1
|
Kämmerer L, Kämmerer G, Gruber M, Grunwald J, Lojewski T, Mercadier L, Le Guyader L, Carley R, Carinan C, Gerasimova N, Hickin D, Van Kuiken BE, Mercurio G, Teichmann M, Kuppusamy SK, Scherz A, Ruben M, Sokolowski-Tinten K, Eschenlohr A, Ollefs K, Schmitz-Antoniak C, Tuczek F, Kratzer P, Bovensiepen U, Wende H. Femtosecond Spin-State Switching Dynamics of Fe(II) Complexes Condensed in Thin Films. ACS NANO 2024; 18:34596-34605. [PMID: 39663771 DOI: 10.1021/acsnano.4c05123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2024]
Abstract
The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature. The subpicosecond switching from the S = 0 low-spin ground state to the S = 2 high-spin state is monitored by analyzing the transient evolution of the Fe L3 X-ray absorption edge fine structure, i.e. element-specifically at the switching center of the Fe(II) complex. Our measurements show the involvement of an intermediate state in the switching. At large excitation fluences, the fraction of high-spin molecules saturates at ≈50%, which is likely due to molecule-molecule interaction within the film.
Collapse
Affiliation(s)
- Lea Kämmerer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Gérald Kämmerer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Manuel Gruber
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Jan Grunwald
- Institute for Inorganic Chemistry, Christian-Albrechts-University, Kiel 24098, Germany
| | - Tobias Lojewski
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | | | | | | | | | | | | | | | | | | | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | | | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Strasbourg Cedex 67083, France
| | - Klaus Sokolowski-Tinten
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Andrea Eschenlohr
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Katharina Ollefs
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Carolin Schmitz-Antoniak
- Faculty of Engineering and Natural Sciences, Technical University of Applied Science Wildau, Wildau 15745, Germany
| | - Felix Tuczek
- Institute for Inorganic Chemistry, Christian-Albrechts-University, Kiel 24098, Germany
| | - Peter Kratzer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Uwe Bovensiepen
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
2
|
Sanna N, Zazza C, Chillemi G, Pace E, Cappelluti F, Bencivenni L, Oppermann M, Benfatto M, Chergui M. Asymmetric conformation of the high-spin state of iron(II)-tris(2,2-bipyridine): Time-resolved x-ray absorption and ultraviolet circular dichroism. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:064101. [PMID: 39606426 PMCID: PMC11602215 DOI: 10.1063/4.0000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/05/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
We analyze the structures of the low-spin (LS) ground state and the high-spin (HS) lowest excited state of the iron-(II)-tris bipyridine complex ([Fe(bpy)3]2+) using density functional theory PBE methods, modeling the solvent interactions with conductor-like polarizable continuum model. These calculations are globally benchmarked against a wide range of experimental observables that include ultraviolet-visible linear absorption and circular dichroism (CD) spectra and Fe K-edge x-ray absorption near edge spectra (XANES). The calculations confirm the already established D3 geometry of the LS state, as well as a departure from this geometry for the HS state, with the appearance of inequivalent Fe-N bond elongations. The simulated structures nicely reproduce the above-mentioned experimental observables. We also calculate the vibrational modes of the LS and HS states. For the former, they reproduce well the vibrational frequencies from published infrared and Raman data, while for the latter, they predict very well the low-frequency vibrational coherences, attributed to Fe-N stretch modes, which were reported in ultrafast spectroscopic experiments. We further present calculations of the high-frequency region, which agree with recent ultrafast transient infrared spectroscopy studies. This work offers a common basis to the structural information encoded in the excited state CD and the Fe K XANES of the HS state tying together different structural IR, UV-visible, and x-ray observables.
Collapse
Affiliation(s)
- Nico Sanna
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell' Università snc, 01100 Viterbo, Italy
| | - Costantino Zazza
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell' Università snc, 01100 Viterbo, Italy
| | | | - Elisabetta Pace
- Laboratori Nazionali di Frascati – INFN, Via E. Fermi 44, 00044 Frascati, Italy
| | - Francesco Cappelluti
- Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Luigi Bencivenni
- Department of Chemistry, Sapienza University, P. le A. Moro 5, 00185 Rome, Italy
| | | | - Maurizio Benfatto
- Laboratori Nazionali di Frascati – INFN, Via E. Fermi 44, 00044 Frascati, Italy
| | - Majed Chergui
- Authors to whom correspondence should be addressed:; ; ; and
| |
Collapse
|
3
|
de Jesus Velazquez-Garcia J, Basuroy K, Wong J, Demeshko S, Meyer F, Kim I, Henning R, Staechelin YU, Lange H, Techert S. Out-of-equilibrium dynamics of a grid-like Fe(ii) spin crossover dimer triggered by a two-photon excitation. Chem Sci 2024; 15:13531-13540. [PMID: 39183926 PMCID: PMC11339940 DOI: 10.1039/d4sc02933j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO FeII dimer of the form [FeII(HL)2]2(BF4)4·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole). Optical transient absorption (OTA) spectroscopy in solution proves that the same dynamics take place under both one-photon excitation (OPE) and TPE. The results show the emergence of the photoinduced high spin state in less than 2 ps and with a lifetime of 147 ns. Time-resolved photocrystallography (TRXRD) reveals a single molecular reorganisation within the first 500 ps following TPE. Additionally, variable temperature single crystal X-ray diffraction (VTSCXRD) and magnetic susceptibility measurements confirm that the thermal transition is silenced by the solvent. While the results of the OTA and TRXRD utilising TPE are intriguing, the high pump fluencies required to excite enough metal centres to the high spin state may impair its practical application. Nonetheless, this study sheds light on the potential of TPE for the investigation of the out-of-equilibrium dynamics of SCO complexes.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Insik Kim
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Yannic U Staechelin
- Institute of Physical Chemistry, Universität Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Holger Lange
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg 22761 Hamburg Germany
- Institute of Physics and Astronomy, Universität Potsdam Karl-Liebknecht-Str. 24 14476 Potsdam Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 Göttingen 37077 Germany
| |
Collapse
|
4
|
Abstract
A recent article by Von Dreele, Clarke & Walsh [J. Appl. Cryst. (2021), 54, https://doi.org/10.1107/S1600576720014624] introduces an entirely new paradigm in structure determination, where a complete structural measurement is made in a tenth of a nanosecond.
Collapse
Affiliation(s)
- Brian H Toby
- Argonne National Laboratory, 9700 South Cass Avenue, IL 60439, USA
| |
Collapse
|
5
|
Toby BH. Rietveld in 100 picoseconds. J Appl Crystallogr 2021; 54:1-2. [PMID: 33833636 PMCID: PMC7941299 DOI: 10.1107/s1600576721000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022] Open
Abstract
A recent article by Von Dreele, Clarke & Walsh [J. Appl. Cryst. (2021), 54, https://doi.org/10.1107/S1600576720014624] introduces an entirely new paradigm in structure determination, where a complete structural measurement is made in a tenth of a nanosecond.
Collapse
Affiliation(s)
- Brian H Toby
- Argonne National Laboratory, 9700 South Cass Avenue, IL 60439, USA
| |
Collapse
|
6
|
Jiang Y, Liu LC, Sarracini A, Krawczyk KM, Wentzell JS, Lu C, Field RL, Matar SF, Gawelda W, Müller-Werkmeister HM, Miller RJD. Direct observation of nuclear reorganization driven by ultrafast spin transitions. Nat Commun 2020; 11:1530. [PMID: 32251278 PMCID: PMC7090058 DOI: 10.1038/s41467-020-15187-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization. Electron spin is a fundamental property of molecules, and changes in spin state affect both molecular structure and dynamics. Here, the authors resolve, by ultrafast electron diffraction, the nuclear reorganization stabilizing spin transitions in a [FeII(bpy)3](PF6)2 crystal.
Collapse
Affiliation(s)
- Yifeng Jiang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.,Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Kamil M Krawczyk
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Jordan S Wentzell
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Cheng Lu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Ryan L Field
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Samir F Matar
- Lebanese German University, LGU, Sahel-Alma, P.O. Box 206, Jounieh, Lebanon
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | | | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
7
|
Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M. Recent advances in ultrafast X-ray sources. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180384. [PMID: 30929633 DOI: 10.1098/rsta.2018.0384] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Over more than a century, X-rays have transformed our understanding of the fundamental structure of matter and have been an indispensable tool for chemistry, physics, biology, materials science and related fields. Recent advances in ultrafast X-ray sources operating in the femtosecond to attosecond regimes have opened an important new frontier in X-ray science. These advances now enable: (i) sensitive probing of structural dynamics in matter on the fundamental timescales of atomic motion, (ii) element-specific probing of electronic structure and charge dynamics on fundamental timescales of electronic motion, and (iii) powerful new approaches for unravelling the coupling between electronic and atomic structural dynamics that underpin the properties and function of matter. Most notable is the recent realization of X-ray free-electron lasers (XFELs) with numerous new XFEL facilities in operation or under development worldwide. Advances in XFELs are complemented by advances in synchrotron-based and table-top laser-plasma X-ray sources now operating in the femtosecond regime, and laser-based high-order harmonic XUV sources operating in the attosecond regime. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Robert Schoenlein
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Thomas Elsaesser
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| | - Karsten Holldack
- 3 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin , Germany
| | - Zhirong Huang
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Henry Kapteyn
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Margaret Murnane
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Michael Woerner
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| |
Collapse
|
8
|
Abstract
A review that summarizes the most recent technological developments in the field of ultrafast structural dynamics with focus on the use of ultrashort X-ray and electron pulses follows. Atomistic views of chemical processes and phase transformations have long been the exclusive domain of computer simulators. The advent of femtosecond (fs) hard X-ray and fs-electron diffraction techniques made it possible to bring such a level of scrutiny to the experimental area. The following review article provides a summary of the main ultrafast techniques that enabled the generation of atomically resolved movies utilizing ultrashort X-ray and electron pulses. Recent advances are discussed with emphasis on synchrotron-based methods, tabletop fs-X-ray plasma sources, ultrabright fs-electron diffractometers, and timing techniques developed to further improve the temporal resolution and fully exploit the use of intense and ultrashort X-ray free electron laser (XFEL) pulses.
Collapse
|
9
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
10
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
11
|
Field R, Liu LC, Gawelda W, Lu C, Miller RJD. Spectral Signatures of Ultrafast Spin Crossover in Single Crystal [FeII
(bpy)3
](PF6
)2. Chemistry 2016; 22:5118-22. [DOI: 10.1002/chem.201600374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan Field
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| | | | - Cheng Lu
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| |
Collapse
|
12
|
Hong K, Cho H, Schoenlein RW, Kim TK, Huse N. Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy. Acc Chem Res 2015; 48:2957-66. [PMID: 26488127 DOI: 10.1021/acs.accounts.5b00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
Polypyridyl transition-metal complexes are an intriguing class of compounds due to the relatively facile chemical designs and variations in ligand-field strengths that allow for spin-state changes and hence electronic configurations in response to external perturbations such as pressure and light. Light-activated spin-conversion complexes have possible applications in a variety of molecular-based devices, and ultrafast excited-state evolution in these complexes is of fundamental interest for understanding of the origins of spin-state conversion in metal complexes. Knowledge of the interplay of structure and valence charge distributions is important to understand which degrees of freedom drive spin-conversion and which respond in a favorable (or unfavorable) manner. To track the response of the constituent components, various types of time-resolved X-ray probe methods have been utilized for a broad range of chemical and biological systems relevant to catalysis, solar energy conversions, and functional molecular devices. In particular, transient soft X-ray spectroscopy of solvated molecules can offer complementary information on the detailed electronic structures and valence charge distributions of photoinduced intermediate species: First-row transition-metal L-edges consist of 2p-3d transitions, which directly probe the unoccupied valence density of states and feature lifetime broadening in the range of 100 meV, making them sensitive spectral probes of metal-ligand interactions. In this Account, we present some of our recent progress in employing picosecond and femtosecond soft X-ray pulses from synchrotron sources to investigate element specific valence charge distributions and spin-state evolutions in Fe(II) polypyridyl complexes via core-level transitions. Our results on transient L-edge spectroscopy of Fe(II) complexes clearly show that the reduction in σ-donation is compensated by significant attenuation of π-backbonding upon spin-crossover. This underscores the important information contained in transient metal L-edge spectroscopy on changes in the 3d orbitals including oxidation states, orbital symmetries, and covalency, which largely define the chemistry of these complexes. In addition, ligand K-edge spectroscopy reveals the "ligand view" of the valence charge density by probing 1s-2p core-level transitions at the K-edge of light elements such as nitrogen, carbon, and oxygen. In the case of Fe(II) spin-conversion complexes, additional details of the metal-ligand interactions can be obtained by this type of X-ray spectroscopy. With new initiatives in and construction of X-ray free-electron laser sources, we expect time-resolved soft X-ray spectroscopy to pave a new way to study electronic and molecular dynamics of functional materials, thereby answering many interesting scientific questions in inorganic chemistry and material science.
Collapse
Affiliation(s)
- Kiryong Hong
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Hana Cho
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
- Ultrafast
X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Center
for Inorganic Analysis, Division of Metrology for Quality of Life, Korea Research Institute of Standard and Science, Daejeon 305-340, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast
X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tae Kyu Kim
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Nils Huse
- Department of
Physics, University of Hamburg, Max Planck Institute
for the Structure and Dynamics of Matter, and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| |
Collapse
|
13
|
Bertoni R, Lorenc M, Tissot A, Boillot ML, Collet E. Femtosecond photoswitching dynamics and microsecond thermal conversion driven by laser heating in FeIII spin-crossover solids. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
14
|
Onda K, Yamochi H, Koshihara SY. Diverse photoinduced dynamics in an organic charge-transfer complex having strong electron-phonon interactions. Acc Chem Res 2014; 47:3494-503. [PMID: 25340327 DOI: 10.1021/ar500257b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
CONSPECTUS: Phenomena that occur in nonequilibrium states created by photoexcitation differ qualitatively from those that occur at thermal equilibrium, and various physical theories developed for thermal equilibrium states can hardly be applied to such phenomena. Recently it has been realized that understanding phenomena in nonequilibrium states in solids is important for photoenergy usage and ultrafast computing. Consequently, much effort has been devoted to revealing such phenomena by developing various ultrafast observation techniques and theories applicable to nonequilibrium states. This Account describes our recent studies of diverse photoinduced dynamics in a strongly correlated organic solid using various ultrafast techniques. Solids in which the electronic behavior is affected by Coulomb interactions between electrons are designated as strongly correlated materials and are known to exhibit unique physical properties even at thermal equilibrium. Among them, many organic charge-transfer (CT) complexes have low dimensionality and flexibility in addition to strong correlations; thus, their physical properties change sensitively in response to changes in pressure or electric field. Photoexcitation is also expected to drastically change their physical properties and would be useful for ultrafast photoswitching devices. However, in nonequilibrium states, the complicated dynamics due to these characteristics prevents us from understanding and using these materials for photonic devices. The CT complex (EDO-TTF)2PF6 (EDO-TTF = 4,5-ethylenedioxytetrathiafulvalene) exhibits unique photoinduced dynamics due to strong electron-electron and electron-phonon interactions. We have performed detailed studies of the dynamics of this complex using transient electronic spectroscopy at the 10 and 100 fs time scales. These studies include transient vibrational spectroscopy, which is sensitive to the charges and structures of constituent molecules, and transient electron diffraction, which provides direct information on the crystal structure. Photoexcitation of the charge-ordered low-temperature phase of (EDO-TTF)2PF6 creates a new photoinduced phase over 40 fs via the Franck-Condon state, in which electrons and vibrations are coherently and strongly coupled. This new photoinduced phase is assigned to an insulator-like state in which the charge order differs from that of the initial state. In the photoinduced phase, translations of component molecules proceed before the rearrangements of intramolecular conformations. Subsequently, the charge order and structure gradually approach those of the high-temperature phase over 100 ps. This unusual two-step photoinduced phase transition presumably originates from steric effects due to the bent EDO-TTF as well as strong electron-lattice interactions.
Collapse
Affiliation(s)
- Ken Onda
- Interactive
Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Yamochi
- Research
Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shin-ya Koshihara
- Department
of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
- CREST, Japan Science and Technology Agency (JST),
O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
15
|
|
16
|
Elsaesser T, Woerner M. Perspective: structural dynamics in condensed matter mapped by femtosecond x-ray diffraction. J Chem Phys 2014; 140:020901. [PMID: 24437858 DOI: 10.1063/1.4855115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
Ultrashort soft and hard x-ray pulses are sensitive probes of structural dynamics on the picometer length and femtosecond time scales of electronic and atomic motions. Recent progress in generating such pulses has initiated new directions of condensed matter research, exploiting a variety of x-ray absorption, scattering, and diffraction methods to probe photoinduced structural dynamics. Atomic motion, changes of local structure and long-range order, as well as correlated electron motion and charge transfer have been resolved in space and time, providing a most direct access to the physical mechanisms and interactions driving reversible and irreversible changes of structure. This perspective combines an overview of recent advances in femtosecond x-ray diffraction with a discussion on ongoing and future developments.
Collapse
Affiliation(s)
- T Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - M Woerner
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Miller RJD. Mapping atomic motions with ultrabright electrons: the chemists' gedanken experiment enters the lab frame. Annu Rev Phys Chem 2014; 65:583-604. [PMID: 24423377 DOI: 10.1146/annurev-physchem-040412-110117] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
This review documents the development of high-bunch charge electron pulses with sufficient combined spatiotemporal resolution and intensity to literally light up atomic motions. This development holds promise in coming to a first-principles understanding of diverse problems, ranging from molecular reaction dynamics and structure-function correlations in biology to cooperativity in strongly correlated electron-lattice systems. It is now possible to directly observe the key modes involved in propagating structural changes and the enormous reduction in dimensionality that occurs in barrier crossing regions, which is central to chemistry and makes reaction mechanisms transferrable concepts. This information will help direct theoretical advances that will undoubtedly lead to generalized principles with respect to scaling relations in structural dynamics that will bridge chemistry to biology. In this quest, the limitations and future directions for further development are discussed to give an overview of the present status of the field.
Collapse
Affiliation(s)
- R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany, and Departments of Chemistry and Physics, University of Toronto, Toronto, Ontario M5S 3H6, Canada;
| |
Collapse
|
19
|
Woerner M, Holtz M, Juvé V, Elsaesser T, Borgschulte A. Femtosecond X-ray diffraction maps field-driven charge dynamics in ionic crystals. Faraday Discuss 2014; 171:373-92. [DOI: 10.1039/c4fd00026a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
X-Ray diffraction provides insight into the distribution of electronic charge in crystals. Equilibrium electron distributions have been determined with high spatial resolution by recording and analysing a large number of diffraction peaks under stationary conditions. In contrast, transient electron densities during and after structure-changing processes are mainly unknown. Recently, we have introduced femtosecond X-ray powder diffraction from polycrystalline samples to determine transient electron density maps with a spatial resolution of 0.03 nm and a temporal resolution of 100 fs. In a pump–probe approach with a laser-driven tabletop hard X-ray source, optically induced structure changes are resolved in time by diffracting the hard X-ray probe pulses at different time delays from the excited powder sample and recording up to several tens of reflections simultaneously. Time-dependent changes of the atomic arrangement in the crystal lattice as well as modified electron densities are derived from the diffraction data. As a prototypical field-driven process, we address here quasi-instantaneous changes of electron density in LiBH4, LiH and NaBH4 in response to a non-resonant strong optical field. The light-induced charge relocation in LiBH4 and NaBH4 exhibits an electron transfer from the anion (BH−4) to the respective cation. The distorted geometry of the BH4 tetrahedron in LiBH4 leads to different contributions of the H atoms to electron transfer. LiH displays a charge transfer from Li to H, i.e., an increase of the ionicity of LiH in the presence of the strong electric field. This unexpected behavior originates from strong electron correlations in LiH as is evident from a comparison with quasi-particle bandstructures calculated within the Coulomb-hole-plus-screened-exchange (COHSEX) formalism.
Collapse
Affiliation(s)
- Michael Woerner
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
- 12489 Berlin, Germany
| | - Marcel Holtz
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
- 12489 Berlin, Germany
| | - Vincent Juvé
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
- 12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
- 12489 Berlin, Germany
| | - Andreas Borgschulte
- EMPA
- Swiss Federal Laboratories for Materials Testing and Research
- Laboratory for Hydrogen and Energy
- CH-8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Juvé V, Holtz M, Zamponi F, Woerner M, Elsaesser T, Borgschulte A. Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond x-ray diffraction. PHYSICAL REVIEW LETTERS 2013; 111:217401. [PMID: 24313524 DOI: 10.1103/physrevlett.111.217401] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/18/2013] [Indexed: 05/29/2023]
Abstract
We study the quasi-instantaneous change of electron density in the unit cells of LiH and NaBH4 in response to a nonresonant strong optical field. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The light-induced charge relocation in NaBH4 exhibits an electron transfer from the anion (BH(4)(-)) to the Na(+) cation. In contrast, LiH displays the opposite behavior, i.e., an increase of the ionicity of LiH in the presence of the strong electric field. This behavior originates from strong electron correlations in LiH, as is evident from a comparison with quasiparticle band structures calculated within the Coulomb-hole-plus-screened-exchange formalism.
Collapse
Affiliation(s)
- Vincent Juvé
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|