1
|
Liu J, Zou J, Wang J, Wang R, Zhai S, Chang X, Zhang X, Sun J, Luan F, Shi Y. Extraction, purification, structural features, and pharmacological properties of polysaccharides from Houttuynia cordata: A review. Int J Biol Macromol 2024; 279:135230. [PMID: 39218180 DOI: 10.1016/j.ijbiomac.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Houttuynia cordata Thunb, also known as "Chinese medicine antibiotic", is a medicine food homology plant. It has functions of clearing heat, eliminating toxins, in folk medicine. The extraction purification and bioactivity of Houttuynia cordata polysaccharides (HCPs) have been of wide interest to researchers in recent years studies. Studies have confirmed that HCPs exhibit various biofunctionalities, such as anti-inflammatory, antiviral, antibacterial, antioxidant, immunomodulatory, regulation of gut microbiota, and gut-lung axis, as well as anti-radiation, and anti-cancer properties. Therefore, a comprehensive systematic review is needed to summarize the recent advances of HCPs and facilitate a better understanding of their biofunctionalities. This paper reviews the research progress of HCPs in extraction and purification methods, chemical structures, biological activities, possible mechanisms of action, and potential application prospects, which can provide some valuable insights and updated information for their further development and application of HCPs in the fields of therapeutic agents, functional foods, cosmetics, animal feeds.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xing Chang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Jiao M, Zhang Y, Dong Z, Zhang H, Jiang Y. Microencapsulation of multi-component traditional Chinese herbs extracts and its application to traditional Chinese medicines loaded textiles. Colloids Surf B Biointerfaces 2024; 240:113970. [PMID: 38788474 DOI: 10.1016/j.colsurfb.2024.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Extracts of traditional Chinese herbs (TCH) contain a variety of anti-allergic, anti-inflammatory and other bioactive factors. However, the defect of easy degradation or loss of active ingredients limits its application in traditional Chinese medicines (TCM) loaded textiles. In this work, TCH extracts containing different active ingredients were innovatively proposed as the core material of microcapsules. The feasibility of microencapsulation of multi-component TCH extracts in the essential oil state was initially demonstrated. Polyacrylate was also used as a binder to load the microcapsules onto the fabric to improve the durability and wash resistance of the treated fabric. Modeling the oil release of microcapsules for controlled release under different conditions may provide new possible uses for the materials. Results show that the constructed microcapsule has a smooth surface without depression and can be continuously released for over 30 days. The release behavior of microcapsules follows different release mechanisms and can be modulated by temperature and water molecules. The incorporation of microcapsules and polyacrylate does not significantly change the fabric's air permeability, water vapor transmission and hydrophilicity. The washing durability and friction properties of the microcapsule-based fabric are greatly improved, and it can withstand 30 washing tests and 200 friction tests. Moreover, the results of methyl thiazolyl tetrazolium (MTT) release assay using human dermal papilla cells (HDP) as an in vitro template confirm that the microcapsule has no toxic effects on human cells. Therefore, the successful microencapsulation of multi-component TCH extracts indicates their potential application in the field of TCM-loaded textiles.
Collapse
Affiliation(s)
- Mengyan Jiao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite of Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yubin Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhaoyong Dong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite of Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Hao Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yaming Jiang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite of Ministry of Education, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
3
|
Kong P, Zulfikar A, Thangunpai K, Masuo S, Abe JP, Enomae T. Efficient encapsulation of Hinoki essential oil with β-cyclodextrin using an ultrasound-aided co-precipitation technique for dual anti-Listeria monocytogenes and anti-Staphylococcus aureus activities. Int J Biol Macromol 2024; 270:132382. [PMID: 38754652 DOI: 10.1016/j.ijbiomac.2024.132382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/14/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) and Staphylococcus aureus (S. aureus) are widely acknowledged as two of the most dangerous foodborne pathogens. Nevertheless, reports on the development of non-toxic food preservatives that specifically target these two bacterial strains are scarce. Here, we present an inclusion complex (IC) of Hinoki essential oil with β-cyclodextrin, which exhibited dual anti-L. monocytogenes and anti-S. aureus activities. For the first time, an innovative ultrasound-aided co-precipitation technique was utilized for the preparation of IC. Compared with the traditional co-precipitation method, this new technique demonstrated superior encapsulation and time efficiencies, making it well-suited for large-scale production. X-ray diffraction and scanning electron microscopy analyses revealed a transition in the morphological and crystal structures after formation of the IC. Fourier transform infrared spectroscopy and Raman spectroscopy analyses indicated that Hinoki essential oil was effectively encapsulated by β-cyclodextrin. The differential scanning calorimetry and thermogravimetric thermograms indicated that the formed IC was more thermally stable than the free Hinoki essential oil. Importantly, 100 % antibacterial ratios for both L. monocytogenes and S. aureus were determined, indicating that the IC prepared in this study is a promising food preservative.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Ainun Zulfikar
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Materials and Metallurgical Engineering Department, Kalimantan Institute of Technology, Balikpapan 76127, Indonesia
| | - Kotchaporn Thangunpai
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Masuo
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Junichi Peter Abe
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
4
|
Nguyen MH, Nguyen LT, Nguyen Le TH, Ngoc Chau TN, Thi Nguyen YN, Ha TD, Tran Nguyen PT, Chu TB, Tran CH, Le MT. Response surface methodology for aqueous two-phase system extraction: An unprecedented approach for the specific flavonoid-rich extraction of Houttuynia cordata Thunb. leaves towards acne treatment. Heliyon 2024; 10:e25245. [PMID: 38420455 PMCID: PMC10900413 DOI: 10.1016/j.heliyon.2024.e25245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Background Houttuynia cordata Thunb. has long been widely used as a daily vegetable and traditional medicine. The flavonoid component of H. cordata has plenty of pharmacological effects, such as antibacterial, anti-inflammatory, and antioxidant. In this study, we applied the aqueous two-phase system (ATPS) combined with ultrasonic extraction for extracting H. cordata leaves. Methods We optimized the extraction process to improve the extraction efficiency of the two flavonoids, hyperin and quercitrin, by Surface Method Response - Central Composite Design (RSM-CCD). Next, we investigated the antibacterial ability of H. cordata ATPS extract from optimal conditions against two bacterial strains, Cutibacterium acnes and Staphylococcus epidermidis. Results The results showed that using 10% (NH4)2SO4 and 35% ethanol for ATPS extraction resulted in the highest hyperin and quercitrin contents. From the RSM-CCD results, the optimal extraction conditions were determined to be ultrasonic extraction at 50 °C for 30 min, giving results consistent with the predicted model and obtaining hyperin and quercitrin contents at 1.5681 ± 0.0114 and 4.6225 ± 0.0327 mg/g, respectively.Furthermore, ATPS extract has excellent antibacterial activity with a minimum inhibitory concentration (MIC) value of 250 μg/mL on both C. acnes and S. epidermidis. This MIC is significantly lower than the H. cordata ultrasound-assisted (UA) extract, with MICs of 1500.00 and 156.25 μg/mL on C. acnes and S. epidermidis, respectively. In addition, the results from the disk diffusion assay also showed that ATPS extraction has superior internal antibacterial activity with a zone of inhibition diameter at 250 μg/mL of 8.67 ± 1.15 and 5.00 ± 2.00 mm. Meanwhile, those of UA extract on C. acnes is 5.67 ± 1.53 mm (at 1500 μg/mL), and on S. epidermidis is 1.34 ± 0.58 mm (at 156.25 μg/mL). Conclusion To sum up, our research highlights the potential of H. cordata ATPS extracts as the starting material for topical preparations for effectively treating acne.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Lan Thi Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Trong Nghia Ngoc Chau
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Yen Nhi Thi Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Tan Dat Ha
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuoc Thuan Tran Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Thien Bao Chu
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chi Hieu Tran
- Microbiology Department, Biotechnology Center of Ho Chi Minh City (HCMBIOTECH), Ho Chi Minh City, Viet Nam
| | - Minh Tri Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- University of Medicine and Pharmacy at HCMC, Ho Chi Minh City, Viet Nam
| |
Collapse
|
5
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Preparation and Characterization of Tea Tree Oil-β-Cyclodextrin Microcapsules with Super-High Encapsulation Efficiency. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|