1
|
Kuang M, Chen H, Liu Y, Huang J, Zeng Z, Zhou Z, Li H, Yi W, Wang S. Calcium(II)-Mediated Three-Component Selenylation of gem-Difluoroalkenes: Access to α,α-Difluoroalkyl-β-selenides. Org Lett 2024; 26:6274-6278. [PMID: 39008813 DOI: 10.1021/acs.orglett.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/17/2024]
Abstract
A calcium-mediated three-component selenylation of gem-difluoroalkenes using alcohols as nucleophiles and N-(phenylseleno)phthalimide as the selenylation agent has been developed for the efficient synthesis of various α,α-difluoroalkyl-β-selenides. This selenylation reaction exhibits broad substrate and functional group tolerance, along with high levels of chemo- and regioselectivity. Additionally, the synthetic utility of the developed transformation in the late-stage functionalization of drug molecules was demonstrated.
Collapse
Affiliation(s)
- Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haokun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Jianlian Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
2
|
Kuang M, Li H, Zeng Z, Gao H, Zhou Z, Hong X, Yi W, Wang S. Calcium(II)-Mediated Three-Component Selenofunctionalization of Alkenes under Mild Conditions. Org Lett 2023; 25:8095-8099. [PMID: 37938814 DOI: 10.1021/acs.orglett.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2023]
Abstract
A mild and general protocol involving amnio- and oxyselenation of diverse alkenes for the efficient synthesis of organo-Se compounds is achieved via an environmentally benign calcium-catalyzed three-component reaction. This selenofunctionalization reaction exhibits excellent substrate/functional group tolerance and high levels of chemo- and regioselectivity. Its utility was exemplified in the late-stage functionalization and even aggregation-induced emission luminogen labeling of organo-Se compounds.
Collapse
Affiliation(s)
- Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xujia Hong
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
3
|
Silver-Catalyzed Cascade Cyclization of Amino-NH-1,2,3-Triazoles with 2-Alkynylbenzaldehydes: An Access to Pentacyclic Fused Triazoles. Molecules 2022; 27:molecules27217567. [PMID: 36364393 PMCID: PMC9655256 DOI: 10.3390/molecules27217567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
An operationally simple Ag(I)-catalyzed approach for the synthesis of isoquinoline and quinazoline fused 1,2,3-triazoles was developed by a condensation and amination cyclization cascade of amino-NH-1,2,3-triazoles with 2-alkynylbenzaldehydes involving three new C-N bond formations in one manipulation, in which the group of -NH of the triazole ring serves as a nucleophile to form the quinazoline skeleton. The efficient protocol can be applied to a variety of substrates containing a range of functional groups, delivering novel pentacyclic fused 1,2,3-triazoles in good-to-excellent yields.
Collapse
|
4
|
Zhu LL, Tian L, Sun K, Li Y, Liu G, Cai B, Zhang H, Wang Y. N 2-Selective β-Thioalkylation of Benzotriazoles with Alkenes. J Org Chem 2022; 87:12963-12974. [PMID: 36137279 DOI: 10.1021/acs.joc.2c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Herein, N2-selective β-thioalkylation of benzotriazoles with unactivated alkenes and styrenes is reported. The N2-selective β-thioalkylation of benzotriazoles is highly stereospecific and works under simple and mild conditions, exhibiting excellent functional group tolerance. The high N2-selectivity is a consequence of the combination of hydrogen bonding and Lewis acid/base activation, which reverses the N2-position to be favored for alkylation.
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiwen Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Guanglu Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Li X, Huang J, Xu L, Liu P, Wei Y. Synthesis of β-Arylseleno Sulfoximines: A Metal-Free Three-Component Reaction Mediated by Tetrabutylammonium Tribromide. J Org Chem 2022; 87:10684-10697. [PMID: 35939820 DOI: 10.1021/acs.joc.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
A tetrabutylammonium tribromide-mediated three-component reaction of alkenes, diselenides, and sulfoximines has been established herein, providing direct and metal-free access to diverse β-arylseleno sulfoximine derivatives. This regioselective sulfoximido-selenization protocol proceeds efficiently under mild and ambient conditions with generally good yields. This strategy is featured by step and atom economy, practicability, a broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Xiaoman Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Jiawei Huang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| |
Collapse
|
6
|
Zhu LL, Wang Y, Zheng Y, Tian L, Ramadoss V, Zhang H. Recent Developments in N2-Selective Functionalizations of 1,2,3-Triazoles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
AbstractThe widespread use of 1,2,3-triazole compounds in drugs has resulted in a great interest in the efficient synthesis of N2-substituted 1,2,3-triazoles via post triazole functionalization methods. At present, there are many methods for the synthesis of N1-substituted 1,2,3-triazole compounds, but the development of convenient methods for the N2-selective functionalization of 1,2,3-triazoles remains challenging. In general, the greater stability of the N1 tautomer makes the N2 position a non-preferable reactive site, which has limited the application of 1,2,3-triazoles. In this review, we summarized advances in the direct N2-selective functionalization of 1,2,3-triazoles since 2008.1 Introduction2 N2-Alkylation3 N2-Allylation4 N2-Propargylation5 N2-Alkenylation6 N2-Alkynylation7 N2-Arylation8 Conclusions and Outlook
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University
| |
Collapse
|
7
|
Yin Y, Li C, Sun K, Liu Y, Wang X. Radical Aminoselenation of Styrenes: Facile Access to β-Amido-selenides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
8
|
Guan C, Ji J, Li Z, Wei Q, Wu X, Liu S. Facile synthesis of N2-substituted-1,2,3-triazole from aryl ethynylene and azide via a one-pot two-step strategy. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
9
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|