• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4630701)   Today's Articles (6238)   Subscriber (49776)
For: Schmitz F, Virnau P. The ensemble switch method for computing interfacial tensions. J Chem Phys 2015;142:144108. [DOI: 10.1063/1.4916317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
Number Cited by Other Article(s)
1
Sanchez-Burgos I, Espinosa JR. Direct Calculation of the Interfacial Free Energy between NaCl Crystal and Its Aqueous Solution at the Solubility Limit. PHYSICAL REVIEW LETTERS 2023;130:118001. [PMID: 37001068 DOI: 10.1103/physrevlett.130.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
2
Yeandel S, Freeman C, Harding J. A General Method for Calculating Solid/Liquid Interfacial Free Energies from Atomistic Simulations: Application to CaSO4.xH2O. J Chem Phys 2022;157:084117. [DOI: 10.1063/5.0095130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
3
Sanchez-Burgos I, Sanz E, Vega C, Espinosa JR. Fcc vs. hcp competition in colloidal hard-sphere nucleation: on their relative stability, interfacial free energy and nucleation rate. Phys Chem Chem Phys 2021;23:19611-19626. [PMID: 34524277 DOI: 10.1039/d1cp01784e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Richard D, Speck T. Classical nucleation theory for the crystallization kinetics in sheared liquids. Phys Rev E 2019;99:062801. [PMID: 31330660 DOI: 10.1103/physreve.99.062801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 06/10/2023]
5
Richard D, Speck T. Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension. J Chem Phys 2018;148:224102. [DOI: 10.1063/1.5025394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
6
Richard D, Speck T. Crystallization of hard spheres revisited. I. Extracting kinetics and free energy landscape from forward flux sampling. J Chem Phys 2018;148:124110. [PMID: 29604868 DOI: 10.1063/1.5016277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
7
Koß P, Statt A, Virnau P, Binder K. The phase coexistence method to obtain surface free energies and nucleation barriers: a brief review. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1463469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
8
Brumby PE, Wensink HH, Haslam AJ, Jackson G. Structure and Interfacial Tension of a Hard-Rod Fluid in Planar Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017;33:11754-11770. [PMID: 28885848 DOI: 10.1021/acs.langmuir.7b02254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
9
Koß P, Statt A, Virnau P, Binder K. Free-energy barriers for crystal nucleation from fluid phases. Phys Rev E 2017;96:042609. [PMID: 29347490 DOI: 10.1103/physreve.96.042609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 06/07/2023]
10
Chen Q, Kozuch D, Milner ST. “Plunger” Method for Simulating Crystal–Melt Interfacial Free Energies. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Qi X, Zhou Y, Fichthorn KA. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. J Chem Phys 2016;145:194108. [DOI: 10.1063/1.4967521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
12
Virnau P, Schmitz F, Binder K. The ensemble switch method and related approaches to obtain interfacial free energies between coexisting phases from simulations: a brief review. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1071810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA