1
|
Li X, Cai Y, Chen J, Lu J, Chovelon JM, Zhou Q, Ji Y. Aqueous photolysis of naproxen exposed to UV and natural sunlight: Formation of excited triplet and photosensitizing product. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134841. [PMID: 38852251 DOI: 10.1016/j.jhazmat.2024.134841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Photochemical transformation is an important attenuation process for the non-steroidal anti-inflammatory drug naproxen (NPX) in both engineered and natural waters. Herein, we investigated the photolysis of NPX in aqueous solution exposed to both ultraviolet (UV, 254 nm) and natural sunlight irradiation. Results show that N2 purging significantly promoted NPX photolysis under UV irradiation, suggesting the formation of excited triplet state (3NPX*) as a critical transient. This inference was supported by benzophenone photosensitization and transient absorption spectra. Sunlight quantum yield of NPX was only one fourteenth of that under UV irradiation, suggesting the wavelength-dependence of NPX photochemistry. 3NPX* formed upon irradiation of NPX underwent photodecarboxylation leading to the formation of 2-(1-hydroxyethyl)-6-methoxynaphthalene (2HE6MN), 2-(1-hydroperoxyethyl)-6-methoxynaphthalene (2HPE6MN), and 2-acetyl-6-methoxynaphthalene (2A6MN). Notably, the conjugation and spin-orbit coupling effects of carbonyl make 2A6MN a potent triplet sensitizer, therefore promoting the photodegradation of the parent NPX. In hospital wastewater, the photolysis of NPX was influenced because the photoproduct 2A6MN and wastewater components could competitively absorb photons. Bioluminescence inhibition assay demonstrated that photoproducts of NPX exhibited higher toxicity than the parent compound. Results of this study provide new insights into the photochemical behaviors of NPX during UV treatment and in sunlit surface waters.
Collapse
Affiliation(s)
- Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Quansuo Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang Y, Hu X, Chen X, Ren Z, Li Y, Miao J, He Y, Zhang P, Li C, Zhu Q. Potential of metallurgical iron-containing solid waste-based catalysts as activator of persulfate for organic pollutants degradation. CHEMOSPHERE 2024; 359:142276. [PMID: 38761830 DOI: 10.1016/j.chemosphere.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Xin Hu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Xingyue Chen
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Zhifeng Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yihong Li
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Jing Miao
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yibo He
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Peng Zhang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China.
| | - Chen Li
- Shanxi Province Science and Technology Achievement Transfer and Transformation Promotion and Data Monitoring Center, Taiyuan, 030024, Shanxi, China.
| | - Qiang Zhu
- Australia Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| |
Collapse
|
3
|
Dehghani A, Baradaran S, Movahedirad S. Synergistic degradation of Congo Red by hybrid advanced oxidation via ultraviolet light, persulfate, and hydrodynamic cavitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116042. [PMID: 38310821 DOI: 10.1016/j.ecoenv.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In the present study, hybrid activation of sodium peroxydisulfate (PS) by hydrodynamic cavitation and ultraviolet radiation was investigated for Congo Red (CR) degradation. Experiments were conducted using the Box-Benken design on inlet pressure (2-6 bar), PS concentration (0-50 mg. L-1) and UV radiation power (0-32 W). According to the results, at the optimum point where the pressure, PS concentration and UV radiation power were equal to 4.5 bar, 30 mg. L-1 and 16 W respectively, 92.01% of decolorization was achieved. Among the investigated processes, HC/UV/PS was the best process with the rate constant and synergetic coefficient of 38.6 × 10-3 min-1 and 2.76, respectively. At the optimum conditions, increasing the pollutant concentration from 20 mg. L-1 to 80 mg. L-1 decrease degradation rate from 92.01 to 45.21. Presence of natural organic mater (NOM) in all concentrations inhibited the CR degradation. Quenching experiments revealed that in the HC/UV/PS hybrid AOP free radicals accounted for 63.4% of the CR degradation, while the contribution of sulfate (SRs) and hydroxyl radicals (HRs) was 53.1% and 46.9%, respectively.
Collapse
Affiliation(s)
- Abolfazl Dehghani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Soroush Baradaran
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Salman Movahedirad
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
4
|
Conte LO, Cotillas S, Lorenzo D, Bahamonde A, Santos A. Solar-assisted oxidation of organochlorine pesticides in groundwater using persulfate and ferrioxalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123205. [PMID: 38142033 DOI: 10.1016/j.envpol.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
The oxidation of hexachlorocyclohexane isomers in the aqueous phase (Milli-Q and groundwater) was studied using persulfate activated by ferrioxalate and solar light at circumneutral pH. The experiments were conducted in a solar simulator reactor with local radiation fluxes qw= 1.12·10-7 E cm-2s-1 and in compound parabolic collectors with solar light (qw≈10-7 E cm-2s-1) for 390 min. The effect of activator dosage (18-125 μM ferrioxalate) and persulfate concentration (520-2600 μM) on hexachlorocyclohexane conversion and oxalate and oxidant consumption was analyzed. Conversion of about 95% of β isomer was achieved at 390 min using 1300 μM of initial persulfate and 63 μM of Fe3+ concentration despite this β isomer being the most recalcitrant to oxidation (XHexachlorocyclohexanes=0.98). Dechlorination above 80% was achieved under these conditions, analyzing the chlorides released into the water. The influence of chloride and bicarbonate on hexachlorocyclohexanes degradation was analyzed in milli-Q water and in groundwater. Hexachlorocyclohexane conversion at 390 min decreases from 98% to 83, 75 and 65% in the presence of chloride, bicarbonate or groundwater, respectively. Results obtained with compound parabolic collectors and solar light using 2600 μM Na2S2O8 and 63 μM Fe for removing hexachlorocyclohexanes agreed with those from the solar simulator reactor, supporting using solar light to activate persulfate for sustainable abatement of persistent organic pollutants in aqueous matrixes.
Collapse
Affiliation(s)
- Leandro O Conte
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL), Ruta Nacional N 168, 3000, Santa Fe, Argentina
| | - Salvador Cotillas
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - David Lorenzo
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Ana Bahamonde
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC, C/ Marie Curie 2, 28049, Madrid, Spain
| | - Aurora Santos
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
5
|
He X, Luo Y, Yi Y, Su S, Qin W. Peroxymonosulfate activation by Fe-Mn Co-doped biochar for carbamazepine degradation. RSC Adv 2024; 14:1141-1149. [PMID: 38174246 PMCID: PMC10760410 DOI: 10.1039/d3ra06065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Antibiotics in aquatic environments present a serious threat to the ecological environment and human health. Activation of carbon-catalyzed persulfate is a prospective approach for oxidizing antibiotics. There is a pressing need for inexpensive carbon catalysts of high quality. In this study, biochar (BC) modified by Fe, Mn and Fe@Mn was employed to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) in water. The surface of Fe@Mn BC had a dense, stalactite-like morphology comprising a square chassis that was elliptical. The catalyst Fe@Mn-BC possessed the optimal degradation effect (99%) on CBZ at 100 min. Electron paramagnetic resonance spectroscopy and the quenching spectrum suggested that ˙O2- and 1O2 contributed to CBZ degradation.
Collapse
Affiliation(s)
- Xinze He
- School of Environmental and Chemical Engineering College, Nanchang Hangkong University Nanchang 330000 China
| | - Yunxia Luo
- School of Environmental and Chemical Engineering College, Nanchang Hangkong University Nanchang 330000 China
| | - Yang Yi
- School of Environmental and Chemical Engineering College, Nanchang Hangkong University Nanchang 330000 China
| | - Shuping Su
- School of Environmental and Chemical Engineering College, Nanchang Hangkong University Nanchang 330000 China
- Children's Hospital of Chongqing Medical University Chongqing 401122 China
| | - Wenzhen Qin
- School of Environmental and Chemical Engineering College, Nanchang Hangkong University Nanchang 330000 China
| |
Collapse
|
6
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
7
|
Geng FL, Chi HY, Zhao HC, Wan JQ, Sun J. Stability performance analysis of Fe based MOFs for peroxydisulfates activation to effectively degrade ciprofloxacin. Front Bioeng Biotechnol 2023; 11:1205911. [PMID: 37576985 PMCID: PMC10421748 DOI: 10.3389/fbioe.2023.1205911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.
Collapse
Affiliation(s)
- Fang-Lan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Hua-Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jian Sun
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
9
|
Treatment of actual cyanide gold extraction wastewater by persulfate oxidation and its reaction mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Liu Z, Sun X, Sun Z. CoNi alloy anchored onto N-doped porous carbon for the removal of sulfamethoxazole: Catalyst, mechanism, toxicity analysis, and application. CHEMOSPHERE 2022; 308:136291. [PMID: 36058366 DOI: 10.1016/j.chemosphere.2022.136291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Developing highly efficient, stable, recyclable, and application value heterogeneous catalysts in advanced oxidation processes has essential application value in the degradation of refractory pollutants. In this paper, the CoNi alloy anchored onto N-doped porous carbon (CoNi-600@NC) catalyst was prepared using bimetallic doped metal-organic frameworks as precursors. The magnetic CoNi-600@NC can activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX). Therefore, SMX can be removed 100% within 25 min. CoNi-600@NC/PMS has a broad pH (3-9) application range, good applicability, and repeatability. Radical quenching, quantitative and electrochemical experiments proved that the degradation of SMX was dominated by free radical (Superoxide anions) and non-free radical pathways (surface-bound radicals). Mechanistic analysis showed that the interaction between Co-Nx/pyridine N-sites and graphitized carbon with PMS induced the formation of surface-bound active species. Moreover, CoNi nanoparticles promoted the redox cycle of metals. The synergistic catalytic mechanisms between the CoNi alloy and the abundant functional groups gave CoNi-600@NC excellent catalytic properties and applicability. Using density functional theory predicted the reaction sites of SMX and proposed four degradation pathways. The toxicity of intermediates was comprehensively evaluated. In addition, a CoNi-600@NC continuous flow reactor was constructed with a daily treatment capacity of 45 L and 100% SMX removal. This study expands the application of persulfate advanced oxidation technology by synthesizing recyclable magnetic catalysts and provides new synergistic degradation mechanisms for removing refractory organics.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiuping Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
11
|
Liu H, Fu P, Liu F, Hou Q, Tong Z, Bi W. Degradation of ciprofloxacin by persulfate activated with pyrite: mechanism, acidification and tailwater reuse. RSC Adv 2022; 12:29991-30000. [PMID: 36321107 PMCID: PMC9582745 DOI: 10.1039/d2ra05412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Residues of ciprofloxacin (CIP) in the environment pose a threat to human health and ecosystems. This study investigated the degradation of CIP by persulfate (PS) activated with pyrite (FeS2). Results showed that when [CIP] = 30 μM, [FeS2] = 2.0 g L-1, and [PS] = 1 mM, the CIP removal rate could reach 94.4% after 60 min, and CIP mineralization rate reached 34.9%. The main free radicals that degrade CIP were SO4˙- and HO˙, with contributions of 34.4% and 35.7%, respectively. Additionally, compared to the control (ultrapure water), CIP in both tap water and river water was not degraded. However, acidification could eliminate the inhibition of CIP degradation in tap water and river water. Furthermore, acidic tailwater from CIP degradation could be utilized to adjust the pH of untreated CIP, which could greatly promote the degradation of CIP and further reduce disposal costs. The reaction solution was not significantly biotoxic and three degradation pathways of CIP were investigated. Based on the above results and the characterization of FeS2, the mechanism of CIP degradation in the FeS2/PS system was that FeS2 activated PS to generate Fe(iii) and SO4˙-. The sulfide in FeS2 reduced Fe(iii) to Fe(ii), thus achieving an Fe(iii)/Fe(ii) cycle for CIP degradation.
Collapse
Affiliation(s)
- Hui Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Peng Fu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Qingjie Hou
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| |
Collapse
|
12
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Arvaniti OS, Ioannidi AA, Mantzavinos D, Frontistis Z. Heat-activated persulfate for the degradation of micropollutants in water: A comprehensive review and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115568. [PMID: 35777153 DOI: 10.1016/j.jenvman.2022.115568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
This work is a critical review of the most important studies that have dealt with heat-activated persulfate to degrade persistent micropollutants in the last six years. The effect of the different operating parameters is discussed, wherein in all cases, the efficiency was favored at higher temperatures and oxidant concentrations. Particular emphasis was given to the effect of the aqueous matrix. Since heat activation is a homogeneous process based on the production of free radicals, in most of the studies presented, the removal of pollutants decreases as the complexity of the aqueous matrix increases except in cases where secondary oxidative species are produced that are selective with specific pollutants. It has also been observed that the change in toxicity usually follows the removal of the parent compound despite the formation of several by-products. Nowadays, combining different processes for the simultaneous activation of persulfate seems to be gaining ground. A hybrid process is an interesting strategy to reduce costs and increase efficiency, especially in real wastewater. In this light, the most interesting studies of hybrid systems for the destruction of micropollutants in recent years based on thermally activated persulfate are also summarized. Finally, some steps are proposed for future research towards the industrial application, including the study of chemical mixtures, the integrated toxicity assessment, the examination of simultaneous disinfection and decomposition of pollutants into real wastewater, the estimation of the required costs, and energy the combination of processes and their coupling with renewable sources, and the design of pilot plants and the scale-up of the hybrid processes.
Collapse
Affiliation(s)
- Olga S Arvaniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece
| | - Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR, 50132, Kozani, Greece.
| |
Collapse
|
14
|
Huang J, Zhou Y, Deng S, Shangguan Y, Wang R, Ge Q, Feng X, Yang Z, Ji Y, Fan T, Chen B, Li B, Zheng C, Hu X, Chen H. Photo-assisted reductive cleavage and catalytic hydrolysis-mediated persulfate activation by mixed redox-couple-involved CuFeS 2 for efficient trichloroethylene oxidation in groundwater. WATER RESEARCH 2022; 222:118885. [PMID: 35932701 DOI: 10.1016/j.watres.2022.118885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Persulfate (PS, S2O82-) activation through transition metal sulfides (TMS) has gained increasing attention since it can decompose a wide variety of refractory halogenated organic compounds in groundwater and wastewater. However, the processes of PS activation by TMS and particularly the formation of •OH radical under anoxic and acidic conditions (pH ∼2.8) remain elusive. Herein, by employing mixed redox-couple-involved chalcopyrite (CuFeS2) (150 mg/L) nanoparticles for PS (3.0 mM) activation, 96% of trichloroethylene was degraded within 120 min at pH 6.8 under visible light irradiation. The combination of experimental studies and theoretical calculations suggested that the Cu(I)/Fe(III) mixed redox-couple in CuFeS2 plays a crucial role to activate PS. Cu(I) acted as an electron donor to transfer electron to Fe(III), then Fe(III) served as an electron transfer bridge as well as a catalytic center to further donate this received electron to the O-O bond of PS, thus yielding SO4•- for trichloroethylene oxidation. Moreover, for the first time, •OH radicals were found to form from the catalytic hydrolysis of PS onto CuFeS2 surface, where S2O82- anion was hydrolyzed to yield H2O2 and these ensuing H2O2 were further transformed into •OH radicals via photoelectron-assisted O-O bond cleavage step. Our findings offer valuable insights for understanding the mechanisms of PS activation by redox-couple- involved TMS, which could promote the design of effective activators toward PS decomposition for environmental remediation.
Collapse
Affiliation(s)
- Junyi Huang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanhao Zhou
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shimao Deng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiuyue Ge
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigang Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xijun Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Kumar P, Verma S, Kaur R, Papac J, Kušić H, Štangar UL. Enhanced photo-degradation of N-methyl-2-pyrrolidone (NMP): Influence of matrix components, kinetic study and artificial neural network modelling. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128807. [PMID: 35417795 DOI: 10.1016/j.jhazmat.2022.128807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the degradation of N-methyl-2-pyrrolidone (NMP) by UV-C and UV-C/PMS-treatment processes. The degradation of NMP was less than 2% by UV-C photolysis. To enhance the degradation, PMS was used as a source of sulphate (SO4• -) and hydroxyl (HO•) radicals in the UV-C photolysis treatment system. The operational parameters such as initial pH and concentration of NMP and PMS and water matrix elements were studied to understand their effects on degradation. At pH = 6.3, λ = 260 nm, initial concentration of NMP = 10 mg/L, PMS = 300 mg/L and carbonate ion = 150 mg/L, the degradation of NMP was found to be 97.5%, along with 26.86% of TOC removal. The bicarbonate ions, nitrate ions, and chloride ions showed the inhibitory effect on the degradation of NMP. The NMP degradation was governed by pseudo first order kinetics. SO4• - was found to be the dominating degradation species through the radical quenching studies. The intermediates formed during the degradation were identified through LC-MS analysis, and a degradation pathway was proposed. The experimental data was successfully validated through the application of the developed ANN model. The R2 between expected and experimental outcomes was 0.97. The developed ANN model was successful in predicting the degradation of NMP in the given reaction conditions with the prediction accuracy of 90.91% and RMSE of 3.54.
Collapse
Affiliation(s)
- Praveen Kumar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Shilpi Verma
- School of Energy & Environment, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Ramanpreet Kaur
- Laboratory for Open Systems and Networks, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Josipa Papac
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Urška Lavrenčič Štangar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The elimination of organic contaminants from natural resources is extremely important to ensure their (re-)usability. In this report, the degradation of a model pharmaceutical compound, theophylline, is compared between natural and laboratory-controlled environments. While the concentration of H2O2 variably affected the degradation efficiency (approximately from 8 to 20 min for complete degradation) in the photo-irradiation experiments, the inorganic compounds (NaNO3, KH2PO4 and ZnSO4) present in the medium seemed to affect the degradation by scavenging hydroxyl radicals (•OH). The end-product studies using high-resolution mass spectrometry (HRMS) ruled out the involvement of secondary radicals in the degradation mechanism. The quantitative calculation with the help of authentic standards pointed out the predominant role of hydroxylation pathways, especially in the initial stages. Although a noticeable decline in the degradation efficiency was observed in river water samples (complete degradation after 25 min with an approximately 20% total organic carbon (TOC) removal), appreciable TOC removal (70%) was eventually achieved after prolonged irradiation (1 h) and in the presence of additional H2O2 (5 times), revealing the potential of our technique. The results furnished in this report could be considered as a preliminary step for the construction of •OH-based wastewater treatment methodologies for the remediation of toxic pollutants from the real environment.
Collapse
|
17
|
Sun J, Wan J, Wang Y, Yan Z, Ma Y, Ding S, Tang M, Xie Y. Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128299. [PMID: 35077971 DOI: 10.1016/j.jhazmat.2022.128299] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted more attention because of their excellent environmental catalytic capabilities. Modulation approach as an advanced assistant strategy is vital essential to enhancing the performance of MOFs. In this study, the modulated method was used to successfully synthesize a group of Fe-based MOFs, with formic acid as the modulator on the synthesis mixture. The most modulated sample Fe-MOFs-2 exhibit high specific surface areas and higher catalytic activity, which could effectively degrade SMX via PS activation, with almost 95% removal efficiency within 120 min. The results revealed that the % RSE of modulated Fe-MOFs-2 increased from 2.31 to 3.27 when compared with the origin Fe-MOFs. This may be due to the addition of formic acid induces the formation of more coordinatively unsaturated metal sites in the catalyst, resulting in structural defects. In addition, the quenching experiment and EPR analysis verified SO4-·and·OH as the major active free radicals in the degradation process. Modulated Fe-MOFs-2 demonstrated good reusability and stability under fifth cycles. Finally, four possible degradation pathways and catalytic mechanism of Fe-MOFs-2 was tentatively proposed. Our work provides insights into the rational design of modulated Fe-MOFs as promising heterogeneous catalysts for advanced wastewater treatment.
Collapse
Affiliation(s)
- Jian Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Sino-Singapore International Joint Research Institute, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Sino-Singapore International Joint Research Institute, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China
| | - Su Ding
- School of Environmental and Bioengineering, Henan University of Engineering, No. 1 Xianghe Road, Zhengzhou 451191, China
| | - Min Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongchang Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Terracciano A, Koutsospyros A, Christodoulatos C, Mai A, Meng X, Su TL, Smolinski B. Oxidative degradation of nitroguanidine (NQ) by UV-C and oxidants: Hydrogen peroxide, persulfate and peroxymonosulfate. CHEMOSPHERE 2022; 292:133357. [PMID: 34929271 DOI: 10.1016/j.chemosphere.2021.133357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Nitroguanidine (NQ), a component used in insensitive munitions formulations, has high solubility which often leads to highly contaminated wastewater streams. In this work, batch experiments were conducted to investigate and compare the NQ degradation by UV-based advanced oxidation processes (AOPs); hydrogen peroxide (H2O2), persulfate (PS) and peroxymonosulfate (PMS) were selected as oxidants. A preliminary evaluation of AOPs kinetics, byproducts, and potential degradation pathways were carried out and compared to NQ degradation by direct UV-C photolysis. The effects of oxidant dosage, NQ concentrations and pH were evaluated by determining the respective kinetic constants of degradation. Among the treatments applied, UV/PS showed to be a promising and effective alternative leading to faster rates of degradation respect to both oxidant dosage (25 mM) and initial NQ concentrations (≤24 mM). Nevertheless, the degradation rate of NQ by UV/PS appeared to be affected strongly by the initial pH compared to UV/H2O2 and UV/PMS, with the lowest rate overall at pH ≥ 8.0. In addition, the main byproducts from NQ degradation, guanidine and cyanamide, showed to be involved in further degradation steps only with UV/PS and UV/PMS suggesting higher degradation effectiveness of these oxidants compared UV/H2O2 and UV alone.
Collapse
Affiliation(s)
- Amalia Terracciano
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Agamemnon Koutsospyros
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | | | - Andrew Mai
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Tsan-Liang Su
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Benjamin Smolinski
- Combat Capabilities Development Command - Armaments Center (CCDC-AC), Picatinny Arsenal, Dover, NJ, 07806, USA
| |
Collapse
|
19
|
Venâncio JPF, Rodrigues CSD, Nunes OC, Madeira LM. Application of iron-activated persulfate for municipal wastewater disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127989. [PMID: 34920225 DOI: 10.1016/j.jhazmat.2021.127989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
To address the increasing contamination of aquatic environments and incidence of waterborne diseases, advanced oxidation processes with activated persulfate have emerged as tools to inactivate wastewater microorganisms and contaminants. In this work, the disinfection of a secondary effluent from a wastewater treatment plant by iron-based persulfate activation was studied. Experiments in a batch stirred tank reactor were carried out to evaluate the performance along reaction time and the effect of operational parameters in the oxidative process efficiency (oxidant and iron concentration, pH and temperature). After 60 min of reaction, persulfate and iron concentrations of 3 mM and 0.75 mM, respectively, combined with a neutral initial pH (7.5) and a temperature of 40 °C, allowed to reach values below the detection limit (<10 CFU/100 mL) of enterococci and enterobacteria with and without ciprofloxacin resistance, as well as a 91% inactivation of total heterotrophic organisms and a 70% removal of total organic carbon. Regrowth of microorganisms was evaluated 72 h after treatment and it was only noticed a slight increase in total heterotrophs. Evaluation of physico-chemical characteristics of the treated water showed that it meets the requirements imposed by European and Portuguese legislation for its reuse in irrigation and most urban utilities.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Liu H, Liang J, Du X, Wang R, Tang T, Tao X, Yin H, Dang Z, Lu G. Degradation of tris(2-chloroethyl) phosphate (TCEP) by thermally activated persulfate: Combination of experimental and theoretical study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152185. [PMID: 34883166 DOI: 10.1016/j.scitotenv.2021.152185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus esters (OPEs), one kind of the emerging contaminants with high frequency of detection, is rather refractory in natural environment, thus posing great threat to human health. This study investigated the feasibility and mechanism of tris(2-chloroethyl) phosphate (TCEP) degradation in thermally activated persulfate (TAP) system. Influence of impact factors, such as PDS dosage, temperature, initial pH, and presence of natural water matrix (Cl-, NO3-, H2PO4-, NH4+, humic acid), were evaluated. Results showed that 100% degradation of TCEP can be achieved in TAP system in 40 min at 60 °C. SO4·- as the dominant oxidant for TCEP degradation was proved by quenching experiment and verified by EPR analysis. Alkaline condition exerted great inhibitory effect by affecting the constituents of oxidative radicals. It is suggested that Cl- and H2PO4- at lower dosages promoted the degradation by stimulating ·OH production and forming oxidative radicals with better selectivity. Intermediates identified by high resolution mass spectrometer was suggested less toxic than TCEP by ECOSAR program. Meanwhile, the illustrated oxidation mechanism mainly involved radical attack at CCl bond and cleavage of CO bond, as further confirmed by frontier electron density calculation and wavefunction analysis. Moreover, cyclic degradation of TCEP indicated the constant release of SO4·- in 450 min, suggesting high efficiency and stability of PDS in TAP system. Four selected OPEs achieved complete removal in TAP system and their degradation discrepancy was further discussed based on the distinctive structures. Altogether, TAP technology can be used as an efficient method in TCEP removal with great potential for application.
Collapse
Affiliation(s)
- He Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
21
|
Briton BGH, Adou KE, Assémian AS, Reinert L, Duclaux L, Adouby K, Yao BK, Koffi YGL. Efficiency of the heterogeneous catalyst from electrocoagulation sludge for the removal of methylene blue in the presence of persulfate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:92-101. [PMID: 35129082 DOI: 10.1080/10934529.2022.2035582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Persulfate activation by heterogeneous catalysts based on transition metals is of interest in textile effluent treatment processes. Thus, iron-rich electrocoagulation sludge has been thermally treated to obtain new catalysts. The characterization of this catalyst by X-ray diffraction revealed the presence of FeAl2O4 nanoparticles active in the decomposition of persulfate into sulfate radicals (SO4•-). The efficiency of catalyst/persulfate was monitored during the methylene blue (MB) solution discoloration. The effects of temperature, pH, initial MB concentration, catalyst dose and persulfate dose were also studied. MB removal catalytic activity showed around 94% discoloration and 45.7% TOC reduction after 180 minutes batch reaction at pH = 4.0 (catalyst dose: 0.5 g/L, persulfate dose: 1 g/L; initial MB concentration: 20 mg/L). This catalyst reuse further confirmed its catalytic potential as a discoloration rate of about 82.45% was obtained after five cycles. The biodegradability monitoring measured by the carbon oxidation state (COS) has revealed a remarkable and continuous degradation of organic compounds. The EPR tests revealed that this catalytic reaction generates the radical species responsible for the degradation of MB. Finally, these results show that this catalyst from the thermal activation of electrocoagulation sludge is capable of decomposing persulfate to degrade bioresistant compounds such as textile dyes.
Collapse
Affiliation(s)
- Bi Gouessé Henri Briton
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Kouakou Eric Adou
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Alain Stéphane Assémian
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Laurence Reinert
- Environnements Dynamiques Territoires Montagnes (EDYTEM), Université Savoie Mont Blanc, Chambéry, France
| | - Laurent Duclaux
- Environnements Dynamiques Territoires Montagnes (EDYTEM), Université Savoie Mont Blanc, Chambéry, France
| | - Kopoin Adouby
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Benjamin Kouassi Yao
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Yao Guy Landry Koffi
- Laboratoire de Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
22
|
Wen D, Guo X, Li Q, Fu R. Enhanced electrokinetically-delivered persulfate and alternating electric field induced thermal effect activated persulfate in situ for remediation of phenanthrene contaminated clay. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127199. [PMID: 34560487 DOI: 10.1016/j.jhazmat.2021.127199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Delivering persulfate (PS) efficiently into clay is an unsolved challenge. This study proposes a novel strategy with enhanced electrokinetically -delivery PS into clay by using PS for continuously flushing cathode to inhibit water electrolysis at cathode electrode. On this basis, a novel approach of heating soil by alternating current (AC) was used to thermally activate PS in situ. Results show that the mass transfer efficiency of PS by electroosmotic flow is about 20 times that by electromigration. Moreover, when PS was added in the anode chamber, using PS solution continuously flushing cathode created a relatively balanced the influent and effluent flow rates, significantly improving the mass transfer efficiency of PS. Compared to using NaNO3 solution flushing, a significant increase of 51.7% was achieved, reaching 78.8%, for the phenanthrene (PHE) average degradation rate in soil cell. In contrast, the best overall PHE removal rate was observed, reaching 87.8%, by a cycle strategy of enhanced electrokinetically -delivered PS followed by AC heating applied. Electron paramagnetic resonance spectroscopy analysis showed oxidative radicals (SO4∙-/•OH) were the major species responsible for enhanced PHE degradation. These results demonstrate that this cycle strategy is a viable method for remediation of polycyclic aromatic hydrocarbons in clay.
Collapse
Affiliation(s)
- Dongdong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaopin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
23
|
Yang Y, Zhang X, Ngo HH, Guo W, Li Z, Wang X, Zhang J, Long T. A new spent coffee grounds based biochar - Persulfate catalytic system for enhancement of urea removal in reclaimed water for ultrapure water production. CHEMOSPHERE 2022; 288:132459. [PMID: 34619254 DOI: 10.1016/j.chemosphere.2021.132459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The demand for ultrapure water (UPW) in the semiconductor industry has increased in recent years, while the idea to use reclaimed water instead of tap water for UPW production has also attracted more attention. However, since urea concentration in reclaimed water is higher than that in tap water, UPW production has not been efficient. To resolve this problem, this study aims to develop a new spent coffee grounds based biochar (SCG-BC)/persulfate catalytic system as a pretreatment unit. The objective is to enhance urea removal from reclaimed water so that UPW production is more effective. In this study, the biochar used was prepared from spent coffee grounds with detailed characterization. Results strongly suggested that the urea removed by SCG-BC/persulfate catalytic system was very encouraging (up to 73%). The best possible dosages for SCG-BC and persulfate for urea removal were 0.2 and 2.0 g L-1, respectively. Furthermore, this system could remove urea effectively in a wide range of pH (3-10). Moreover, the characterizations of SCG-BC (graphite C, defective edges and functional groups, i.e. -OH, CO, carboxyl C-O) helped to activate persulfate in the catalytic process. OH• and SO4• - were all involved in this process, while the SO4• - was the main radical for urea degradation.
Collapse
Affiliation(s)
- Yuanying Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Zening Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Tianwei Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| |
Collapse
|
24
|
Ioannidi A, Arvaniti OS, Nika MC, Aalizadeh R, Thomaidis NS, Mantzavinos D, Frontistis Z. Removal of drug losartan in environmental aquatic matrices by heat-activated persulfate: Kinetics, transformation products and synergistic effects. CHEMOSPHERE 2022; 287:131952. [PMID: 34450371 DOI: 10.1016/j.chemosphere.2021.131952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, the oxidative degradation of losartan (LOS), a widely administered medicine for high blood pressure by heat-activated persulfate was investigated. Increased temperature and persulfate concentration, as well as acidic conditions enhance the degradation efficiency of LOS, whose rate follows pseudo-first order kinetics. From the respective apparent rate constants in the range 40-60 °C, an apparent activation energy of 112.70 kJ/mol was computed. Radical scavenging tests demonstrated that both HO• and [Formula: see text] contribute towards LOS degradation. LOS degradation was suppressed in real water matrices including bottled water (BW) and secondary wastewater effluent (WW), while other experiments indicated that the presence of bicarbonates and humic acid negatively affected its oxidation. Instead, the addition of chloride ions at 250 mg/L resulted in a positive effect on LOS removal. The combination of heat-activated PS with low-frequency ultrasound exhibited a synergistic effect, with the ratio S being 2.29 in BW and 1.52 in WW. Five transformation products of LOS were identified through HRMS suspect and non-target screening approaches, among which two are reported for the first time. Using the in-house risk assessment program, ToxTrAMs was revealed that most of the identified TPs present higher toxicity than LOS against Daphnia magna.
Collapse
Affiliation(s)
- Alexandra Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Olga S Arvaniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Maria-Christina Nika
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, GR 15771, Athens, Greece
| | - Reza Aalizadeh
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, GR 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, GR 15771, Athens, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132, Kozani, Greece.
| |
Collapse
|
25
|
Wu S, Deng S, Ma Z, Liu Y, Yang Y, Jiang Y. Ferrous oxalate covered ZVI through ball-milling for enhanced catalytic oxidation of organic contaminants with persulfate. CHEMOSPHERE 2022; 287:132421. [PMID: 34600929 DOI: 10.1016/j.chemosphere.2021.132421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Zero-valent iron (ZVI), with high reduction capacity and cost effectiveness, has been widely used as an activator for persulfate in remediation of organic pollutants. However, the existence of inherent iron oxide shell blocked the transfer of proton and further reduced its reactivity. In present study, a novel persulfate (PS) activator BZVI@OA was synthesized via ball milling ZVI with oxalic acid dihydrate. Scanning electron microscope, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry and Time-of-flight secondary ion mass spectroscopy confirmed the original low proton conductive oxidation shell was replaced by a high proton conductive FeC2O4 shell. The generated shell significantly improved persulfate activated capacity, through which degradation rates of various contaminants were enhanced for 1.64 to 2.33 times. Dissolved oxalate was proved to form complexes with iron ions, dramatically reduced the potential difference and relieved the blocked cyclic conversion. Electron paramagnetic resonance and quenching experiments confirmed an inner sphere adsorption of PS on FeC2O4·2H2O shell which facilitated the peroxide bonds cleavage, leading high efficiency of ROS generation. The accelerated proton transition was confirmed with AC impedance method, resulting in fast and elevated surface bound Fe2+ for persulfate decomposition into active species. Furthermore, BZVI@OA/PS system demonstrated high tolerance over wide initial pH range and promising reusability within 6 cycles. This work clarifies an effective strategy for developing efficient modified ZVI as a PS activator for organic pollutant degradation in water.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, PR China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| |
Collapse
|
26
|
Nunes RF, Metolina P, Teixeira ACSC. Dodecylpyridinium chloride removal by persulfate activation using UVA radiation or temperature: experimental design and kinetic modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68229-68243. [PMID: 34264490 DOI: 10.1007/s11356-021-15174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The degradation of dodecylpyridinium chloride (DPC) by SO4•- and HO• radicals, generated by UVA and thermal-activated persulfate (PS) was investigated. Temperatures of 30-50°C were used for the heat activation of PS. In the case of UVA/PS, the effects of [PS]0 and specific photon emission rate (EP,0) were studied through a Doehlert design coupled with statistical analysis and response surface methodology. The results showed high DPC removal (99.8%) and pseudo-first-order degradation rate (kobs = 0.0971 min-1) for [DPC]0 = 4.60 ± 0.11 mg L-1, [PS]0 = 7.75 mmol L-1, and EP,0 = 0.437 μmol photons L-1 s-1, with a major role of SO4•- radicals in comparison with HO•. The specific DPC degradation rate found under these conditions was higher than that observed for thermal activation at 50°C and [PS]0 = 5.5 mmol L-1 (kobs = 0.0712 min-1) over the same time, although complete DPC removal was also achieved in the latter. The positive effect of EP,0 on DPC degradation by the UVA/PS process depends on PS concentrations, with kobs values increasing linearly with [PS]0 in the range 7.75-10 mmol L-1, whereas lower EP,0 values can be compensated by increasing [PS]0 up to about 10 mmol L-1, without significant scavenging. The second-order rate constants of DPC with HO• and SO4•-, estimated by comprehensive kinetic modeling, were 8.26 × 109 and 4.44 × 109 L mol-1 s-1, respectively. Furthermore, higher [DPC]0 would negatively affect the DPC degradation rate by the UVA/PS process, while 62% DPC removal was obtained in WWTP water, which can be considered good given the complexity of the real matrix. Finally, our results shed light on the possibility of using available UVA radiation (4.5%) in solar irradiance on the Earth's surface, making this treatment process more sustainable and cost-effective.
Collapse
Affiliation(s)
- Roberta Frinhani Nunes
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil.
| | - Patrícia Metolina
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| |
Collapse
|
27
|
Wang H, Guo W, Si Q, Liu B, Zhao Q, Luo H, Ren N. Multipath elimination of bisphenol A over bifunctional polymeric carbon nitride/biochar hybrids in the presence of persulfate and visible light. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126008. [PMID: 33979707 DOI: 10.1016/j.jhazmat.2021.126008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Polymeric carbon nitride (PCN) has become a star material either in photocatalysis or in persulfate (PS) activation. In this work, we synthesized bifunctional biochar (BC)-doped PCN through a facile one-pot thermal treatment process. The PCN/BC hybrid (CNBC) with an optimized proportion could not only activate PS directly, but also possessed improved optical properties. Amorphous BC domains generated from the carbonization of external corncob provided attachments for the in-situ growth of PCN and upgraded its catalytic ability including electron transport property, visible light (VIS) utilization, and oxidation power. Mechanism studies demonstrated that in the CNBC/PS system without VIS, a nonradical electron transfer route was responsible for the degradation of bisphenol A (BPA), while in the CNBC/PS/VIS system, radical/nonradical mixing mechanisms including mediated electron transfer, radical oxidation, and hole oxidation were unveiled. Degradation pathways of BPA were deduced including direct oxidation at the aromatic ring, β-scission of isopropyl, and ring cleavage. Most of the intermediates were less toxic than BPA as assessed by the ECOSAR software. The CNBC/PS/VIS system showed satisfactory resistance to environmental interferences except for HCO3-. This work provides a simple but effective strategy for the synthesis of PCN-based bifunctional catalysts and deepens mechanistic insights into hybrid advanced oxidation technologies.
Collapse
Affiliation(s)
- Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Silva-Rackov CKO, Silva SSO, Souza AR, Aguiar LG, Silva DJ, Vianna MMGR, Nascimento CAO, Chiavone-Filho O. A comparative study of persulfate activation by iron-modified diatomite and traditional processes for the treatment of 17α-ethinylestradiol in water. ENVIRONMENTAL TECHNOLOGY 2021; 42:3390-3402. [PMID: 32133925 DOI: 10.1080/09593330.2020.1732470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Emerging pollutants have been the subject of worldwide study because their continuous entry into the environment presents a risk to ecosystems and human health. Advanced oxidation processes show promise for eliminating or reducing the concentrations of emerging pollutants in water. This study aimed to investigate the treatment of aqueous systems containing the synthetic hormone 17α-ethinylestradiol. An innovative method for persulfate activation catalysed by iron-modified diatomite (heterogeneous system) was compared to conventional homogeneous activation methods (iron activation, alkaline activation, and heat activation). Iron-modified diatomite was more efficient in activating persulfate than traditional processes, achieving 98% of pollutant removal. Experimental results indicated that the catalyst can be reused without loss of removal efficiency, with potential environmental and economic benefits.
Collapse
Affiliation(s)
- Celyna K O Silva-Rackov
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Chemistry, El Centro College, Dallas, TX, USA
- Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | - Silvia S O Silva
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Alessandra R Souza
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Leandro G Aguiar
- Department of Chemical Engineering, University of São Paulo, Lorena, Brazil
| | - Dannielle J Silva
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Vieira Y, Pereira HA, Leichtweis J, Mistura CM, Foletto EL, Oliveira LFS, Dotto GL. Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe 0 under microwave irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146991. [PMID: 33865131 DOI: 10.1016/j.scitotenv.2021.146991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L-1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewater.
Collapse
Affiliation(s)
- Yasmin Vieira
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Hércules A Pereira
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Jandira Leichtweis
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Clóvia M Mistura
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, Brazil.
| | - Edson L Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, 97105-900, Brazil
| | - Luis F S Oliveira
- Universidad de la Costa, Department of Civil and Environmental Engineering, Barranquilla, Colombia.
| | - Guilherme L Dotto
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil; Graduate Program in Chemical Engineering, Federal University of Santa Maria, 97105-900, Brazil.
| |
Collapse
|
30
|
Pu M, Wan J, Zhang F, Brusseau ML, Ye D, Niu J. Insight into degradation mechanism of sulfamethoxazole by metal-organic framework derived novel magnetic Fe@C composite activated persulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125598. [PMID: 34030424 DOI: 10.1016/j.jhazmat.2021.125598] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe3C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe3C species provide electrons for PS to decompose and generate sulfate radical (SO4·-), hydroxyl radical (·OH), and superoxide radical (O2·-), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O2·- give rise to the generation of singlet oxygen (1O2), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation.
Collapse
Affiliation(s)
- Mengjie Pu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Fengzhen Zhang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Mark L Brusseau
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, Arizona, 85721, USA.
| | - Daqi Ye
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
31
|
Ding S, Wan J, Ma Y, Wang Y, Pu M, Li X, Sun J. Water stable SiO 2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125194. [PMID: 33858121 DOI: 10.1016/j.jhazmat.2021.125194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The poor water stability of metal-organic frameworks (MOFs) significantly hindered their catalytic application in advanced oxidation system. A protective outer layer was an effective strategy to solve this problem. However, the commonly used coating techniques are too complicated or too difficult to accurately control, thus, the applicability was relatively low. In this study, a water stable MOF core-SiO2 shell nanomaterial (Fe-MOF-74@SiO2) was synthesized by a facile hydrothermal method, and applied to activate persulfate (PS) for dimethyl phthalate (DMP) degradation. The catalyst water stability and DMP degradation in the system were investigated, suggesting that the SiO2-coated catalyst was more stable and exhibited higher DMP degradation efficiency over the pure MOF. It was found that pH had negligible effects on Fe-MOF-74@SiO2 + PS system, while, higher temperature facilitated the degradation of DMP. The activation mechanism was studied by quenching experiments combined with electron paramagnetic resonance, indicating that SO4⋅- played a major role in the activation of PS with Fe-MOF-74@SiO2 for DMP removal, while ⋅OH also involved in the catalytic process. Finally, possible DMP degradation pathways were proposed. These findings indicated that the core-shell structured Fe-MOF-74@SiO2 showed promise for DMP degradation by PS advanced oxidation system.
Collapse
Affiliation(s)
- Su Ding
- South China University of Technology, School of Environment and Energy, Guangzhou, China
| | - Jinquan Wan
- South China University of Technology, School of Environment and Energy, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China.
| | - Yongwen Ma
- South China University of Technology, School of Environment and Energy, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China
| | - Yan Wang
- South China University of Technology, School of Environment and Energy, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China
| | - Mengjie Pu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Xitong Li
- South China University of Technology, School of Environment and Energy, Guangzhou, China
| | - Jian Sun
- South China University of Technology, School of Environment and Energy, Guangzhou, China
| |
Collapse
|
32
|
Trang NH, Kwon E, Lisak G, Hu C, Andrew Lin KY. Cobalt ferrite nanoparticle-loaded nitrogen-doped carbon sponge as a magnetic 3D heterogeneous catalyst for monopersulfate-based oxidation of salicylic acid. CHEMOSPHERE 2021; 267:128906. [PMID: 33243580 DOI: 10.1016/j.chemosphere.2020.128906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
As salicylic acid (SAL) is increasingly consumed as a pharmaceutical product, release of SAL into the environment poses threats to ecology because of its low bio-degradability. Thus, SO4•--based chemical oxidation processes have been proposed for degrading SAL. Since monopersulfate (MPS) represents a primary reagent for generating SO4•-, and Co is the most capable metal for activating MPS to generate SO4•-, C3O4 NPs are frequently proposed for activating MPS but they are difficult to recover from water. Thus CoFe2O4 is considered as a magnetic alternative to Co3O4, and loading of CoFe2O4 NPs on substrates could further improve dispersion and avoid aggregation of NPs. Therefore, this study proposes a 3-Dimensional (3D) hierarchical catalyst which is fabricated by loading CoFe2O4 NPs on nitrogen-doped carbon sponge (NCS). The NCS is not only adopted as a support for CoFe2O4 NPs but also provides additional catalytic sites and enhances catalytic activities of CoFe2O4 NPs for MPS activation. As a result, CoFe2O4 NPs loaded on NCS (CFNCS) exhibits substantially higher catalytic activities than CoFe2O4 NPs and NCS individually with 100% of SAL could be afforded within 30 min. Ea of SAL degradation of 47.4 kJ/mol by CFNCS-activated MPS is also lower than those by other reported catalysts, whereas the RSE was 11.1%, which was also much higher than most of reported values. These features demonstrate that CFNCS is a promising 3D catalyst for enhancing MPS activation to degrade SAL. The findings obtained here are also insightful to develop efficient MPS-activating catalysts for eliminating contaminants.
Collapse
Affiliation(s)
- Nguyen Ha Trang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City, Taiwan, 106.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
33
|
Bui DN, Minh TT. Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143852. [PMID: 33248762 DOI: 10.1016/j.scitotenv.2020.143852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Different types of advanced oxidation processes and their combinations such as O3/H2O2/UV, O3/Fenton/UV, O3/TiO2/UV, Fenton/H2O2/UV, Fenton/TiO2/UV, TiO2/H2O2/UV, TiO2/H2O2/O3/UV, TiO2/O3/Fenton/UV, TiO2/H2O2/Fenton/UV and O3/H2O2/Fenton/UV were studied for the treatment of undiluted red wastewater from Z113 Factory. The treatment efficiency was evaluated by analyzing chemical oxygen demand (COD) reduction, % degradation of α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na. Among studied processes Fenton/TiO2/O3/UV was the most effective technology to treat red wastewater. It allows to reduce >99% of COD, α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na after 30 h of treatment with optimum operating conditions: rotation speed of 600 rpm, pH of 4 and temperature of 40 °C. According to the chromatograms obtained by gas chromatograph/mass spectrometer (GC/MS), intermediates of the decomposition of pollutants in red wastewater were identified. GC/MS, HPLC, UV-vis and Bacterial Toxicity test were used to assess effluent quality changes before and after treatment. By economic analysis, the studied process had the potential to apply in practice to treat real wastewater at the Z113 Factory.
Collapse
Affiliation(s)
- Dinh Nhi Bui
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam.
| | - Thi Thao Minh
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam
| |
Collapse
|
34
|
Arvaniti OS, Bairamis F, Konstantinou I, Mantzavinos D, Frontistis Z. Degradation of antihypertensive drug valsartan in water matrices by heat and heat/ultrasound activated persulfate: Kinetics, synergy effect and transformation products. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Lanthanum Nickel Oxide: An Effective Heterogeneous Activator of Sodium Persulfate for Antibiotics Elimination. Catalysts 2020. [DOI: 10.3390/catal10121373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the presence of pharmaceutically active compounds (PhACs) in surface waters and wastewaters has b the effectiveness of conventional water treatment methods. Towards this direction, advanced oxidation processes (AOPs) for the complete elimination of micro pollutants in waters have become an emerging area of research. The present study reports the heterogeneous activation of sodium persulfate (SPS) by LaNiO3 (LNO) perovskite oxide for the degradation of sulfamethoxazole (SMX), an antibiotic agent. LNO was prepared according to a combustion method, and its physicochemical characteristics were identified by means of XRD, BET, TEM, and SEM/EDS. SMX degradation results showed the great efficiency of LNO for SPS activation. Increasing LNO and SPS dosage up to 250 mg/L enhanced the SMX degradation. In contrast, increasing SMX concentration resulted in longer time periods for its degradation. Considering the pH effect, SMX removal was obstructed under basic conditions, while the efficiency was enhanced at near-neutral conditions. The present system’s activity was also tested for piroxicam (PIR) and methylparaben (MeP) degradation, showing promising results. Unfortunately, experiments conducted in real water matrices such as bottled water (BW) and wastewater (WW), showed that SMX removal was limited to less than 25% in both cases. The hindering effects were mainly attributed to bicarbonate ions and organic matter present in aqueous media. The results obtained using suitable radical scavengers revealed the contribution of both hydroxyl and sulfate radicals in degradation reactions. Finally, LNO exhibited good stability under consecutive experimental runs.
Collapse
|
36
|
Niu L, Wei T, Li Q, Zhang G, Xian G, Long Z, Ren Z. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. J Environ Sci (China) 2020; 96:109-116. [PMID: 32819685 DOI: 10.1016/j.jes.2020.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Refractory organic pollutants in water threaten human health and environmental safety, and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants. Catalysts play vital role in AOPs, and Ce-based catalysts have exhibited excellent performance. Recently, the development and application of Ce-based catalysts in various AOPs have been reported. Our study conducts the first review in this rapid growing field. This paper clarifies the variety and properties of Ce-based catalysts. Their applications in different AOP systems (catalytic ozonation, photodegradation, Fenton-like reactions, sulfate radical-based AOPs, and catalytic sonochemistry) are discussed. Different Ce-based catalysts suit different reaction systems and produce different active radicals. Finally, future research directions of Ce-based catalysts in AOP systems are suggested.
Collapse
Affiliation(s)
- Lijun Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Ting Wei
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Qiangang Li
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Guang Xian
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Zeqing Long
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
37
|
Wan Y, Wan J, Zhao JR, Wang Y, Luo T, Yang S, Liu Y. Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation. CHEMOSPHERE 2020; 254:126798. [PMID: 32334254 DOI: 10.1016/j.chemosphere.2020.126798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
A novel catalyst (Fe-MOFs-MW) was facilely synthesized under microwave-assisted with NaOH as modulator for activating peroxydisulfate (PDS). The accelerated nucleation process was confirmed by Johnson-Mehl-Avrami (JMA) model. There were abundant reactive sites on prepared Fe-MOFs-MW while maintaining high Space-Time-Yield value up to 2300 kg/m3·d. Degradation performance of Fe-MOFs-MW as PDS catalyst on sulfamethoxazole (SMX) removal was evaluated. Results indicated that Fe-MOFs-MW with more Fe element anchored (10%) exhibited excellent catalytic capacity for PDS. Besides, the fantastic stability and reusability were confirmed through recycle experiment. After recycled for 4 times, the removal efficiency of SMX and TOC was 88% and 31.3% compared to 98% and 38% without recycling, respectively. An accurate prediction model on the degradation effect with water matrices coexisted was established by response surface methodology (RSM) method. Moreover, SO4·-, O2·- and ·OH were confirmed as the main reactive species through chemical quenching and EPR tests. The mechanism of Fe-MOFs-MW/PDS process mainly based on electron circulation theory was proposed. As the robust PDS catalyst, facile prepared Fe-MOFs-MW was promising in the treatment of emerging pollutants.
Collapse
Affiliation(s)
- Yongjie Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Joe R Zhao
- Tri-Y Environmental Research Institute, 2655 Lillooet St., Vancouver, BC V5M 4P7, Canada
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China
| | - Ting Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shou Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yaxin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
38
|
Luo C, Wu D, Gan L, Cheng X, Ma Q, Tan F, Gao J, Zhou W, Wang S, Zhang F, Ma J. Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116839] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Zhao X, Zhang T, Lu J, Zhou L, Chovelon JM, Ji Y. Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114242. [PMID: 32220756 DOI: 10.1016/j.envpol.2020.114242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Sulfate radical (SO4-)-based advanced oxidation processes (SR-AOPs) are promising in-situ chemical oxidation technologies widely applied for soil/groundwater remediation. The presence of non-target water constituents may interfere the abatement of contaminants by SR-AOPs as well as result in the formation of unintended byproducts. Herein, we reported the formation of toxic chloronitrophenols during thermally activated persulfate oxidation of 2-chlorophenol (2CP) in the presence of nitrite (NO2-). 2-Chloro-4-nitrophenol (2C4NP) and 2-chloro-6-nitrophenol (2C6NP) were identified as nitrated byproducts of 2CP with total yield up to 90%. The formation of nitrated byproducts is a result of coupling reaction between 2CP phenoxyl radical (ClPhO) and nitrogen dioxide radical (NO2). As a critical step, the formation of ClPhO was supported by density functional theory (DFT) computation. Both 2C4NP and 2C6NP could convert to 2-chloro-4,6-dinitrophenol (2C46DNP) upon further treatment via a denitration-renitration process. The formation rate of 2C4NP and 2C6NP was closely dependent on the concentration of NO2-, solution pH, and natural water constituents. ECOSAR calculation suggests that chloronitrophenols are generally more hydrophobic and ecotoxic than 2CP. Our result therefore reveals the potential risks in the abatement of chlorophenols by SR-AOP, particularly when high level of NO2- is present in water matrix.
Collapse
Affiliation(s)
- Xulei Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Teng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|