collapse
|
20
|
Gao Z, Zhang L, Liu H, Yan M, Lu S, Lian H, Zhang P, Zhu J, Jin M. A novel rhodol-based fluorescence turn-on probe for selective hydrogen sulfide detection in environment water and living cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
|
21
|
Han S, Zhang H, Wang J, Yang L, Lan M, Wang B, Song X. Rational Development of Dual-Ratiometric Fluorescent Probes for Distinguishing between H 2S and SO 2 in Living Organisms. Anal Chem 2021; 93:15209-15215. [PMID: 34726378 DOI: 10.1021/acs.analchem.1c03963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
For better investigating the complicated relationships between H2S and SO2, simultaneously detecting and visualizing them with good selectivity is crucial. However, most sensing mechanisms for H2S and SO2 probes are based on the addition reactions with the double bonds, which have no selectivity. In this work, by introducing an active triple bond into 4-dicyanovinyl-7-diethylamino-coumarin, we construct two unique sensors for not only distinguishing between H2S and SO2 but also sensing H2S and SO2 in a dual-ratiometric manner. Moreover, the modified sensor was successfully applied in living cells and zebrafish for discriminating H2S and SO2.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Zhang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
22
|
Jothi D, Munusamy S, KulathuIyer S. A Highly Selective and Sensitive Colorimetric Chemosensor for the Detection of Hydrogen Sulfide: Real-time Applications in Multiple Platforms. Photochem Photobiol 2021; 98:141-149. [PMID: 34389998 DOI: 10.1111/php.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Calorimetric chemosensors are found to be advantageous sensing systems due to their simplicity and favorable responsive properties. Although some colorimetric probes have been reported to detect hydrogen sulfide (H2 S), the creation of rapid, highly selective, and sensitive probes for the detection of H2 S remains a challenging target. In this work, we established dinitrosulphonamide decorated phenanthridine, 2,4-dinitro-N-(4-(7,8,13,14-tetrahydrodibenzo[a, i]phenanthridin-5-yl)phenyl)benzenesulfonamide (PHSH), for the calorimetric detection of H2 S. H2 S triggered thiolysis of PHSH resulted in a marked absorption enhancement alongside a visual color change from colorless to dark yellow. The result indicated that the chemosensor showed high sensitivity and selectivity with a fast response of less than 10 s with a detection limit as low as 6.5 nM. The chemosensor reaction mechanism with H2 S was studied by UV-vis, 1 H NMR, mass and HPLC analysis. In addition, the chemosensor has been used for the determination of H2 S in many real-time samples.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sathishkumar Munusamy
- Institute of chemical biology and nanomedicine, State key laboratory of chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R.China
| | | |
Collapse
|
23
|
|
24
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
25
|
Liu HB, Xu H, Guo X, Xiao J, Cai ZH, Wang YW, Peng Y. A novel near-infrared fluorescent probe based on isophorone for the bioassay of endogenous cysteine. Org Biomol Chem 2021; 19:873-877. [PMID: 33409526 DOI: 10.1039/d0ob02405h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A dicyanoisophorone/acrylate-combined probe (DDP) was synthesized and designed as a near-infrared (NIR) fluorescent sensor for the rapid identification of Cys over Hcy and GSH in aqueous solution with a large Stokes shift (143 nm). The detection limit of Cys was 1.23 μM, which was lower than that of the intracellular Cys concentration. DDP was cell membrane-permeable and had been successfully applied to the detection of intracellular Cys in HeLa cells. The detection mechanism was determined by 1H NMR titration, MS and DFT calculations.
Collapse
Affiliation(s)
- Hong-Bo Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Hai Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Xin Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jian Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Zheng-Hong Cai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
26
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Zhang K, Meng J, Bao W, Liu M, Wang X, Tian Z. Mitochondrion-targeting near-infrared fluorescent probe for detecting intracellular nanomolar level hydrogen sulfide with high recognition rate. Anal Bioanal Chem 2021; 413:1215-1224. [PMID: 33386936 DOI: 10.1007/s00216-020-03086-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) typically plays biphasic biological roles in living organisms with subnormal H2S exerting cytoprotective effects such as participating in cardioprotective signaling pathways while H2S with higher-than-normal concentrations in localized tissues acting the opposite way such as inhibiting mitochondrial respiration. Such concentration-dependent biological and pathological roles of H2S with the wide involvement of mitochondria and the elusive feature of H2S definitely highlight the vital significance of fast and precise estimation of the physiological level of H2S in specific microenvironments, particularly within cellular mitochondria. In this work, we developed a new type of fluorescent probe (QcyCHO) featured with H2S-triggered off-to-on near-infrared (NIR) fluorescence conversion within ~ 10 min, limit of detection (LOD) down to 8.3 nM, and high recognition specificity over other similarly interfering species. The ideal mitochondrion-targeting ability, high recognition specificity over typical interfering substances and other physiologically relevant species, and the ability for mapping intracellular H2S in living cells of QcyCHO probe were also unequivocally confirmed, which imply its potential for shedding light on the biology of H2S and therapeutic development in H2S-associated diseases by identifying the specific physiological stimuli inducing H2S production and determining the levels of H2S at the location and time of stimulation.
Collapse
Affiliation(s)
- Kaiquan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jiaqi Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ming Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| |
Collapse
|
28
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
29
|
Li J, Zhong K, Tang L, Yan X. A triphenylamine derived fluorescent probe for efficient detection of H 2S based on aggregation-induced emission. NEW J CHEM 2021. [DOI: 10.1039/d1nj02816b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
The probe TPA-HS can quickly identify H2S (20 minutes) and release TPA-CHO with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jiaojiao Li
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Keli Zhong
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Lijun Tang
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Xiaomei Yan
- College of Laboratory Medicine
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
30
|
Lee S, Sung DB, Lee JS, Han MS. A Fluorescent Probe for Selective Facile Detection of H 2S in Serum Based on an Albumin-Binding Fluorophore and Effective Masking Reagent. ACS OMEGA 2020; 5:32507-32514. [PMID: 33376888 PMCID: PMC7758950 DOI: 10.1021/acsomega.0c04659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A fluorescent probe (4-(2-(4-(diethylamino)phenyl)-4-methyl-5-oxo-4,5-dihydrothieno[3,2-b]pyridin-7-yl)phenyl 2,4-dinitrobenzenesulfonate, KF-DNBS) for facile detection of H2S in serum was developed based on the combination of an environment-sensitive fluorophore (2-(4-(diethylamino)phenyl)-7-(4-hydroxyphenyl)-4-methylthieno[3,2-b]pyridin-5(4H)-one, KF) with albumin and the 2,4-dinitrobenzene sulfonyl (DNBS) group as a recognition unit for H2S. KF-DNBS showed remarkable fluorescence enhancement due to H2S-triggered thiolysis followed by the formation of a fluorescent fluorophore (KF)-albumin complex. The H2S detection limit of KF-DNBS was estimated to be 3.2 μM, and KF-DNBS achieves a high selectivity to H2S over biothiols by employing 2-formyl benzene boronic acid (2-FBBA) as an effective masking reagent. Furthermore, under optimized sensing conditions, KF-DNBS could be applied to accurately determine spiked H2S in human serum without the need for any further procedure for the removal of serum proteins.
Collapse
Affiliation(s)
- Suji Lee
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Dan-Bi Sung
- Marine
Natural Products Chemistry Laboratory, Korea
Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
| | - Jong Seok Lee
- Marine
Natural Products Chemistry Laboratory, Korea
Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
- Department
of Applied Ocean Science, Korea University
of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min Su Han
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
31
|
Jose DA, Sakla R, Sharma N, Gadiyaram S, Kaushik R, Ghosh A. Sensing and Bioimaging of the Gaseous Signaling Molecule Hydrogen Sulfide by Near-Infrared Fluorescent Probes. ACS Sens 2020; 5:3365-3391. [PMID: 33166465 DOI: 10.1021/acssensors.0c02005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
A fluorescent probe for the monitoring of H2S levels in living cells and organisms is highly desirable. In this regard, near-infrared (NIR) fluorescent probes have emerged as a promising tool. NIR-I and NIR-II probes have many significant advantages; for instance, NIR light penetrates deeper into tissue than light at visible wavelengths, and it causes less photodamage during biosample analysis and less autofluorescence, enabling higher signal-to-background ratios. Therefore, it is expected that fluorescent probes having emission in the NIR region are more suitable for in vivo imaging. Consequently, a considerable increase in reports of new H2S-responsive NIR fluorescent probes appeared in the literature. This review highlights the advances made in developing new NIR fluorescent probes aimed at the sensitive and selective detection of H2S in biological samples. Their applications in real-time monitoring of H2S in cells and in vivo for bioimaging of living cells/animals are emphasized. The selection of suitable dyes for designing NIR fluorescent probes, along with the principles and mechanisms involved for the sensing of H2S in the NIR region, are described. The discussions are focused on small-molecule and nanomaterials-based NIR probes.
Collapse
Affiliation(s)
- D. Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Srushti Gadiyaram
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Kaushik
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Amrita Ghosh
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| |
Collapse
|
32
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
33
|
Zhang Y, Zhang L. A novel "turn-on" fluorescent probe based on hydroxy functionalized naphthalimide as a logic platform for visual recognition of H 2S in environment and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118331. [PMID: 32276227 DOI: 10.1016/j.saa.2020.118331] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
A novel hydroxy functionalized naphthalimide-based fluorescent probe (denoted SP2)was successfully designed and synthesized for monitoring of H2S in living cells and environmental. In particular, SP2 can detect the H2S without assistance of organic solvent or surfactant. When H2S is present, the azide group in SP2 was reduced to amine group, resulting in a turn-on fluorescence signal. This remarkable properties of SP2 enable its applications in monitoring ex/endogenous H2S in HepG-2 cells and hydrogen sulfide release in laboratories or chemical plants through visual recognition by optical color change. The probe displays highly selective and sensitive recognition to H2S, with a low detection limit of 50.8 nM. Futhermore, this work presents the possibility of using naphthalimide-based "logic gate" platform for monitoring H2S in biological and environmental samples.
Collapse
Affiliation(s)
- Yaqiong Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
34
|
Visualizing hydrogen sulfide in living cells and zebrafish using a red-emitting fluorescent probe via selenium-sulfur exchange reaction. Anal Chim Acta 2020; 1109:37-43. [DOI: 10.1016/j.aca.2020.02.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
|
35
|
Bezner BJ, Ryan LS, Lippert AR. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal Chem 2019; 92:309-326. [DOI: 10.1021/acs.analchem.9b04990] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
36
|
A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for H2S detection and in living cells imaging. Talanta 2019; 197:326-333. [DOI: 10.1016/j.talanta.2019.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
|
37
|
Qian M, Zhang L, Wang J. A NIR fluorescent sensor for biothiols based on a dicyanoisophorone derivative with a large Stokes shift and high quantum yield. NEW J CHEM 2019. [DOI: 10.1039/c9nj01643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Probe N-Bio exhibited rapid response, high sensitivity and strong NIR fluorescence in the detection of biothiols in living cells.
Collapse
Affiliation(s)
- Ming Qian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian
- P. R. China
- School of Bioengineering, Dalian University of Technology
- Dalian
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian
- P. R. China
- School of Bioengineering, Dalian University of Technology
- Dalian
| |
Collapse
|