1
|
Kajani AA, Pouresmaeili A, Mehrgardi MA, Javanmard SH. Heteroatom-doped magneto-fluorescent carbon dots, a potent agent for multimodal imaging. Sci Rep 2024; 14:29111. [PMID: 39582076 PMCID: PMC11586438 DOI: 10.1038/s41598-024-80531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
A simple, one-pot and green method is reported for hydrothermal synthesis of highly fluorescent and magnetic carbon dots (CDs) by using D-glucose, as the carbon source. CDs were fully characterized by the UV-Vis and fluorescence spectroscopy, DLS, FTIR, TEM, EDS, XRD, and VSM. The nitrogen doping of different diamines significantly improved the fluorescence quantum yield (QY) of CDs with the maximum effect obtained by using m-phenylenediamine (mPDA). Temperature and reaction time also affected the QY of CDs with the best results obtained at 150 °C for 3 h. The heteroatom doping by innovative use of different metal sulfates including FeSO4, MnSO4, CuSO4, MgSO4, and ZnSO4, further improved the optical properties of CDs. Interestingly, the magnetic and multicolor CDs with high colloidal stability and QYs of 17.7, 16.5, and 53.9% at 460, 490, and 515 nm, respectively, were synthesized by using 0.1 M of glucose, mPDA and MnSO4. The resulted Mn-, S-, N-doped CDs represented rapid uptake and high-quality fluorescence imaging of the human fibroblast and umbilical vein endothelial cells in vitro, without significant toxicity. The CDs also displayed high r1 relaxivity of 32.3 mM- 1 s- 1 and were used for high-contrast MR and fluorescence imaging of mouse tumor models, in vivo.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ali Pouresmaeili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Dong C, Wang Y, Chen T, Ren W, Gao C, Ma X, Gao X, Wu A. Carbon Dots in the Pathological Microenvironment: ROS Producers or Scavengers? Adv Healthc Mater 2024; 13:e2402108. [PMID: 39036817 DOI: 10.1002/adhm.202402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Reactive oxygen species (ROS), as metabolic byproducts, play pivotal role in physiological and pathological processes. Recently, studies on the regulation of ROS levels for disease treatments have attracted extensive attention, mainly involving the ROS-induced toxicity therapy mediated by ROS producers and antioxidant therapy by ROS scavengers. Nanotechnology advancements have led to the development of numerous nanomaterials with ROS-modulating capabilities, among which carbon dots (CDs) standing out as noteworthy ROS-modulating nanomedicines own their distinctive physicochemical properties, high stability, and excellent biocompatibility. Despite progress in treating ROS-related diseases based on CDs, critical issues such as rational design principles for their regulation remain underexplored. The primary cause of these issues may stem from the intricate amalgamation of core structure, defects, and surface states, inherent to CDs, which poses challenges in establishing a consistent generalization. This review succinctly summarizes the recently progress of ROS-modulated approaches using CDs in disease treatment. Specifically, it investigates established therapeutic strategies based on CDs-regulated ROS, emphasizing the interplay between intrinsic structure and ROS generation or scavenging ability. The conclusion raises several unresolved key scientific issues and prominent technological bottlenecks, and explores future perspectives for the comprehensive development of CDs-based ROS-modulating therapy.
Collapse
Affiliation(s)
- Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| |
Collapse
|
3
|
Dirersa W, Kan TC, Chang J, Getachew G, Ochirbat S, Kizhepat S, Wibrianto A, Rasal A, Chen HA, Ghule AV, Chou TH, Chang JY. Engineering H 2O 2 Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24172-24190. [PMID: 38688027 PMCID: PMC11103653 DOI: 10.1021/acsami.3c18888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Worku
Batu Dirersa
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jungshan Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program for Cell Therapy and Regeneration Medicine, College
of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shamsa Kizhepat
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash Rasal
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Hung-An Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Anil Vithal Ghule
- Green
Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Tzung-Han Chou
- Department
of Chemical and Materials Engineering, National
Yunlin University of Science and Technology, Yunlin 64002, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
4
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
5
|
Sasikumar K, Rajamanikandan R, Ju H. Nitrogen- and Sulfur-Codoped Strong Green Fluorescent Carbon Dots for the Highly Specific Quantification of Quercetin in Food Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7686. [PMID: 38138829 PMCID: PMC10744681 DOI: 10.3390/ma16247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Carbon dots (CDs) doped with heteroatoms have garnered significant interest due to their chemically modifiable luminescence properties. Herein, nitrogen- and sulfur-codoped carbon dots (NS-CDs) were successfully prepared using p-phenylenediamine and thioacetamide via a facile process. The as-developed NS-CDs had high photostability against photobleaching, good water dispersibility, and excitation-independent spectral emission properties due to the abundant amino and sulfur functional groups on their surface. The wine-red-colored NS-CDs exhibited strong green emission with a large Stokes shift of up to 125 nm upon the excitation wavelength of 375 nm, with a high quantum yield (QY) of 28%. The novel NS-CDs revealed excellent sensitivity for quercetin (QT) detection via the fluorescence quenching effect, with a low detection limit of 17.3 nM within the linear range of 0-29.7 μM. The fluorescence was quenched only when QT was brought near the NS-CDs. This QT-induced quenching occurred through the strong inner filter effect (IFE) and the complex bound state formed between the ground-state QT and excited-state NS-CDs. The quenching-based detection strategies also demonstrated good specificity for QT over various interferents (phenols, biomolecules, amino acids, metal ions, and flavonoids). Moreover, this approach could be effectively applied to the quantitative detection of QT (with good sensing recovery) in real food samples such as red wine and onion samples. The present work, consequently, suggests that NS-CDs may open the door to the sensitive and specific detection of QT in food samples in a cost-effective and straightforward manner.
Collapse
Affiliation(s)
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (K.S.); (R.R.)
| |
Collapse
|
6
|
Dirersa WB, Kan TC, Getachew G, Wibrianto A, Ochirbat S, Rasal A, Chang J, Chang JY. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55258-55275. [PMID: 38013418 DOI: 10.1021/acsami.3c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnOx nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe2+/Mn2+ helps break down endogenous hydrogen peroxide (H2O2) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnOx NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnOx@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnOx NPs using MDA-Mb-231 and 4T1 cells, but in the presence of H2O2, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnOx@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnOx NP-treated animals. In the current study, the FeMnOx@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Akash Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
7
|
Kaur N, Tiwari P, Kumar P, Biswas M, Sonawane A, Mobin SM. Multifaceted Carbon Dots: toward pH-Responsive Delivery of 5-Fluorouracil for In Vitro Antiproliferative Activity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37366546 DOI: 10.1021/acsabm.3c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of smart hybrid material to assimilate diagnosis and treatment is crucial in nanomedicine. Herein, we present a simple and facile method to synthesize multitalented blue-emissive nitrogen-doped carbon dots N@PEGCDs. The as-prepared carbon dots N@PEGCDs show enhanced biocompatibility, small size, high fluorescence, and high quantum yield. The N@PEGCDs are used as a drug carrier for 5-fluorouracil (5-FU) with more release at acidic pH. Furthermore, the mode of action of drug-loaded CD (5FU-N@PEGCDs) has also been explored by performing wound healing assay, DCFDA assay for ROS generation, and Hoechst staining. The drug loaded with carbon dots showed less toxicity to normal cells compared to cancer cells, making it a perfect candidate to be studied for designing next-generation drug delivery systems.
Collapse
Affiliation(s)
- Navpreet Kaur
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pawan Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
8
|
Min K, Al Munsur AZ, Paek SY, Jeon S, Lee SY, Kim TH. Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15616-15624. [PMID: 36926797 DOI: 10.1021/acsami.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) generates oxygen and hydrogen at the anode and cathode, respectively, by conducting protons generated at the anode to the cathode through a proton exchange membrane (PEM). The performance of PEMWE can be improved with faster catalytic reactions at each electrode; thus, the development of a PEM with excellent ionic conductivity and physicochemical stability is essential. Nafion, a type of perfluoro-sulfonic acid polymer, is the most widely used PEM material. However, despite its excellent conductivity and chemical stability, it exhibits high hydrogen permeability due to its structural characteristics. Quantum dots (QDs) have a hydrophilic functional group that can act as an ion conductor and are extremely compatible with the hydrophilic cluster of Nafion due to their characteristic nanosized structure. In this study, various compositions of N-doped carbon quantum dots (CQDs) containing hydrophilic functional groups were coated on a Nafion-212 membrane. The resulting series of CQD-coated Nafion membranes exhibited improvements in morphology and ionic conductivity as well as reductions in hydrogen permeability. In particular, the Nafion membrane coated with 0.75 wt % of N-doped CQD (CQD-cNafion-0.75) exhibited improved mechanical properties and higher oxidation stability compared to Nafion-212. It also displayed higher ionic conductivity of 240.3 mS cm-1 at 80 °C and reduced hydrogen permeability (about 10% reduction) compared to Nafion-212. In addition, the performance of single-cell PEMWE using the CQD-cNafion-0.75 membrane was found to be approximately 1.2 times higher than Nafion-212.
Collapse
Affiliation(s)
- Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Abu Zafar Al Munsur
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Sae Yane Paek
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soomin Jeon
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| |
Collapse
|
9
|
Tu L, Li Q, Qiu S, Li M, Shin J, Wu P, Singh N, Li J, Ding Q, Hu C, Xiong X, Sun Y, Kim JS. Recent developments in carbon dots: a biomedical application perspective. J Mater Chem B 2023; 11:3038-3053. [PMID: 36919487 DOI: 10.1039/d2tb02794a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China.,Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Meiqin Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Junrong Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
10
|
Getachew G, Hsiao CH, Wibrianto A, Rasal AS, Batu Dirersa W, Huang CC, Vijayakameswara Rao N, Chen JH, Chang JY. High performance carbon dots based prodrug Platform: Image-Guided photodynamic and chemotherapy with On-Demand drug release upon laser irradiation. J Colloid Interface Sci 2023; 633:396-410. [PMID: 36459943 DOI: 10.1016/j.jcis.2022.11.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The design of therapeutic nanoplatforms based on fluorescent carbon dots (CDs) has become a viable strategy because of their aqueous solubility, biocompatibility, and ease of further functionalization. By doping various heteroatoms into pristine CDs structures, we synthesized N-, Cl-, and S-doped CDs (NClS/CDs), as well as Se-, N-, and Cl-doped CDs (NClSe/CDs) with superior optoelectronic properties using rapid and straightforward microwave heating. The quantum efficiencies of these NClS/CDs and NClSe/CDs were enhanced to 30.7 % and 42.9 %, respectively, compared to those of undoped CDs (0.66 %). Owing to their better light absorption properties, NClS/CDs efficiently produced reactive oxygen species (ROS) under 532 nm laser irradiation for photodynamic therapy (PDT). Considering the ROS generation and surface carrier abilities of NClS/CDs, we designed the loading of camptothecin (CPT) drug via a thioketal linker (TL), resulting in h/CDs@CPT nanovesicles (NVs) with a drug-loading efficiency of 46.5 %. Under laser irradiation in an acidic environment, ROS-triggered CPT release was observed, with 50.2 % of CPT released following the breakdown of the ROS-sensitive TL. In vitro cellular studies revealed that h/CDs@CPT NVs possessed minimal cytotoxicity toward HeLa and 4 T1 cancer cells, despite the high clinical efficacy of PDT and ROS-induced chemotherapeutic response under laser treatment. Confocal microscopy of HeLa and 4 T1 cells revealed that h/CDs@CPT NVs produced red-emissive photographs for potential cancer cell detection. Therefore, our study presents an image-guided PDT and chemotherapeutic platform based on h/CDs@CPT NVs, which will be an attractive candidate for future cancer treatment.
Collapse
Affiliation(s)
- Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chien-Hua Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan, Republic of China
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Je-Hsin Chen
- Department of Applied Cosmetology, Hwa Hsia Institute of Technology, New Taipei City 23568, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China.
| |
Collapse
|
11
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sekar R, Basavegowda N, Jena S, Jayakodi S, Elumalai P, Chaitanyakumar A, Somu P, Baek KH. Recent Developments in Heteroatom/Metal-Doped Carbon Dot-Based Image-Guided Photodynamic Therapy for Cancer. Pharmaceutics 2022; 14:1869. [PMID: 36145617 PMCID: PMC9504834 DOI: 10.3390/pharmaceutics14091869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Carbon nanodots (CNDs) are advanced nanomaterials with a size of 2-10 nm and are considered zero-dimensional carbonaceous materials. CNDs have received great attention in the area of cancer theranostics. The majority of review articles have shown the improvement of CNDs for use in cancer therapy and bioimaging applications. However, there is a minimal number of consolidated studies on the currently developed doped CNDs that are used in various ways in cancer therapies. Hence, in this review, we discuss the current developments in different types of heteroatom elements/metal ion-doped CNDs along with their preparations, physicochemical and biological properties, multimodal-imaging, and emerging applications in image-guided photodynamic therapies for cancer.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | | | - Saktishree Jena
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Pandian Elumalai
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500 085, Telangana, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
13
|
Dong C, Ma X, Huang Y, Zhang Y, Gao X. Carbon dots nanozyme for anti-inflammatory therapy via scavenging intracellular reactive oxygen species. Front Bioeng Biotechnol 2022; 10:943399. [PMID: 36046669 PMCID: PMC9420844 DOI: 10.3389/fbioe.2022.943399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Developing an efficient antioxidant for anti-inflammatory therapy via scavenging reactive oxygen species (ROS) remains a great challenge owing to the insufficient activity and stability of traditional antioxidants. Herein, we explored and simply synthesized a biocompatible carbon dots (CDs) nanozyme with excellent scavenging activity of ROS for anti-inflammatory therapy. As expected, CDs nanozyme effectively eliminate many kinds of free radicals including •OH, O2 •- , and ABTS+•. Benefiting from multienzyme activities against ROS, CDs nanozyme can decrease the levels of pro-inflammatory cytokines, resulting in good anti-inflammatory effect. Taken together, this study not only sheds light on design of bioactive antioxidants but also broadens the biomedical application of CDs in the treatment of inflammation.
Collapse
Affiliation(s)
- Chen Dong
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xuehua Ma
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Yujie Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
14
|
Phan LMT, Cho S. Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:9303703. [PMID: 35440939 PMCID: PMC9013550 DOI: 10.1155/2022/9303703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) provide distinctive advantages of strong fluorescence, good photostability, high water solubility, and outstanding biocompatibility, and thus are widely exploited as potential imaging agents for in vitro and in vivo bioimaging. Imaging is absolutely necessary when discovering the structure and function of cells, detecting biomarkers in diagnosis, tracking the progress of ongoing disease, treating various tumors, and monitoring therapeutic efficacy, making it an important approach in modern biomedicine. Numerous investigations of CDs have been intensively studied for utilization in bioimaging-supported medical sciences. However, there is still no article highlighting the potential importance of CD-based bioimaging to support various biomedical applications. Herein, we summarize the development of CDs as fluorescence (FL) nanoprobes with different FL colors for potential bioimaging-based applications in living cells, tissue, and organisms, including the bioimaging of various cell types and targets, bioimaging-supported sensing of metal ions and biomolecules, and FL imaging-guided tumor therapy. Current CD-based microscopic techniques and their advantages are also highlighted. This review discusses the significance of advanced CD-supported imaging-based in vitro and in vivo investigations, suggests the potential of CD-based imaging for biomedicine, and encourages the effective selection and development of superior probes and platforms for further biomedical applications.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
15
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Effect of addition of carbon dots to the frying oils on oxidative stabilities and quality changes of fried meatballs during refrigerated storage. Meat Sci 2021; 185:108715. [PMID: 34839193 DOI: 10.1016/j.meatsci.2021.108715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/23/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022]
Abstract
Carbon dots (CDs) were prepared and noted to exhibit potent scavenging activities against DPPH·, ·OH, and O2·- radicals. Addition of CDs to frying oil as a means to improve oxidative stability and minimize quality changes of fried meatballs during refrigerated storage was investigated in comparison with the use of tert-butylhydroquinone (TBHQ) and carnosic acid (CA). Compared with the control sample, 0.05% CDs significantly reduced thiobarbituric acid reactive substances value, carbonyl and total volatile basic nitrogen contents of fried meatballs. Both lipid and protein oxidation inhibition capabilities of CDs were higher than those of 0.05% CA but lower than those of 0.02% TBHQ. Total sensory score of sample with CDs (7.1 ± 0.06) was significantly higher than those of the control (4.7 ± 0.03) and sample with TBHQ (6.4 ± 0.04). CDs could delay oxidation of fried meatballs during refrigerated storage and can well serve as an alternative antioxidant.
Collapse
|
17
|
Gao N, Jing J, Zhao H, Liu Y, Yang C, Gao M, Chen B, Zhang R, Zhang X. Defective Ag-In-S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. J Mater Chem B 2021; 9:8971-8979. [PMID: 34643636 DOI: 10.1039/d1tb01681d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress plays an important role in the development of inflammatory diseases including allergy, heart disease, diabetes and cancer. Nanomaterial-mediated antioxidant therapy is regarded as a promising strategy to treat oxidative stress-mediated inflammation. Herein, defective Ag-In-S/ZnS quantum dots (AIS/ZnS QDs) with oxygen-derived radical-scavenging capabilities are developed. Owing to their intrinsic defects and abundant surface functional groups, these quantum dots exhibit excellent oxygen-derived free radical removal efficiency in vitro. In macrophages, AIS/ZnS QDs can eliminate intracellular excessive ROS stimulated by either H2O2 or lipopolysaccharide (LPS), thus can effectively protect macrophages against ROS-induced oxidative injury. Moreover, in the model of LPS-triggered macrophage inflammation, they exhibit benign anti-inflammatory ability by inhibiting the expression of related proinflammatory cytokines (e.g., TNF-α and IL-6). These findings indicate that AIS/ZnS QDs hold great potential for the treatment of ROS-related inflammatory disorders.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Hengzhi Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yazhou Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Chunlei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Mengxu Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Bingkun Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rubo Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
18
|
Zhao H, Yuan X, Yang X, Bai F, Mao C, Zhao L. Nitrogen-Doped Carbon Dot and CdTe Quantum Dot Dual-Color Multifunctional Fluorescent Sensing Platform: Sensing Behavior and Glucose and pH Detection. Inorg Chem 2021; 60:15485-15496. [PMID: 34592811 DOI: 10.1021/acs.inorgchem.1c02109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel fluorescent probe based on a nitrogen-doped carbon dot (N-CD) and CdTe quantum dot (CdTe QD) platform has been constructed for H2O2/glucose detection and pH sensing. In this work, H2O2-tolerant blue fluorescence N-CDs were added to the H2O2-mediated yellow fluorescence quenching of CdTe QDs to construct a dual-color ratiometric fluorescent H2O2 probe. H2O2-induced passivated group detachment and action on deep nanocrystals promoted CdTe QD fluorescence quenching. Meanwhile, the addition of the blue fluorescent background of N-CDs sharply reflected the color change in CdTe QDs. Under the optimized experimental conditions, the platform was effectively applied to the detection of H2O2 produced by the enzymatic reaction of glucose, showing high sensitivity (limit of detection 7.86 μM) and wide linear range (26-900 μM) for glucose detection. The pH-sensing behavior of CdTe QDs and N-CDs was attributed to the displacement of a weak acid (3-mercaptopropionic acid) by a strong acid (HCl) and the acid titration process of two coexisting bases (N-CDs and NH3·H2O), respectively. The loss of passivation and doping effects led to a decrease in the fluorescence intensity of CdTe QDs and N-CDs. Moreover, utilizing the ability of bimaterial system fluorescence to pH sensing, a semiquantitative pH detection based on the linear response was developed. The pH range was analyzed by three kinds of N-CD (Fex = 440 nm) and CdTe QD (Fex = 548 nm) typical emission spectral shapes. In addition, the recovery results showed that the bimaterial system was proved to be appropriate for the assay of glucose in spiked serum samples.
Collapse
Affiliation(s)
- Hanqing Zhao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xucan Yuan
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiuying Yang
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, People's Republic of China
| | - Fujuan Bai
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Chunling Mao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Longshan Zhao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
19
|
Youh MJ, Chung MC, Tai HC, Chen CY, Li YY. Fabrication of carbon quantum dots via ball milling and their application to bioimaging. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Rasal AS, Korupalli C, Getachew G, Chou TH, Lee TY, Ghule AV, Chang JY. Towards green, efficient and stable quantum-dot-sensitized solar cells through nature-inspired biopolymer modified electrolyte. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Lee BH, Hasan MT, Lichthardt D, Gonzalez-Rodriguez R, Naumov AV. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. NANOTECHNOLOGY 2021; 32:095103. [PMID: 33126228 DOI: 10.1088/1361-6528/abc642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics. Considering that the drawbacks of MRI contrast agent toxicity are still poorly addressed, we develop novel Mn2+ or Gd3+ doped nitrogen-containing graphene quantum dots (NGQDs) to equip the GQDs with MRI capabilities and at the same time render contrast agents biocompatible. Water-soluble biocompatible Mn-NGQDs and Gd-NGQDs synthesized via single-step microwave-assisted scalable hydrothermal reaction enable dual MRI and fluorescence modalities. These quasi-spherical 3.9-6.6 nm average-sized structures possess highly crystalline graphitic lattice structure with 0.24 and 0.53 atomic % for Mn2+ and Gd3+ doping. This structure ensures high in vitro biocompatibility of up to 1.3 mg ml-1 and 1.5 mg ml-1 for Mn-NGQDs and Gd-NGQDs, respectively, and effective internalization in HEK-293 cells traced by intrinsic NGQD fluorescence. As MRI contrast agents with considerably low Gd and Mn content, Mn-NGQDs exhibit substantial transverse/longitudinal relaxivity (r 2/r 1) ratios of 11.190, showing potential as dual-mode longitudinal or transverse relaxation time (T 1 or T 2) contrast agents, while Gd-NGQDs possess r 2/r 1 of 1.148 with high r 1 of 9.546 mM-1 s-1 compared to commercial contrast agents, suggesting their potential as T1 contrast agents. Compared to other nanoplatforms, these novel Mn2+ and Gd3+ doped NGQDs not only provide scalable biocompatible alternatives as T1/T2 and T1 contrast agents but also enable in vitro intrinsic fluorescence imaging.
Collapse
Affiliation(s)
- Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| | - Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States of America
| | - Denise Lichthardt
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Friedrich-Alexander University Erlangen-Nürnberg, Schlossplatz 4, 91054 Erlangen, Germany
| | - Roberto Gonzalez-Rodriguez
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Department of Physics, University of North Texas, 210 Avenue A, Denton, TX 76201, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| |
Collapse
|
22
|
Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic Nanozyme for Radiation Protection. Bioconjug Chem 2021; 32:411-429. [PMID: 33570917 DOI: 10.1021/acs.bioconjchem.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiotherapy has been widely used in clinical cancer treatment. However, the ionizing radiation required to kill the tumor will inevitably cause damage to the surrounding normal tissues. To minimize the radiation damage and side effects, small molecular radioprotective agents have been used as clinical adjuvants for radiation protection of healthy tissues. However, the shortcomings of small molecules such as short circulation time and rapid kidney clearance from the body greatly hinder their biomedical applications. In recent years, nanozymes have attracted much attention because of their potential to treat a variety of diseases. Nanozymes exhibit catalytic properties and antioxidant capabilities to provide a potential solution for the development of high-efficiency radioprotective agents in radiotherapy and nuclear radiation accidents. Therefore, in this review, we systematically summarize the catalytic nanozymes used for radiation protection of healthy tissues and discuss the challenges and future prospects of nanomaterials in the field of radiation protection.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Yongming Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
24
|
Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and Characterization of Green Carbon Dots for Scavenging Radical Oxygen Species in Aqueous and Oil Samples. Antioxidants (Basel) 2020; 9:antiox9111147. [PMID: 33228081 PMCID: PMC7699408 DOI: 10.3390/antiox9111147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Carbon dots (CDs) due to their unique optical features, chemical stability and low environmental hazard are applied in different fields such as metal ion sensing, photo-catalysis, bio-imaging and tribology, among others. The aims of the present research were to obtain CDs from vegetable wastes (tea and grapes) as carbon sources and to explore their potential properties as radical scavengers. CDs from glutathione/citric acid (GCDs) were synthetized for comparison purposes. The CDs were investigated for their chemical structure, morphology, optical and electronical properties. The antioxidant activity has been explored by DPPH and Folin-Ciocelteau assays in aqueous media. Due to their solubility in oil, the CDs prepared from tea wastes and GCDs were assayed as antioxidants in a mineral oil lubricant by potentiometric determination of the peroxide value. CDs from tea wastes and GCDs exhibited good antioxidant properties both in aqueous and oil media. Possible mechanisms, such as C-addition to double bonds, H-abstraction and SOMO-CDs conduction band interaction, were proposed for the CDs radical scavenging activity. CDs from natural sources open new application pathways as antioxidant green additives.
Collapse
|
25
|
Guo Y, Li T, Xie L, Tong X, Tang C, Shi S. Red pitaya peels-based carbon dots for real-time fluorometric and colorimetric assay of Au 3+, cellular imaging, and antioxidant activity. Anal Bioanal Chem 2020; 413:935-943. [PMID: 33210176 DOI: 10.1007/s00216-020-03049-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
The synthesis of fascinating multifunctional carbon dots (CDs) attracted immense attention. Here, a facile solvothermal treatment of red pitaya peels in acetic acid produced CDs (designated as ACDs, excitation/emission wavelengths at 357/432 nm). ACDs with high sp2-hybridized carbon and carboxylic group contents can rapidly and selectively reduce Au3+ to Au0, and stabilize produced Au nanoparticles (AuNPs). The synergetic effect of electron transfer from ACDs to Au3+ and inner filter effect (IFE) from ACDs to AuNPs quenches the fluorescence within 30 s. Simultaneously, the resulting AuNPs have a purple color with a maximum absorption at 545 nm for visual detection. Therefore, for the first time, we reported a fluorometric and colorimetric dual-mode sensing system for real-time, highly sensitive and selective detection of Au3+. The fluorescence quenching ratio and absorbance change linearly with the increase of Au3+ concentration in the range of 0.3-8.0 μM and 3.3-60.0 μM with limits of detection (LODs) at 0.072 μM and 2.2 μM, respectively. The assay was applied for Au3+ determination in spiked real water samples with recoveries from 95.5 to 105.0%, and relative standard deviation (RSD) of less than 6.5%. Furthermore, ACDs with good photostability, low cytotoxicity, and excellent biocompatibility were successfully applied for intracellular Au3+ sensing and imaging. In addition, ACDs exhibited an extraordinarily high antioxidant activity, with an IC50 value for DPPH radical scavenging (0.70 μg mL-1) much lower than that of ascorbic acid (4.34 μg mL-1). The proposed strategy demonstrates the outstanding properties of ACDs in chemical and biomedical analysis. Graphical abstract.
Collapse
Affiliation(s)
- Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Yunnan Provincial Energy Research Institute Co., Ltd, Kunming, 650000, Yunnan, China.
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
26
|
Su R, Shi J, Pu Y, Wang JX, Wang D, Chen JF. Synthesis of Ultrasmall and Monodisperse Selenium-Doped Carbon Dots from Amino Acids for Free Radical Scavenging. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rina Su
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shi
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Pu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Centre of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Dehvari K, Chiu SH, Lin JS, Girma WM, Ling YC, Chang JY. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater 2020; 114:343-357. [PMID: 32682058 DOI: 10.1016/j.actbio.2020.07.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
Carbon-based artificial nanoenzymes have gained increasing interest as emerging and promising nanotheranostic agents due to their biocompatibility, low cost, and straightforward production. Herein, a multifunctional Mn, N, and S incorporated carbon dots (MnNS:CDs) nanoenzyme exhibiting scavenging activity against reactive oxygen species (ROS) and reactive nitrogen species (RNS), photoluminescence quantum yield of 17.7%, and magnetic resonance imaging (MRI) contrast was explored. The optical, magnetic, and antioxidant properties of MnNS:CDs were then regulated by control over Mn incorporation to achieve higher photostability and antioxidant properties. Furthermore, conjugation of MnNS:CDs with hyaluronic acid (HA) (denoted as MnNS:CDs@HA) endowed them with high biocompatibility, which is validated by in vivo studies on zebrafish, and the ability to specifically target cluster determinant 44 (CD44)-overexpressing B16F1 cells, as verified by in vitro confocal and MRI studies. The MnNS:CDs@HA probe with therapeutic antioxidant and dual-modal imaging capability was further assessed for non-covalent binding of doxorubicin (DOX) as a model chemotherapeutic cancer drug. Results showed that targeted delivery and pH-dependent release of DOX elicited apparent cell toxicity (90%) toward B16F1 cancer cells when compared to free DOX treatment group (60%). Benefiting from their intrinsic antioxidant properties, and dual-modal imaging ability, the MnNS:CDs@HA nanocarrier is projected to improve non-invasive targeted diagnosis and therapy. STATEMENT OF SIGNIFICANCE: Carbon dots (CDs) have gained increasing interest as emerging and promising artificial functional nanomaterials that mimic the structures and functions of natural enzymes. In this work, Mn, N, and S incorporated CDs (MnNS:CDs) were synthesized using a one-pot microwave hydrothermal method to serve as fluorescent and magnetic resonance imaging probes, and catalase mimics in the reduction of the oxidative-stress related damage. Further conjugation of the probes with hyaluronic acid endows them with a good in vitro and in vivo biocompatibility as well as the capability to selectively target CD44-overexpressing cancer cells, as investigated by in vitro fluorescence, and magnetic resonance imaging. The dual-modal nanoprobe was then used to carry on doxorubicin through a non-covalent association. Favorably, targeted delivery, and pH-responsive release of doxorubicin enhanced cell killing efficiency by 50% as opposed to the free doxorubicin treatment group. The presented theranostic heteroatom doped CDs hold great promise for dual-modal imaging enabling accurate diagnosis coupled with therapeutic effect through free radical scavenging and chemotherapy.
Collapse
Affiliation(s)
- Khalilalrahman Dehvari
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Sheng-Hui Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Jin-Sheng Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Wubshet Mekonnen Girma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China.
| |
Collapse
|
28
|
Jia J, Lu W, Li L, Gao Y, Jiao Y, Han H, Dong C, Shuang S. Orange-emitting N-doped carbon dots as fluorescent and colorimetric dual-mode probes for nitrite detection and cellular imaging. J Mater Chem B 2020; 8:2123-2127. [DOI: 10.1039/c9tb02934f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel orange-emitting N-doped carbon dots (N-CDs) were prepared as fluorescent and colorimetric dual-mode probes for sensing nitrite (NO2−).
Collapse
Affiliation(s)
- Jing Jia
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Lin Li
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Yifang Gao
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Yuan Jiao
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Hui Han
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, and Institute of Environmental Science
- Shanxi University
- Taiyuan
- China
| |
Collapse
|