1
|
Yang X, Ning K, Wang DE, Xu H. Progress of bone marrow mesenchymal stem cell mitochondrial transfer in organ injury repair. Stem Cells Dev 2023. [PMID: 37002887 DOI: 10.1089/scd.2023.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
There has been an upsurge of interest in the bone marrow mesenchymal stem cell (BMSC) mitochondrial transfer as a potential therapeutic innovation in organ injury repair. Previous research mainly focused on its transfer routes and therapeutic effects. However, its intrinsic mechanism has not been well deciphered. The current research status needs to be summarized for the clarification of future research direction. Therefore, we review the recent significant progress in the application of BMSC mitochondrial transfer in organ injury repair. The transfer routes and effects are summarized, and some suggestions on the future research direction are provided.
Collapse
Affiliation(s)
- Xuezhou Yang
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Kaiting Ning
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Dong-en Wang
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Huiyun Xu
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Wang R, Wei W, Rong S, Wang T, Li B. Intravenous injection of SDF-1α-overexpressing bone marrow mesenchymal stem cells has a potential protective effect on myocardial ischemia in mice. Curr Stem Cell Res Ther 2022; 17:348-360. [PMID: 35306996 DOI: 10.2174/1574888x17666220318144608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background Neutrophils are involved in the injury of myocytes during myocardial ischemia (MI). Stem cells migrate to the site of myocardial injury under homing signals and play a protective role, such as inhibiting inflammation. Chemokine SDF-1α and its related receptor CXCR4 are upregulated after myocardial infarction, which may play an important role in stem cell homing. Objectives This study aimed to explore the potential therapeutic effect of SDF-1α-modified bone marrow mesenchymal stem cells on myocardial ischemia/reperfusion (I/R) injury. Methods We explored the role of SDF-1α modified bone marrow mesenchymal stem cells in vivo and in vitro. SDF-1α and CXCR4 expression was detected under hypoxia/reoxygenation (H/R) condition. Cell migration was detected by the transwell method. The levels of SDF-1α and IL-1β, IL-6, IL-10, and TNF-α were detected in different groups. Results In vivo, SDF-1α was mainly upregulated and secreted by cardiomyocytes, and cardiomyocytes recruited stem cells through the SDF-1/CXCR4 pathway to reduce the damage of polymorphic mononuclear neutrophils to cardiomyocytes under H/R. Upregulation of SDF-1α increased the migration ability of BMSC Stem Cells to H/R-induced cardiomyocytes. In vitro, intravenous injection of SDF-1α gene-modified BMSC Stem Cells reduced inflammatory infiltration in the injured area as well as the level of systemic inflammatory factors. Conclusions SDF-1α-overexpressing BMSC Stem Cells protected the heart function of mice and significantly reduced I/R-induced myocardial injury, which has a potential protective effect on MI.
Collapse
Affiliation(s)
- Ruihua Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Wei
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, P.R. China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Bao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
3
|
Zhao L, Han F, Wang J, Chen J. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models. Stem Cell Res Ther 2019; 10:385. [PMID: 31843011 PMCID: PMC6916462 DOI: 10.1186/s13287-019-1507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Incomplete recovery from acute kidney injury (AKI) can result in long-term functional deficits and has been recognized as a major contributor to chronic kidney disease (CKD), which is termed the AKI-CKD transition. Currently, an effective intervention for this disorder is still lacking. Principally, therapeutic strategies targeting the AKI-CKD transition can be divided into those reducing the severity of AKI or promoting the regenerative process towards beneficially adaptive repair pathways. Considering the fact that mesenchymal stem cells (MSCs) have the potential to address both aspects, therapeutic regimens based on MSCs have a promising future. In light of this information, we focus on the currently available evidence associated with MSC therapy involved in the treatment of the AKI-CKD transition and the underlying mechanisms. All of these discussions will contribute to the establishment of a reliable therapeutic strategy for patients with this problem, who can be easily ignored by physicians, and will lead to a better clinical outcome for them.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
4
|
Abstract
The number of individuals affected by acute kidney injury (AKI) and chronic kidney disease (CKD) is constantly rising. In light of the limited availability of treatment options and their relative inefficacy, cell based therapeutic modalities have been studied. However, not many efforts are put into safety evaluation of such applications. The aim of this study was to review the existing published literature on adverse events reported in studies with genetically modified cells for treatment of kidney disease. A systematic review was conducted by searching PubMed and EMBASE for relevant articles published until June 2018. The search results were screened and relevant articles selected using pre-defined criteria, by two researchers independently. After initial screening of 6894 abstracts, a total number of 97 preclinical studies was finally included for full assessment. Of these, 61 (63%) presented an inappropriate study design for the evaluation of safety parameters. Only 4 studies (4%) had the optimal study design, while 32 (33%) showed sub-optimal study design with either direct or indirect evidence of adverse events. The high heterogeneity of studies included regarding cell type and number, genetic modification, administration route, and kidney disease model applied, combined with the consistent lack of appropriate control groups, makes a reliable safety evaluation of kidney cell-based therapies impossible. Only a limited number of relevant studies included looked into essential safety-related outcomes, such as inflammatory (48%), tumorigenic and teratogenic potential (12%), cell biodistribution (82%), microbiological safety with respect to microorganism contamination and latent viruses' reactivation (1%), as well as overall well-being and animal survival (19%). In conclusion, for benign cell-based therapies, well-designed pre-clinical studies, including all control groups required and good manufacturing processes securing safety, need to be done early in development. Preferably, this should be performed side by side with efficacy evaluation and according to the official guidelines of leading health organizations.
Collapse
|
5
|
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55:1074-1089. [PMID: 28076311 DOI: 10.1515/cclm-2016-0973] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a common complication of critical illnesses and has a significant impact on outcomes, including mortality and morbidities. Unfortunately, apart from prophylactic measures, no effective treatment for this syndrome is known. Therefore, early recognition of AKI not only can provide better opportunities for preventive interventions, but also opens many gates for research and development of effective therapeutic options. Over the last few years, several new AKI biomarkers have been discovered and validated to improve early detection, differential diagnosis, and differentiation of patients into risk groups for progressive renal failure, need for renal replacement therapy (RRT), or death. These novel AKI biomarkers complement serum creatinine (SCr) and urine output, which are the standard diagnostic tools for AKI detection. In this article, we review the available literature on characteristics of promising AKI biomarkers that are currently the focus of preclinical and clinical investigations. These biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein, interleukin 18 (lL-18), insulin-like growth factor-binding protein 7, tissue inhibitor of metalloproteinase 2 (TIMP-2), calprotectin, urine angiotensinogen (AGT), and urine microRNA. We then describe the clinical performance of these biomarkers for diagnosis and prognostication. We also appraise each AKI biomarker's advantages and limitations as a tool for early AKI recognition and prediction of clinical outcomes after AKI. Finally, we review the current and future states of implementation of biomarkers in the clinical practice.
Collapse
|
6
|
Wysocki J, Batlle D. Urinary Angiotensinogen: A Promising Biomarker of AKI Progression in Acute Decompensated Heart Failure: What Does It Mean? Clin J Am Soc Nephrol 2016; 11:1515-1517. [PMID: 27538427 PMCID: PMC5012482 DOI: 10.2215/cjn.07780716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jan Wysocki
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
7
|
Angiotensin II, oxidative stress and stem cell therapy: a matter of delicacy. Clin Sci (Lond) 2015; 128:749-50. [PMID: 25626478 DOI: 10.1042/cs20150082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Optimization of stem cell therapy after cardiovascular and renal injury depends on many factors, among which is stem cell donor health. The renin-angiotensin system (RAS) plays an important role in cardiovascular and renal homoeostasis and pathophysiology. It is becoming increasingly clear that the RAS affects the therapeutic performance of stem cells. In this issue of Clinical Science, Kankuri et al. dig deeper into the consequences of excessive angiotensin II signalling and reactive oxygen species (ROS) formation in the stem cell donor, applying a model of regenerative medicine after renal injury.
Collapse
|