1
|
Achadu OJ, Abe F, Hossain F, Nasrin F, Yamazaki M, Suzuki T, Park EY. Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens Bioelectron 2021. [PMID: 34403935 DOI: 10.1016/j.mtphys.2021.100576] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/14/2023]
Abstract
Synergistic dual-mode optical platforms are up-and-coming detection tools in the diagnosis and management of infectious diseases. Here, novel dual-modality fluorescence (FL) and surface-enhanced Raman scattering (SERS) techniques have been integrated into a single probe for the rapid and ultrasensitive detection of norovirus (NoV). The developed FL-SER-based biosensor relies on the dual-signal enhancements of newly synthesized sulfur-doped agar-derived carbon dots (S-agCDs). The antigen-antibody immunoreaction results in forming a core-satellite immunocomplex between anti-NoV antibody-conjugated S-agCDs and polydopamine-functionalized magnetic silver nanocubes [poly (dop)-MNPs-Ag NCs]. By deploying an immunomagnetic enrichment protocol and performing the SERS modality on a single-layer graphene substrate, norovirus-like particles (NoV-LPs) were detected across a wide range of 1 fg mL-1 - 10 ng mL-1 with an excellent limit of detection of 0.1 fg mL-1. The combined advantage of the dual-signaling properties of the biosensor was demonstrated using FL confocal imaging for "hotspots" tracking prior to SERS detection of clinical NoV in fecal specimen down to ⁓10 RNA copies mL-1. The proposed dual-modality biosensor's performance increases the prospect of a rapid and low-cost sensitive NoV detection and surveillance option for public health.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 232-1, Yainaba, Fujieda, 426-0083, Japan.
| | - Farzana Hossain
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Fahmida Nasrin
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Masahito Yamazaki
- Research Institute of Electronics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Higashi-ku, Handa-yama, Hamamatsu, 431-3192, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
|