1
|
Makanyane DM, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Anti-Amyloid Aggregation and Anti-Hyperglycemic Activities of Novel Ruthenium Uracil Schiff Base Compounds. ChemMedChem 2024; 19:e202400477. [PMID: 39136611 DOI: 10.1002/cmdc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Indexed: 11/10/2024]
Abstract
The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L=H2urpda=5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy=6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda=5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[Ru(bipy)2(urpy)](BF4)2 (4) (urpy=5-((pyridin-2-yl)methyleneamino)uracil) and cis-[Ru(bipy)2(dapd)] (5) (H2dadp=5,6-diaminouracil) are described. A ruthenium(IV) uracil Schiff base compound, trans-[Ru(urpda)(PPh3)Cl2] (6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1-3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
You T, Shing K, Wu L, Wu K, Wang H, Liu Y, Du L, Liang R, Phillips DL, Chang X, Huang J, Che C. Iron Corrole-Catalyzed Intramolecular Amination Reactions of Alkyl Azides. Spectroscopic Characterization and Reactivity of [Fe V(Cor)(NAd)]. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401420. [PMID: 39162002 PMCID: PMC11497103 DOI: 10.1002/advs.202401420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/18/2024] [Indexed: 08/21/2024]
Abstract
As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.
Collapse
Affiliation(s)
- Tingjie You
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Ka‐Pan Shing
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Liangliang Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Kai Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Hua‐Hua Wang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yungen Liu
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Lili Du
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Runhui Liang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - David Lee Phillips
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Xiao‐Yong Chang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- HKU Shenzhen Institute of Research and InnovationShenzhenGuangdong518057P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedUnits 1503–1511, 15/F., Building 17 W, Hong Kong Science Park, New TerritoriesHong Kong000000P. R. China
| |
Collapse
|
3
|
Cao Q, Diefenbach M, Maguire C, Krewald V, Muldoon MJ, Hintermair U. Water co-catalysis in aerobic olefin epoxidation mediated by ruthenium oxo complexes. Chem Sci 2024; 15:3104-3115. [PMID: 38425537 PMCID: PMC10901482 DOI: 10.1039/d3sc05516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
We report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the RuVI di-oxo complex for alkene epoxidation via hydrogen bonding, stabilises the RuIV mono-oxo intermediate, and is involved in the regeneration of the RuVI di-oxo complex leading to oxygen atom exchange. Distinct kinetics are obtained in the presence of water, and side reactions involved in catalyst deactivation have been identified.
Collapse
Affiliation(s)
- Qun Cao
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
- Dynamic Reaction Monitoring Facility, Institute for Sustainability, University of Bath UK
| | - Martin Diefenbach
- Theoretical Chemistry, Department of Chemistry, Technische Universität Darmstadt Germany
| | - Calum Maguire
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
| | - Vera Krewald
- Theoretical Chemistry, Department of Chemistry, Technische Universität Darmstadt Germany
| | - Mark J Muldoon
- School of Chemistry and Chemical Engineering, Queen's University Belfast Northern Ireland UK
| | - Ulrich Hintermair
- Dynamic Reaction Monitoring Facility, Institute for Sustainability, University of Bath UK
| |
Collapse
|
4
|
Liu Y, Shing KP, Lo VKY, Che CM. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Ka-Pan Shing
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503−1511, 15/F, Building 17W, Hong
Kong Science Park, New Territories, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| |
Collapse
|
5
|
Zaitseva SV, Yu. Tyulyaeva E, Tyurin DV, Zdanovich SA, Koifman OI. Easy access to powerful ruthenium phthalocyanine high-oxidized species. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wang H, Wu L, Zheng B, Du L, To W, Ko C, Phillips DL, Che C. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Cheng‐Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
7
|
Wang HX, Wu L, Zheng B, Du L, To WP, Ko CH, Phillips DL, Che CM. C-H Activation by an Iron-Nitrido Bis-Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021; 60:4796-4803. [PMID: 33205509 DOI: 10.1002/anie.202014191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Indexed: 12/11/2022]
Abstract
High-valent iron-nitrido species are nitrogen analogues of iron-oxo species which are versatile reagents for C-H oxidation. Nonetheless, C-H activation by iron-nitrido species has been scarcely explored, as this is often hampered by their instability and short lifetime in solutions. Herein, the hydrogen atom transfer (HAT) reactivity of an Fe porphyrin nitrido species (2 c) toward C-H substrates was studied in solutions at room temperature, which was achieved by nanosecond laser flash photolysis (LFP) of its FeIII -azido precursor (1 c) supported by a bulky bis-pocket porphyrin ligand. C-H bonds with bond dissociation enthalpies (BDEs) of up to ≈84 kcal mol-1 could be activated, and the second-order rate constants (k2 ) are on the order of 102 -104 s-1 m-1 . The Fe-amido product formed after HAT could further release ammonia upon protonation.
Collapse
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cheng-Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|