2
|
Yang L, Horton JT, Payne MC, Penfold TJ, Cole DJ. Modeling Molecular Emitters in Organic Light-Emitting Diodes with the Quantum Mechanical Bespoke Force Field. J Chem Theory Comput 2021; 17:5021-5033. [PMID: 34264669 DOI: 10.1021/acs.jctc.1c00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Combined molecular dynamics (MD) and quantum mechanics (QM) simulation procedures have gained popularity in modeling the spectral properties of functional organic molecules. However, the potential energy surfaces used to propagate long-time scale dynamics in these simulations are typically described using general, transferable force fields designed for organic molecules in their electronic ground states. These force fields do not typically include spectroscopic data in their training, and importantly, there is no general protocol for including changes in geometry or intermolecular interactions with the environment that may occur upon electronic excitation. In this work, we show that parameters tailored for thermally activated delayed fluorescence (TADF) emitters used in organic light-emitting diodes (OLEDs), in both their ground and electronically excited states, can be readily derived from a small number of QM calculations using the QUBEKit (QUantum mechanical BEspoke toolKit) software and improve the overall accuracy of these simulations.
Collapse
Affiliation(s)
- Lupeng Yang
- TCM Group, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Joshua T Horton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Michael C Payne
- TCM Group, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Thomas J Penfold
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
3
|
Nelson L, Bariami S, Ringrose C, Horton JT, Kurdekar V, Mey ASJS, Michel J, Cole DJ. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations. J Chem Inf Model 2021; 61:2124-2130. [PMID: 33886305 DOI: 10.1021/acs.jcim.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The quantum mechanical bespoke (QUBE) force-field approach has been developed to facilitate the automated derivation of potential energy function parameters for modeling protein-ligand binding. To date, the approach has been validated in the context of Monte Carlo simulations of protein-ligand complexes. We describe here the implementation of the QUBE force field in the alchemical free-energy calculation molecular dynamics simulation package SOMD. The implementation is validated by demonstrating the reproducibility of absolute hydration free energies computed with the QUBE force field across the SOMD and GROMACS software packages. We further demonstrate, by way of a case study involving two series of non-nucleoside inhibitors of HIV-1 reverse transcriptase, that the availability of QUBE in a modern simulation package that makes efficient use of graphics processing unit acceleration will facilitate high-throughput alchemical free-energy calculations.
Collapse
Affiliation(s)
- Lauren Nelson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Sofia Bariami
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Chris Ringrose
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Joshua T Horton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Vadiraj Kurdekar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
4
|
Chen T, Manz TA. Identifying misbonded atoms in the 2019 CoRE metal-organic framework database. RSC Adv 2020; 10:26944-26951. [PMID: 35515793 PMCID: PMC9055497 DOI: 10.1039/d0ra02498h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 12/04/2022] Open
Abstract
Databases of experimentally-derived metal-organic framework (MOF) crystal structures are useful for large-scale computational screening to identify which MOFs are best-suited for particular applications. However, these crystal structures must be cleaned to identify and/or correct various artifacts. The recently published 2019 CoRE MOF database (Chung et al., J. Chem. Eng. Data, 2019, 64, 5985-5998) reported thousands of experimentally-derived crystal structures that were partially cleaned to remove solvent molecules, to identify hundreds of disordered structures (approximately thirty of those were corrected), and to manually correct approximately 100 structures (e.g., adding missing hydrogen atoms). Herein, further cleaning of the 2019 CoRE MOF database is performed to identify structures with misbonded or isolated atoms: (i) structures containing an isolated atom, (ii) structures containing atoms too close together (i.e., overlapping atoms), (iii) structures containing a misplaced hydrogen atom, (iv) structures containing an under-bonded carbon atom (which might be caused by missing hydrogen atoms), and (v) structures containing an over-bonded carbon atom. This study should not be viewed as the final cleaning of this database, but rather as progress along the way towards the goal of someday achieving a completely cleaned set of experimentally-derived MOF crystal structures. We performed atom typing for all of the accepted structures to identify those structures that can be parameterized by previously reported forcefield precursors (Chen and Manz, RSC Adv., 2019, 9, 36492-36507). We report several forcefield precursors (e.g., net atomic charges, atom-in-material polarizabilities, atom-in-material dispersion coefficients, electron cloud parameters, etc.) for more than five thousand MOFs in the 2019 CoRE MOF database.
Collapse
Affiliation(s)
- Taoyi Chen
- Department of Chemical & Materials Engineering, New Mexico State University Las Cruces New Mexico 88003-8001 USA
| | - Thomas A Manz
- Department of Chemical & Materials Engineering, New Mexico State University Las Cruces New Mexico 88003-8001 USA
| |
Collapse
|
5
|
Prentice JCA, Aarons J, Womack JC, Allen AEA, Andrinopoulos L, Anton L, Bell RA, Bhandari A, Bramley GA, Charlton RJ, Clements RJ, Cole DJ, Constantinescu G, Corsetti F, Dubois SMM, Duff KKB, Escartín JM, Greco A, Hill Q, Lee LP, Linscott E, O'Regan DD, Phipps MJS, Ratcliff LE, Serrano ÁR, Tait EW, Teobaldi G, Vitale V, Yeung N, Zuehlsdorff TJ, Dziedzic J, Haynes PD, Hine NDM, Mostofi AA, Payne MC, Skylaris CK. The ONETEP linear-scaling density functional theory program. J Chem Phys 2020; 152:174111. [PMID: 32384832 DOI: 10.1063/5.0004445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Collapse
Affiliation(s)
- Joseph C A Prentice
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jolyon Aarons
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alice E A Allen
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lampros Andrinopoulos
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lucian Anton
- UKAEA, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
| | - Robert A Bell
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Arihant Bhandari
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Gabriel A Bramley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Robert J Charlton
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rebecca J Clements
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gabriel Constantinescu
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Fabiano Corsetti
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Simon M-M Dubois
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin K B Duff
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - José María Escartín
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andrea Greco
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Quintin Hill
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Louis P Lee
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Edward Linscott
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David D O'Regan
- School of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Maximillian J S Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Laura E Ratcliff
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Álvaro Ruiz Serrano
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Edward W Tait
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gilberto Teobaldi
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Valerio Vitale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nelson Yeung
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter D Haynes
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Arash A Mostofi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mike C Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|