1
|
Nakatani R, Sakai J, Saha A, Kondo A, Tomioka R, Kawawaki T, Das S, Negishi Y. Designed construction of two new atom-precise three-dimensional and two-dimensional Ag 12 cluster-assembled materials. NANOSCALE 2025; 17:813-822. [PMID: 39585368 DOI: 10.1039/d4nr03992k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Silver cluster-assembled materials (SCAMs) are well-defined crystalline extended materials hallmarked by their unique geometric structures, atomically precise designability and functional modularity. In this study, we report for the first time the synthesis of a (3,6)-connected three-dimensional (3D) SCAM, [Ag12(StBu)6(CF3COO)6(TPMA)6]n (designated as TUS 6), TPMA = tris(pyridine-4-ylmethyl)amine, by assembling Ag12 cluster nodes with the help of a tritopic linker TPMA. Besides, we also prepared a two-dimensional (2D) SCAM, [Ag12(StBu)6(CF3COO)6(TPEB)6]n (described as TUS 7), TPEB = 1,3,5-tris(pyridine-4-ylethynyl)benzene, by reticulating Ag12 nodes with a tritopic linker TPEB. Characterized by microscopic and diffraction analyses, the SCAMs revealed distinct morphologies, structural robustness, and phase purity. This paper elucidates how the binding with the organic linkers alters the symmetry of the silver nanoclusters (NCs). Changes in the symmetry of discrete NCs to assembled structures have not been reported yet. This study provides an atomic-level explanation of the transformation of symmetry from NCs to extended structures.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Aishik Saha
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Ayumu Kondo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
2
|
Bera D, Mahata S, Biswas M, Kumari K, Rakshit S, Nonappa, Ghosh S, Goswami N. Efficient Photocatalytic Hydrogen Production Using In-Situ Polymerized Gold Nanocluster Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406551. [PMID: 39562172 DOI: 10.1002/smll.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Gold nanoparticles (NPs) are widely recognized as co-catalysts in semiconductor photocatalysis for enhancing hydrogen production efficiency, but they are often overlooked as primary catalysts due to the rapid recombination of excited-state electrons. This study presents an innovative gold-based photocatalyst design utilizing an in situ dopamine polymerization-guided assembly approach for efficient H2 generation via water splitting. By employing gold superclusters (AuSCs; ≈100 nm) instead of ultra-small gold nanoclusters (AuNCs; ≈2 nm) before polymerization, unique nanodisk-like 3D superstructures consisting of agglomerated 2D polydopamine (PDA) nanosheets with a high percentage of uniformly embedded AuNCs are created that exhibit enhanced metallic character post-polymerization. The thin PDA layer between adjacent AuNCs functions as an efficient electron transport medium, directing excited-state electrons toward the surface and minimizing recombination. Notably, the AuSCs@PDA structure shows the largest potential difference (26.0 mV) compared to AuSCs (≈18.4 mV) and PDA NPs (≈14.6 mV), indicating a higher population of accumulated photo-generated carriers. As a result, AuSCs@PDA achieves a higher photocurrent density, improved photostability, and lower charge transfer resistance than PDA NPs, AuSCs, or AuNCs@PDA, with the highest hydrogen evolution rate of 3.20 mmol g-1 h-1. This work highlights a promising in situ polymerization strategy for enhancing photocatalytic hydrogen generation with metal nanoclusters.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukhendu Mahata
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maitrayee Biswas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Srabanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Alam N, Rahaman T, Das AK, Pal AK, Datta A, Ray SJ, Mondal PK, Polentarutti M, Mandal S. Inflection of Resistive Switching Behavior in Atomically Precise Silver Cluster-Assembled Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409118. [PMID: 39659068 DOI: 10.1002/smll.202409118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 12/12/2024]
Abstract
Bottom-up design of electronic materials based on nanometer-sized building blocks requires precise control over their self-assembly process. Atomically precise metal nanoclusters (NCs) are the well-characterized building blocks for crafting tunable nanomaterials. Here, a solution-processed assembly of a newly synthesized molecular silver nanocluster (0 D Ag12-NC) into a 1D nanocluster chain (1 D Ag12-CAM) is mediated by 4,4'-bipyridine linker Both 0 D Ag12-NC and 1 D Ag12-CAM consist of Ag12 core that adopts the cuboctahedron geometry protected by organic ligands. The resistive switching devices are fabricated in a sandwich-like structure of ITO (Indium tin oxide)/X/Ag (where X is either 0 D Ag12-NC or 1 D Ag12-CAM). The device based on 1 D Ag12-CAM exhibited excellent resistive switching behaviour, enduring up to 1000 cycles and boasting a fivefold higher Ion/Ioff ratio compared to the device based on the molecular 0 D Ag12-NC nanocluster. Furthermore, the device based on 1 D Ag12-CAM demonstrated negative differential resistance (NDR) phenomena, achieving a peak-to-valley ratio of 2.34 with a switching efficiency of 23 Ns. This work highlights the importance of interconnecting molecular nanoclusters into 1D nanocluster chains for fine-tuning resistive memory properties in futuristic electronic appliances.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Towhidur Rahaman
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maurizio Polentarutti
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
4
|
Sakai J, Sasaki K, Nakatani R, Das S, Negishi Y. A silver cluster-assembled material as a matrix for enzyme immobilization towards a highly efficient biocatalyst. NANOSCALE 2024; 16:21767-21775. [PMID: 39329313 DOI: 10.1039/d4nr02506g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Silver cluster-assembled materials (SCAMs) epitomize well-defined extended crystalline frameworks that combine the ingenious designability at the atomic/molecular level and high structural robustness. They have captivated the interest of the scientific fraternity because of their modular construction which enables to systematically tailor their functions, and their capacity to not only inherit the characteristics of component building units but also introduce their uniqueness in endowing the final material with extraordinary properties. Herein, we demonstrate the synthesis of a novel (3,6)-connected two-dimensional (2D) SCAM [Ag12(StBu)6(CF3COO)6(THIT)6]n (described as TUS 5, THIT = 2,4,6-tri(1H-imidazol-1-yl)-1,3,5-triazine) composed of Ag12 cluster nodes and tritopic imidazolyl linkers. We have leveraged, for the first time, this precisely architected extended SCAM structure as a support matrix for enzyme immobilization. The electrostatic attraction between the negatively charged amano lipase PS and positively charged TUS 5 as well as the surface hydrophobicity of TUS 5 catered to great binding of lipase onto the TUS 5 matrix, in addition to boosting the activity of lipase via interfacial activation. Capitalizing on the cooperative benefits of organic and inorganic support matrices wherein organic supports impart with cost-efficiency, biocompatibility, and improved enzyme stability and reusability and inorganic supports confer high thermal, mechanical and microbial resistance, we have utilized the immobilized lipase on TUS 5 SCAM (lipase@TUS 5) for the kinetic resolution of (R,S)-1-phenylethanol by transesterification reaction. Importantly, lipase@TUS 5 could attain appreciably higher conversion into (R)-1-phenylethyl acetate, besides featuring superior thermal stability, solvent tolerance and recyclability, over the native lipase.
Collapse
Affiliation(s)
- Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Mukhopadhyay A, Mahata S, Goswami N. Molecular Packing-Driven Manipulation of Aggregation Induced Emission in Gold Nanoclusters. J Phys Chem Lett 2024; 15:8510-8519. [PMID: 39133781 DOI: 10.1021/acs.jpclett.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A key limitation of supramolecular force-driven molecular assembly in aggregation-induced emission (AIE) materials is the need to precisely regulate molecular interactions within the assembly. Achieving such assemblies with in situ manipulable molecular arrangements could provide valuable insights into the role of molecular forces in AIE. Herein, by using glutathione-protected gold nanoclusters (AuNCs) as a model AIE material and a naturally occurring polyphenol, tannic acid (TA), as the assembling agent, we demonstrate that assemblies dominated by covalent bonds and hydrogen bonding show enhanced AIE, while those dominated by π-π stacking promote charge transfer, resulting in significant photoluminescence (PL) quenching. This phenomenon primarily stems from the oxidation of TA into smaller aromatic ring structures, leading to an increase in π-π interactions. The complete in situ oxidation of TA within the assembly induces a morphological transition from 3-D spherical to 2-D sheet-like structures due to the dominance of π-π interactions, consequently resulting in complete PL quenching of AuNCs. These findings highlight the critical role of molecular packing in modulating the AIE properties of AuNCs.
Collapse
Affiliation(s)
- Arun Mukhopadhyay
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukhendu Mahata
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Rival JV, Nonappa, Shibu ES. The interplay of chromophore-spacer length in light-induced gold nanocluster self-assembly. NANOSCALE 2024; 16:14302-14309. [PMID: 39011753 DOI: 10.1039/d4nr01954g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The light-induced self-assembly of chromophore-tethered precision nanoclusters (NCs) has recently received significant attention due to their facile control over structure, function, and reversibility under ambient conditions. However, the magnitude of assembly depends on the photoswitching efficiency, chemical structure, and proximity of the chromophore to the NC surface. Herein, using azobenzene alkyl monothiol (AMT)-capped gold NCs with two different spacer lengths (denoted as C3-NC and C9-NC), we show that reversible cis ↔ trans isomerization efficiency can be readily tuned to control the self-assembly kinetics of NCs. Irrespective of the chain length, the time required for trans-to-cis (140 s) and cis-to-trans (260 s) isomerization of individual C3-AMT and C9-AMT is identical in dichloromethane solution. When a similar experiment was performed using a solution of C3-NCs and C9-NCs, it resulted in self-assembled disc-like superstructures. Notably, the trans-to-cis photoswitching in C3-NC could reach only 65% even after 460 seconds of irradiation. On the other hand, C9-NC completed this process within 160 seconds of irradiation. The low photoswitching efficiency of the C3-NC analog is due to the short and rigid spacer length of C3-AMT ligands, which are in close proximity to the NC surface, resulting in steric hindrance experienced at the NC-chromophore interface. Importantly, the slow photoswitching in C3-NCs helps isolate and investigate the intermediates of assembly. Using high-resolution electron microscopy, atomic force microscopy, and 3D reconstruction, we show that the discs are made up of densely packed arrays of NCs. The prolonged illumination of C9-NCs results in a chain-like assembly due to the dipolar attraction between the previously assembled superstructures. The efficient photoisomerization of chromophores located away from the nanocluster surface has been identified as the key element to speed up the light-induced assembly in chromophore-tethered nanoclusters. Such information will be useful while developing nanoscale photoswitches for electrochemistry, biosensors, and electronic devices.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut, Thenhipalam 673635, Kerala, India.
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | | |
Collapse
|
7
|
Mukhopadhyay A, Sahoo SR, Mahata S, Goswami N. Strategic framework for harnessing luminescent metal nanocluster assemblies in biosensing applications. Anal Bioanal Chem 2024; 416:3963-3974. [PMID: 38814345 DOI: 10.1007/s00216-024-05353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.
Collapse
Affiliation(s)
- Arun Mukhopadhyay
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Satya Ranjan Sahoo
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Sukhendu Mahata
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Nirmal Goswami
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India.
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
8
|
Alam N, Das AK, Chandrashekar P, Baidya P, Mandal S. Recent progress in atomically precise silver nanocluster-assembled materials. NANOSCALE 2024; 16:10087-10107. [PMID: 38713237 DOI: 10.1039/d4nr01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the dynamic landscape of nanotechnology, atomically precise silver nanoclusters (Ag NCs) have emerged as a novel and promising category of materials with their fascinating properties and enormous potential. However, recent research endeavors have surged towards stabilizing Ag-based NCs, leading to innovative strategies like connecting cluster nodes with organic linkers to construct hierarchical structures, thus forming Ag-based cluster-assembled materials (CAMs). This approach not only enhances structural stability, but also unveils unprecedented opportunities for CAMs, overcoming the limitations of individual Ag NCs. In this context, this review delves into the captivating realm of atomically precise nitrogen-based ligand bonded Ag(I)-based CAMs, providing insights into synthetic strategies, structure-property relationships, and diverse applications. We navigate the challenges and advancements in integrating Ag(I) cluster nodes, bound by argentophilic interactions, into highly connected periodic frameworks with different dimensionalities using nitrogen-based linkers. Despite the inherent diversity among cluster nodes, Ag(I) CAMs demonstrate promising potential in sensing, catalysis, bio-imaging, and device fabrication, which all are discussed in this review. Therefore, gaining insight into the silver nanocluster assembly process will offer valuable information, which can enlighten the readers on the design and advancement of Ag(I) CAMs for state-of-the-art applications.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyadarshini Baidya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| |
Collapse
|
9
|
Nakatani R, Das S, Negishi Y. The structure and application portfolio of intricately architected silver cluster-assembled materials. NANOSCALE 2024; 16:9642-9658. [PMID: 38644768 DOI: 10.1039/d4nr00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Silver Cluster-Assembled Materials (SCAMs) represent a new frontier of crystalline extended solids hallmarked by their customizable structures, commendable stabilities, and unique physical/chemical properties. Since their discovery in 2017, the diversity of organic linkers has endowed SCAMs with ingenious architectures and the application scenario has expanded beyond photoluminescence sensing to environmental sustainability and biomedical applications. It is critically important to chronicle these recent key advances and review the progress of SCAMs that can enable translating the material discoveries into real implementation. Herein, we provide a succinct overview of the trajectory of SCAM research, with crucial insights into atomic-level structural correlations with the phenomena at the nanoscale and discuss the gaps and opportunities that are still open in addition to charting a roadmap for future research directions.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
10
|
Doust Mohammadi M, Bhowmick S, Maisser A, Schmidt-Ott A, Biskos G. Electronic properties and collision cross sections of AgO kH m± ( k, m = 1-4) aerosol ionic clusters. Phys Chem Chem Phys 2024; 26:14547-14560. [PMID: 38721799 DOI: 10.1039/d3cp05499c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Experimental evidence shows that hydroxylated metal ions are often produced during cluster synthesis by atmospheric pressure spark ablation. In this work, we predict the ground state equilibrium structures of AgOkHm± clusters (k and m = 1-4), which are readily produced when spark ablating Ag, using the coupled cluster with singles and doubles (CCSD) method. The stabilization energy of these clusters is calculated with respect to the dissociation channel having the lowest energy, by accounting perturbative triples corrections to the CCSD method. The interatomic interactions in each of the systems have been investigated using the frontier molecular orbital (FMO), natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) methods. Many of the ground states of these ionic clusters are found to be stable, corroborating experimental observations. We find that clusters having singlet spin states are more stable in terms of dissociation than the clusters that have doublet or triplet spin states. Our calculations also indicate a strong affinity of the ionic and neutral Ag atom towards water and hydroxyl radicals or ions. Many 3-center, 4-electron (3c/4e) hyperbonds giving rise to more than one resonance structure are identified primarily for the anionic clusters. The QTAIM analysis shows that the O-H and O-Ag bonds in the clusters of both polarities are respectively covalent and ionic. The FMO analysis indicates that the anionic clusters are more reactive than the cationic ones. Using the cluster structures predicted by the CCSD method, we calculate the collision cross sections of the AgOkHm± family, with k and m ranging from 1 to 4, by the trajectory method. In turn, we predict the electrical mobilities of these clusters when suspended in helium at atmospheric pressure and compare them with experimental measurements.
Collapse
Affiliation(s)
- Mohsen Doust Mohammadi
- Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Somnath Bhowmick
- Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Anne Maisser
- Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Andreas Schmidt-Ott
- Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
- Faculty of Applied Sciences, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - George Biskos
- Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CN, The Netherlands
| |
Collapse
|
11
|
Biswas S, Negishi Y. Silver Cluster Assembled Materials: A Model-Driven Perspective on Recent Progress, with a Spotlight on Ag 12 Cluster Assembly. CHEM REC 2024; 24:e202400052. [PMID: 38775236 DOI: 10.1002/tcr.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/09/2024] [Indexed: 05/29/2024]
Abstract
The exploration of individual nanoclusters is rapidly advancing, despite stability concerns. To address this challenge, the assembly of cluster nodes through linker molecules has been successfully implemented. However, the linking of the cluster nodes itself introduces a multitude of possibilities, especially when additional factors come into play. While this method proves effective in enhancing material stability, the specific reasons behind its success remain elusive. In our laboratory, we have undertaken extensive studies on Ag cluster-assembled materials. So, here our goal is to establish a model system that allows for the discernment of various factors, eliminating unnecessary complexities during the linking approach. So, we hope that the systematic discourse presented in here will contribute significantly to future endeavors, helping to set clear priorities, and provide solutions to concerns that arise when working with a model system.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan
| |
Collapse
|
12
|
Nakatani R, Biswas S, Irie T, Sakai J, Hirayama D, Kawawaki T, Niihori Y, Das S, Negishi Y. A new two-dimensional luminescent Ag 12 cluster-assembled material and its catalytic activity for reduction of hexacyanoferrate(III). NANOSCALE 2023; 15:16299-16306. [PMID: 37718910 DOI: 10.1039/d3nr03343k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Silver cluster-assembled materials (SCAMs) have garnered significant interest as promising platforms for different functional explorations. Their atomically precise structures, intriguing chemical/physical properties, and remarkable luminescent capabilities make them highly appealing. However, the properties of these materials are primarily determined by their structural architecture, which is heavily influenced by the linker molecules used in their assembly. The choice of linker molecules plays a pivotal role in shaping the structural characteristics and ultimately determining the unique properties of SCAMs. To this end, the first SCAM with an intriguing (3,6)-connected kgd topology, [Ag12(StBu)6(CF3COO)6(TPBTC)6]n (termed TUS 3), TPBTC = benzene-1,3,5-tricarboxylic acid tris-pyridin-4-ylamide, has been synthesized by reticulating C6-symmetric Ag12 cluster cores with C3-symmetric tripodal pyridine linkers. Due to the structutural architecture of the linker molecule, TUS 3 posseses a luminescent porous framework structure where each two-dimensional (2D) layers are non-covalently linked with each other to form a three dimensional (3D) framework and ultimately offers uniaxial open channels. The compact mesoporous structural architecture not only gives the excellent surface area but also offers impressive stability of this material even in water medium. Taking advantage of these properties, TUS 3 shows brilliant catalytic activity in the reduction of hexacyanoferrate(III) using sodium borohydride in aqueous solutions.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Saikat Das
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
13
|
Sekine T, Sakai J, Horita Y, Mabuchi H, Irie T, Hossain S, Kawawaki T, Das S, Takahashi S, Das S, Negishi Y. Five Novel Silver-Based Coordination Polymers as Photoluminescent Sensing Platforms for the Detection of Nitrobenzene. Chemistry 2023; 29:e202300706. [PMID: 37293845 DOI: 10.1002/chem.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.
Collapse
Affiliation(s)
- Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Subhabrata Das
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Shuntaro Takahashi
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
14
|
Sakai J, Biswas S, Irie T, Mabuchi H, Sekine T, Niihori Y, Das S, Negishi Y. Synthesis and luminescence properties of two silver cluster-assembled materials for selective Fe 3+ sensing. NANOSCALE 2023. [PMID: 37378425 DOI: 10.1039/d3nr01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Silver cluster-assembled materials (SCAMs) are emerging light-emitting materials with molecular-level structural designability and unique photophysical properties. Nevertheless, the widespread application scope of these materials is severely curtailed by their dissimilar structural architecture upon immersing in different solvent media. In this work, we report the designed synthesis of two unprecedented (4.6)-connected three-dimensional (3D) luminescent SCAMs, [Ag12(StBu)6(CF3COO)6(TPEPE)6]n (denoted as TUS 1), TPEPE = 1,1,2,2-tetrakis(4-(pyridin-4-ylethynyl)phenyl)ethene and [Ag12(StBu)6(CF3COO)6(TPVPE)6]n (denoted as TUS 2), TPVPE = 1,1,2,2-tetrakis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)ethene, composed of an Ag12 cluster core connected by quadridentate pyridine linkers. Attributed to their exceptional fluorescence properties with absolute quantum yield (QY) up to 9.7% and excellent chemical stability in a wide range of solvent polarity, a highly sensitive assay for detecting Fe3+ in aqueous medium is developed with promising detection limits of 0.05 and 0.86 nM L-1 for TUS 1 and TUS 2 respectively, comparable to the standard. Furthermore, the competency of these materials to detect Fe3+ in real water samples reveals their potential application in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Saikat Das
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
15
|
Bera D, Baruah M, Dehury AK, Samanta A, Chaudhary YS, Goswami N. Depletion Driven Assembly of Ultrasmall Metal Nanoclusters: From Kinetically Arrested Assemblies to Thermodynamically Stable, Spherical Superclusters. J Phys Chem Lett 2022; 13:9411-9421. [PMID: 36191241 DOI: 10.1021/acs.jpclett.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale assembly of ultrasmall metal nanoclusters (MNCs) by means of molecular forces has proven to be a powerful strategy to engineer their molecule-like properties in multiscale dimensions. By leveraging depletion attraction as the guiding force, herein, we demonstrate the formation of kinetically trapped NCs assemblies with enhanced photoluminescence (PL) and excited state lifetimes and extend the principle to cluster impregnated cationic nanogels, nonluminescent Au(I)-thiolate complexes, and weakly luminescent CuNCs. We further demonstrate a thermal energy driven kinetic barrier breaking process to isolate these assemblies. These isolated assemblies are thermodynamically stable, built from a strong network among several discrete, ultrasmall AuNCs and exhibit several unusual properties such as high stability in various pH, strong PL, microsecond lifetimes, large Stocks shifts, and higher accumulation in the lysosome of cancer cells. We anticipate our strategy may find wider use in creating a large variety of MNC-based assemblies with many unforeseen arrangements, properties, and applications.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Mousumi Baruah
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asish K Dehury
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
16
|
Das AK, Biswas S, Wani VS, Nair AS, Pathak B, Mandal S. [Cu 18H 3(S-Adm) 12(PPh 3) 4Cl 2]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem Sci 2022; 13:7616-7625. [PMID: 35872832 PMCID: PMC9241973 DOI: 10.1039/d2sc02544b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Structural elucidation of atom-precise thiolate-protected copper nanoclusters (Cu NCs) containing Cu(0) is quite challenging. Here, we report a new adamantane-thiol-protected NC, [Cu18H3(S-Adm)12(PPh3)4Cl2] (Cu18), which represents the first observation of a rare mononuclear Cu(0)-containing Cu10H3Cl2 core that is constructed via kernel fusion through vertex sharing of the Platonic-solid- and Johnson-solid-geometry-like kernels and hydride-bridging. The unique core is surrounded by a Cu8S12P4 metal-ligand motif shell and adopts a butterfly-like structure. In comparison to its closest structural analogue, the predominant effect of the principal Cu atom vacancy-induced structural rearrangement is evidenced. The occupied orbitals of this NC have a major d-orbital contribution to the distorted Cu6 octahedral kernel, whereas unoccupied orbitals owe a contribution to the distorted Cu5 square-pyramidal kernel. Thus, the charge transfer phenomenon is uniquely instigated between the two fused kernels through Cu(d) → Cu(d) transition via the Cu(0) center. This NC exhibits violet emission due to kernel-dominated relaxation at room temperature, which is further enhanced by confining the surface protecting ligands through recognition-site-specific host-guest supramolecular adduct formation by β-cyclodextrin. The unique electronic structure of this NC further facilitates its application toward photocurrent generation. Thus, this study offers a unique strategy for the controllable synthesis of a Cu(0)-containing Cu NC, which enables atomic-level insights into their optoelectronic properties.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Vaibhav S Wani
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| |
Collapse
|