1
|
Guo X, Price NG, Zhu Q. Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple. Org Lett 2024; 26:7347-7351. [PMID: 39185852 DOI: 10.1021/acs.orglett.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.
Collapse
Affiliation(s)
- Xuewen Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan G Price
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qilei Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Xu J, Liu Y, Wang Q, Tao X, Ni S, Zhang W, Yu L, Pan Y, Wang Y. Electrochemical deoxygenative amination of stabilized alkyl radicals from activated alcohols. Nat Commun 2024; 15:6116. [PMID: 39033147 PMCID: PMC11271281 DOI: 10.1038/s41467-024-50596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Alkylamine structures represent one of the most functional and widely used in organic synthesis and drug design. However, the general methods for the functionalization of the shielded and deshielded alkyl radicals remain elusive. Here, we report a general deoxygenative amination protocol using alcohol-derived carbazates and nitrobenzene under electrochemical conditions. A range of primary, secondary, and tertiary alkylamines are obtained. This practical procedure can be scaled up through electrochemical continuous flow technique.
Collapse
Affiliation(s)
- Jia Xu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yilin Liu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qing Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xiangzhang Tao
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shengyang Ni
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Weigang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lei Yu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Pan
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Guo Q, Jiang Y, Zhu R, Yang W, Hu P. Electrochemical Azo-free Mitsunobu-type Reaction. Angew Chem Int Ed Engl 2024; 63:e202402878. [PMID: 38466140 DOI: 10.1002/anie.202402878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
The classic chemical Mitsunobu reaction suffers from the need of excess alcohol activation reagents and the generation of significant by-products. Efforts to overcome these limitations have resulted in numerous creative solutions, but the substrate scope of these catalytic processes remains limited. Here we report an electrochemical Mitsunobu-type reaction, which features azo-free alcohol activation and broad substrate scope. This user-friendly technology allows a vast collection of heterocycles as the nucleophile, which can couple with a series of chiral cyclic and acyclic alcohols in moderate to high yields and excellent ee's. This practical reaction is scalable, chemoselective, uses simple Electrasyn setup with inexpensive electrodes and requires no precaution to exclude air and moisture. The synthetic utility is further demonstrated on the structural modification of diverse bioactive natural products and pharmaceutical derivatives and its straightforward application in a multiple-step synthesis of a drug candidate.
Collapse
Affiliation(s)
- Quanping Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yangye Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Rongjin Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wenhui Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Pengfei Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences Westlake Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Zhou H, Shang X, Li W, Zhu C, Yang G, Dou Y. Oxidative Dehydroxycyclization of Catechols with o-Mercaptoanilines to Access 1-Hydroxyphenothiazines. J Org Chem 2024; 89:4768-4773. [PMID: 38503266 DOI: 10.1021/acs.joc.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The protocol of aerobic oxidative dehydroxycyclization installed in the synthesis of rarely studied 1-hydroxyphenothiazines from catechols and o-mercaptoanilines is presented. Utilizing a natural renewable low-toxicity gallic acid as an organocatalyst, this established transformation proceeded smoothly in an aqueous ethanol solution under mild conditions with good functional group compatibility and up to a 94% isolated yield. This protocol is also characterized by its operational simple workup involving only recrystallization, revealing its sustainability and synthetic practicability.
Collapse
Affiliation(s)
- Hanyu Zhou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xuchen Shang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenhao Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenglong Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guanyu Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yingchao Dou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
5
|
Li P, Tian Y, Tian L, Wang Y. Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Org Biomol Chem 2024; 22:725-730. [PMID: 38169000 DOI: 10.1039/d3ob01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.
Collapse
Affiliation(s)
- Pan Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Zhao X, Li M, Sun K, Xu Z, Tian L, Wang Y. Electrochemical deoxygenative homo-couplings of aromatic aldehydes. Chem Commun (Camb) 2023; 59:13062-13065. [PMID: 37849338 DOI: 10.1039/d3cc03346e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An electrochemical deoxygenative homo-coupling of aromatic aldehydes is achieved to selectively access bibenzyl and stilbene derivatives. The protocol allows the homo-coupling of aldehydes to occur after single-electron-reduction at the cathode. Taking advantage of the oxophilicity of triphenylphosphine, the electrochemical deoxygenation proceeds smoothly to give reductive homo-coupling products.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Meng Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
8
|
Wang Y, Xu J, Pan Y, Wang Y. Recent advances in electrochemical deoxygenation reactions of organic compounds. Org Biomol Chem 2023; 21:1121-1133. [PMID: 36655598 DOI: 10.1039/d2ob01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As naturally abundant and recyclable industrial feedstock, alcohols and carboxylic acids have drawn tremendous attention in medicinal chemistry and polymer chemistry. The selective C-O cleavage of the hydroxyl group represents an appealing strategy to deliver alkyl and carbonyl moieties into organic molecules. Classical examples of hydroxyl activation include the Appel reaction, Mitsunobu reaction, and Barton-McCombie deoxygenation. However, these early approaches still require large amounts of oxidants or reductants, and suffer from harsh conditions and low atom economy. Electrosynthesis has proven to be an effective and mild way of the modern chemical industry, avoiding the use of chemical oxidants/reductants through the action of an electric current. In this review, we have summarized the recent advances in electrochemical deoxygenation reactions and categorized the deoxygenation methods by different functionalities.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jia Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Electrosynthetic C-O Bond Activation in Alcohols and Alcohol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202211952. [PMID: 36278406 PMCID: PMC10107720 DOI: 10.1002/anie.202211952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/07/2022]
Abstract
Alcohols and their derivatives are ubiquitous and versatile motifs in organic synthesis. Deoxygenative transformations of these compounds are often challenging due to the thermodynamic penalty associated with the cleavage of the C-O bond. However, electrochemically driven redox events have been shown to facilitate the C-O bond cleavage in alcohols and their derivatives either through direct electron transfer or through the use of electron transfer mediators and electroactive catalysts. Herein, a comprehensive overview of preparative electrochemically mediated protocols for C-O bond activation and functionalization is detailed, including direct and indirect electrosynthetic methods, as well as photoelectrochemical strategies.
Collapse
Affiliation(s)
- Piret Villo
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| |
Collapse
|
10
|
Wang Z, Zhao X, Wang H, Li X, Xu Z, Ramadoss V, Tian L, Wang Y. Dehydroxylative Arylation of Alcohols via Paired Electrolysis. Org Lett 2022; 24:7476-7481. [PMID: 36190448 DOI: 10.1021/acs.orglett.2c03136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonactivated alcohols along with arene compounds are used in electrochemical dehydroxylative arylation for constructing C(sp3)-C(sp2) bonds. The PIII reagent undergoes single-electron anodic oxidation to form its radical cation, which reacts with the alcohol to produce an alkoxytriphenylphosphine radical. Through spontaneous β-scission of the phosphoranyl radical, the C-O bond is cleaved to form an alkyl radical species, which couples with the radical anion generated by cathodic reduction of the electron-poor arene to afford the dehydroxylative arylated product.
Collapse
Affiliation(s)
- Zhihui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqian Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongyu Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiuyun Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhimin Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Velayudham Ramadoss
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Zhu LL, Tian L, Sun K, Li Y, Liu G, Cai B, Zhang H, Wang Y. N 2-Selective β-Thioalkylation of Benzotriazoles with Alkenes. J Org Chem 2022; 87:12963-12974. [PMID: 36137279 DOI: 10.1021/acs.joc.2c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, N2-selective β-thioalkylation of benzotriazoles with unactivated alkenes and styrenes is reported. The N2-selective β-thioalkylation of benzotriazoles is highly stereospecific and works under simple and mild conditions, exhibiting excellent functional group tolerance. The high N2-selectivity is a consequence of the combination of hydrogen bonding and Lewis acid/base activation, which reverses the N2-position to be favored for alkylation.
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiwen Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Guanglu Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Sun K, Xu Z, Ramadoss V, Tian L, Wang Y. Electrochemical deoxygenative reduction of ketones. Chem Commun (Camb) 2022; 58:11155-11158. [PMID: 36106949 DOI: 10.1039/d2cc04548f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical reduction via paired electrolysis has been used to achieve deoxygenative reduction of ketones. As a result of the complexing of ketones with the triphenylphosphine radical cation generated by anodic oxidation, the reduction of carbonyl groups occurs readily. Through spontaneous β-scission of phosphoranyl radicals, C-O bonds are cleaved to form benzylic radical intermediates. These radical species are either able to abstract hydrogen from MeCN or undergo reduction at the cathode to give carbanions, upon workup forming reductive hydrogenation of ketones.
Collapse
Affiliation(s)
- Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
13
|
Ji XS, Zuo HD, Shen YT, Hao WJ, Tu SJ, Jiang B. Electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes. Chem Commun (Camb) 2022; 58:10420-10423. [PMID: 36043317 DOI: 10.1039/d2cc03922b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes with disulfonimides and alcohols is reported, producing a series of functionalized benzofurans under catalyst- and oxidant-free conditions. The annulative aminoketalization proceeds with simple short-chain alcohols such as methanol, ethanol and n-propanol as O-nucleophilic reagents, while the reaction occurs in the annulative aminooxygenation direction in the presence of water and large steric sec-butyl alcohol (SBA).
Collapse
Affiliation(s)
- Xiao-Shuang Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China. .,School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
14
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202202971. [PMID: 35403797 DOI: 10.1002/anie.202202971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.
Collapse
Affiliation(s)
- Wongyu Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α‐C−H Amination of Cyclic Amine Scaffolds Enabled by Polar‐Radical Relay. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wongyu Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sangwon Seo
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
16
|
Zhang Q, Hou J, Huang Y, Zhan LW, Li BD. Visible light-promoted synthesis of ureas and formamides from amines and CO 2. Chem Commun (Camb) 2022; 58:4599-4602. [PMID: 35311867 DOI: 10.1039/d2cc00572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A divergent visible-light-induced Ph3P-promoted method for the synthesis of ureas and formamides from amines and CO2 is reported. Without external additions, a range of ureas could be directly accessed under ambient temperature and pressure. Using triisopropylsilanethiol as the hydrogen source, formamides could be produced.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan Huang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Su J, Mo J, Chen X, Umanzor A, Zhang Z, Houk KN, Zhao J. Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous‐Flow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junqi Su
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Jia‐Nan Mo
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Alexander Umanzor
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Zheng Zhang
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
18
|
Su J, Mo JN, Chen X, Umanzor A, Zhang Z, Houk KN, Zhao J. Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous-Flow. Angew Chem Int Ed Engl 2021; 61:e202112668. [PMID: 34783121 DOI: 10.1002/anie.202112668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Indexed: 01/15/2023]
Abstract
Phosphine-mediated deoxygenative nucleophilic substitutions, such as the Mitsunobu reaction, are of great importance in organic synthesis. However, the conventional protocols require stoichiometric oxidants to trigger the formation of the oxyphosphonium intermediates for the subsequent nucleophilic additions. Through dual catalysis of photoredox and cobaloxime, we realized a radical strategy for the catalytic formation of acyloxyphosphonium ions that enables direct amidation. The deoxygenative protocol exhibits a broad scope and has been used in the late-stage amidation of drug molecules. In addition to batch reactions, a continuous-flow reactor was developed, enabling rapid peptide synthesis on gram scale. The successful assembly of a tetrapeptide on the solid support further demonstrated the versatility of this photocatalytic system. Moreover, experimental and computational studies are consistent with the hypothesis of acyloxyphosphonium ions being formed as the key intermediates.
Collapse
Affiliation(s)
- Junqi Su
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Umanzor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zheng Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
19
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
20
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
21
|
DFT investigation of the triphenylphosphine-assisted electrochemical dehydroxylative transformations. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J Am Chem Soc 2021; 143:3536-3543. [PMID: 33621464 DOI: 10.1021/jacs.0c13093] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As alcohols are ubiquitous throughout chemical science, this functional group represents a highly attractive starting material for forging new C-C bonds. Here, we demonstrate that the combination of anodic preparation of the alkoxy triphenylphosphonium ion and nickel-catalyzed cathodic reductive cross-coupling provides an efficient method to construct C(sp2)-C(sp3) bonds, in which free alcohols and aryl bromides-both readily available chemicals-can be directly used as coupling partners. This nickel-catalyzed paired electrolysis reaction features a broad substrate scope bearing a wide gamut of functionalities, which was illustrated by the late-stage arylation of several structurally complex natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zijian Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xianxu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Yong Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| |
Collapse
|
23
|
Qian J, Tian X, Wu Z, Yao J, Wang H, Zhou W. Efficient Oxidative Coupling of Isochroman with Primary Arylamines Catalyzed by Heterogeneous Ni-Containing Layered Double Oxide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Wu M, Yu L, Hou H, Chen H, Zhuang Q, Zhou S, Lin X. Electrochemistry-Enabled Copper-Catalyzed Oxidation of Benzyl Alcohols for the Preparation of Quinazolinones in Water. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Shao X, Zheng Y, Ramadoss V, Tian L, Wang Y. Recent advances in P III-assisted deoxygenative reactions under photochemical or electrochemical conditions. Org Biomol Chem 2020; 18:5994-6005. [PMID: 32692327 DOI: 10.1039/d0ob01083a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleophilic substitution reactions of hydroxyl groups are one of the most fundamental and widely spread transformations in organic chemistry. Among them, PIII-mediated deoxygenative nucleophilic substitution reactions, such as the Mitsunobu reaction, are frequently used strategies and often require stoichiometric oxidants to activate PIII reagents to induce the desired reactions. It has been illustrated that PIII reagents can be oxidized into the corresponding radical cations through single-electron oxidation by photocatalysis or electro-oxidation. These phosphine radical cations can react with alcohols or carboxylic acids to form the corresponding alkoxyphosphonium or acyloxyphosphonium intermediates, which are very reactive and easily get decomposed. The release of tri-substituted phosphine oxides as a driving force triggers the following nucleophilic substitution. This strategy does not require the use of stoichiometric oxidants and it eludes safety and stability problems. In this review, we summarise the recent advances and discoveries in PIII-assisted direct deoxygenative reactions under photochemical or electrochemical conditions.
Collapse
Affiliation(s)
- Xiaoqing Shao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
26
|
Zhu LL, Tian L, Cai B, Liu G, Zhang H, Wang Y. Diamine-mediated N 2-selective β-selenoalkylation of triazoles with alkenes. Chem Commun (Camb) 2020; 56:2979-2982. [PMID: 32077882 DOI: 10.1039/d0cc00601g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A N2-selective β-selenoalkylation of 1,2,3-triazoles with alkenes mediated by diamines has been developed. The reaction proceeds presumably via the interaction of diamines with both the triazole moiety and selenium/alkene complex to construct a U-shaped reaction intermediate. This activation mode will block the N1 position on triazoles and thus favor the N2-selective selenoamination. This stereospecific anti-addition method enables an efficient N2-selective β-selenoalkylation of 1,2,3-triazoles under mild and open-air conditions and might find applications in the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, China.
| | - Lifang Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, China.
| | - Guanglu Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, China.
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, China.
| | - Yahui Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|