1
|
Dutta A, Lazaridis T. Classical Models of Hydroxide for Proton Hopping Simulations. J Phys Chem B 2024; 128:12161-12170. [PMID: 39625299 DOI: 10.1021/acs.jpcb.4c05499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Hydronium (H3O+) and hydroxide (OH-) ions perform structural diffusion in water via sequential proton transfers ("Grotthuss hopping"). This phenomenon can be accounted for by interspersing stochastic proton transfer events in classical molecular dynamics simulations. The implementation of OH--mediated proton hopping is particularly challenging because classical force fields are known to produce overcoordinated solvation structures around the OH- ion. Here, we first explore the ability of two-particle point-charge models to reproduce both the solvation free energy and coordination number in TIP3P water. We find that this is possible only with unphysical changes in the nonbonded parameters which create problems in proton hopping simulations. We then construct a classical OH- model with the charge of oxygen distributed among three auxiliary particles. This model favors a lower coordination number by accepting three hydrogen bonds and weakly donating one. The model was implemented in the MOBHY module of the CHARMM program and was fit to reproduce the experimental aqueous diffusion coefficient of OH-. This parameterization gave reasonable electrophoretic mobilities and the expected accelerated transport under nanoconfinement.
Collapse
Affiliation(s)
- Ankita Dutta
- Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Program in Biochemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Themis Lazaridis
- Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Program in Biochemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Graduate Programs in Chemistry and Physics, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
2
|
Jin Y, Yang S, Sun M, Gao S, Cheng Y, Wu C, Xu Z, Guo Y, Xu W, Gao X, Wang S, Huang B, Wang Z. How liquids charge the superhydrophobic surfaces. Nat Commun 2024; 15:4762. [PMID: 38834547 DOI: 10.1038/s41467-024-49088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Liquid-solid contact electrification (CE) is essential to diverse applications. Exploiting its full implementation requires an in-depth understanding and fine-grained control of charge carriers (electrons and/or ions) during CE. Here, we decouple the electrons and ions during liquid-solid CE by designing binary superhydrophobic surfaces that eliminate liquid and ion residues on the surfaces and simultaneously enable us to regulate surface properties, namely work function, to control electron transfers. We find the existence of a linear relationship between the work function of superhydrophobic surfaces and the as-generated charges in liquids, implying that liquid-solid CE arises from electron transfer due to the work function difference between two contacting surfaces. We also rule out the possibility of ion transfer during CE occurring on superhydrophobic surfaces by proving the absence of ions on superhydrophobic surfaces after contact with ion-enriched acidic, alkaline, and salt liquids. Our findings stand in contrast to existing liquid-solid CE studies, and the new insights learned offer the potential to explore more applications.
Collapse
Affiliation(s)
- Yuankai Jin
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Siyan Yang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Shouwei Gao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Yaqi Cheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Zhenyu Xu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Yunting Guo
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Wanghuai Xu
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Xuefeng Gao
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, PR China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China.
- Research Centre for Nature-Inspired Science and Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China.
| |
Collapse
|
3
|
Yao Z, Lin R. Overcoming Low C 2+ Yield in Acidic CO 2 Electroreduction: Modulating Local Hydrophobicity for Enhanced Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306686. [PMID: 38072807 DOI: 10.1002/smll.202306686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Indexed: 05/03/2024]
Abstract
Operating electrochemical CO2 reduction reaction (CO2RR) in acidic media has garnered considerable attention due to its sustainable electrolyte cycling and stable performance. Nevertheless, the severe parasitic hydrogen evolution reaction (HER) and decayed multi-carbon species (C2+) yield still hampers efficient CO2RR in acid. Here, this work investigates the influence of local hydrophobicity on the acidic CO2RR. By employing direct electrodeposition, the hydrophobicity of the catalyst layer can be finely tuned over a wide range without additive. It is revealed that the hydrophobic microenvironment significantly suppressed HER, improved CO2RR performance and boosted C2+ yield. A Faradaic efficiency (FE) of ≈74% for C2+ is achieved in pH = 2 on electrodeposited copper with a highly hydrophobic environment. Moreover, this phenomenon can be extended to industrial application. An ≈81% total FE for the CO2RR, along with a ≈62% FE for C2+ species, is achieved even with commercial copper. Remarkably, the system exhibited stable operation for a continuous period exceeding 50 h at an industrially applied current density of 300 mA cm-2. This work highlights the crucial role of interface hydrophobicity in acidic CO2RR and proposes a facile and universally applicable method for achieving efficient and stable CO2RR to high-value products in acidic media.
Collapse
Affiliation(s)
- Zhe Yao
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| | - Rui Lin
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| |
Collapse
|
4
|
Litman Y, Chiang KY, Seki T, Nagata Y, Bonn M. Surface stratification determines the interfacial water structure of simple electrolyte solutions. Nat Chem 2024; 16:644-650. [PMID: 38225269 PMCID: PMC10997511 DOI: 10.1038/s41557-023-01416-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2023] [Indexed: 01/17/2024]
Abstract
The distribution of ions at the air/water interface plays a decisive role in many natural processes. Several studies have reported that larger ions tend to be surface-active, implying ions are located on top of the water surface, thereby inducing electric fields that determine the interfacial water structure. Here we challenge this view by combining surface-specific heterodyne-detected vibrational sum-frequency generation with neural network-assisted ab initio molecular dynamics simulations. Our results show that ions in typical electrolyte solutions are, in fact, located in a subsurface region, leading to a stratification of such interfaces into two distinctive water layers. The outermost surface is ion-depleted, and the subsurface layer is ion-enriched. This surface stratification is a key element in explaining the ion-induced water reorganization at the outermost air/water interface.
Collapse
Affiliation(s)
- Yair Litman
- Max Planck Institute for Polymer Research, Mainz, Germany.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | | - Takakazu Seki
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
5
|
Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and pyrrolic-N doped graphene quantum dots. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Li Y, Chen YX, Liu ZF. OH -···Au Hydrogen Bond and Its Effect on the Oxygen Reduction Reaction on Au(100) in Alkaline Media. J Phys Chem Lett 2022; 13:9035-9043. [PMID: 36150066 DOI: 10.1021/acs.jpclett.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using ab initio molecular dynamics simulations with fully solvated ions, we demonstrate that solvated OH- forms a stable hydrogen bond with Au(100). Unlike the hydrogen bond between H2O and Au reported previously, which is more favorable for negatively charged Au, the OH-···Au interaction is stabilized when a small positive charge is added to the metal slab. For electro-catalysis, this means that while OH2···Au plays a significant role in the hydrogen evolution reaction, OH-···Au could be a significant factor in the oxygen reduction reaction in alkaline media. It also points to a fundamental difference in the mechanism of oxygen reduction between gold and platinum electrodes.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China
| |
Collapse
|
7
|
Wang Y, Wang G, Bowron DT, Zhu F, Hannon AC, Zhou Y, Liu X, Shi G. Unveiling the structure of aqueous magnesium nitrate solutions by combining X-ray diffraction and theoretical calculations. Phys Chem Chem Phys 2022; 24:22939-22949. [PMID: 36125259 DOI: 10.1039/d2cp01828d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of aqueous magnesium nitrate solution is gaining significant interest among researchers, especially whether contact ion pairs exist in concentrated solutions. Here, combining X-ray diffraction experiments, quantum chemical calculations and ab initio molecular dynamics simulations, we report that the [Mg(NO3)2] molecular structure in solution from the coexistence of a free [Mg(H2O)6]2+ octahedral supramolecular structure with a free [NO3(H2O)n]- (n = 11-13) supramolecular structure to an [Mg2+(H2O)n(NO3-)m] (n = 3, 4, 5; m = 3, 2, 1) associated structure with increasing concentration. Interestingly, two hydration modes of NO3--the nearest neighbor hydration with a hydration distance less than 3.9 Å and the next nearest neighbor hydration with hydration distance ranging from 3.9 to 4.3 Å-were distinguished. With an increase in the solution concentration, the hydrated NO3- ions lost outer layer water molecules, and the hexagonal octahedral hydration structure of [Mg(H2O)62+] was destroyed, resulting in direct contact between Mg2+ and NO3- ions in a monodentate way. As the concentration of the solution further increased, NO3- ions replaced water molecules in the hydration layer of Mg2+ to form three-ion clusters and even more complex chains or linear ion clusters.
Collapse
Affiliation(s)
- Yunxia Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangguo Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel T Bowron
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Fayan Zhu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Alex C Hannon
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Guosheng Shi
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81008, China. .,Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
8
|
Zelovich T, Tuckerman ME. Controlling Hydronium Diffusivity in Model Proton Exchange Membranes. J Phys Chem Lett 2022; 13:2245-2253. [PMID: 35238561 DOI: 10.1021/acs.jpclett.1c04071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fuel-cell-based proton exchange membranes (PEMs) show great potential as cost-effective and clean energy conversion devices. In our recent work, we found that for the low-hydrated model PEMs with a inhomogeneous water distribution and a sulfonate anionic functional end group (SO3-), the H3O+ reacts with SO3- according to SO3- + H3O+ ↔ SO3H + H2O, indicating that the anions in PEMs become active participants in the hydronium diffusion. In this work, we use fully atomistic ab initio molecular dynamics simulations to elucidate the optimal conditions that would promote the participation of SO3- in the hydronium diffusion mechanism by increasing the H3O+/SO3- reactivity, thus increasing the hydronium diffusivity along the cell. The results presented in this work allow us to suggest a set of design rules for creating novel, highly conductive PEMs operating at high temperatures under a nonuniform water distribution using a linker/anion with a relatively high pKa such as (CH2)2SO3. We expect that the discovery of these key design principles will play an important role in the synthesis of high-performing materials for emerging PEM-based fuel cell technologies.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 North Zhongshan Rd, Shanghai 200062, China
| |
Collapse
|
9
|
Effects of hydronium and hydroxide ion/group on oxygen reduction reaction electrocatalytic activities of N-doped graphene quantum dots. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Lemke KH. Structure and solvation dynamics of the hydroxide ion in ice-like water clusters: a CCSD(T) and car-parrinello molecular dynamics study. Phys Chem Chem Phys 2021; 23:18990-18998. [PMID: 34612437 DOI: 10.1039/d1cp02524d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using MP2, CCSD(T) electronic structure theory and ab initio molecular dynamics simulations, we explore the structure, solvation dynamics and vibrational spectra of OH-(H2O)n clusters. Our study reports new cubic and fused cubic global minima structures of OH-(H2O)n for n = 8-26 with surface and interior solvation arrangements. In the case of OH-(H2O)26, we show that MP2 and CCSD(T) calculations predict global minima structures with the hydroxide ion occupying the interior region of a densely packed cubic cluster that is secured by ionic hydrogen bonds. More importantly, results from ab initio molecular dynamics simulations of OH-(H2O)26 demonstrate that the hydroxide ion remains in the cluster interior and hexa-coordinated, irrespective of the temperature, up to around 175 K, then incrementally transitions from a surface-exposed penta- (170-200 K), to a tetra- (225 K) to a tri-coordinated OH-(H2O)3 structure at 300 K. Building on our temperature-dependent vibrational power spectra, we are also able to disentangle structure and temperature effects on individual spectral contributions arising from water molecules located in the inner and outer shell of OH-(H2O)26. Some of these theoretical results provide valuable guidance for the interpretation of IRMPD spectra of small hydroxide-water clusters, but there are also several intriguing implications of these results, in particular, for the solvation of the OH- ion at the surface of water nanodroplets and aqueous interfaces.
Collapse
Affiliation(s)
- Kono H Lemke
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, SAR.
| |
Collapse
|
11
|
Paul TK, Taraphder S. Molecular modelling of two coordination states of Zn(II) ion at the active site of human carbonic anhydrase II. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Shi H, Gong LD, Liu C, Lu LN, Yang ZZ. ABEEM/MM OH - Models for OH -(H 2O) n Clusters and Aqueous OH -: Structures, Charge Distributions, and Binding Energies. J Phys Chem A 2020; 124:5963-5978. [PMID: 32520555 DOI: 10.1021/acs.jpca.0c03941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), two fluctuating charge models of OH--water system were proposed. The difference between these two models is whether there is charge transfer between OH- and its first-shell water molecules. The structures, charge distributions, charge transfer, and binding energies of the OH-(H2O)n (n = 1-8, 10, 15, 23) clusters were studied by these two ABEEM/MM models, the OPLS/AA force field, the OPLS-SMOOTH/AA force field, and the QM methods. The results demonstrate that two ABEEM/MM models can search out all stable structures just as the QM methods, and the structures and charge distributions agree well with those from the QM calculations. The structures, the charge transfer, and the strength of hydrogen bonds in the first hydration shell are closely related to the coordination number of OH-. Molecular dynamics simulations on the aqueous OH- solution are performed at 298 and 278 K using ABEEM/MM-I model. The MD results show that the populations of three-, four-, and five-coordinated OH- are 29.6%, 67.1%, and 3.4% at 298 K, respectively, and those of two-, three-, four-, and five-coordinated OH- are 10.8%, 44.9%, 39.2%, and 4.9% at 278 K, respectively; the average hydrogen bond lengths and the hydrogen bond angle in the first shell increase with the temperature decreasing.
Collapse
Affiliation(s)
- Hua Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.,School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| |
Collapse
|
13
|
Yang X, Peng C, Li L, Bo M, Sun Y, Huang Y, Sun CQ. Multifield-resolved phonon spectrometrics: structured crystals and liquids. PROG SOLID STATE CH 2019. [DOI: 10.1016/j.progsolidstchem.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Calvo F. Conformational diversity in deprotonated water clusters and anharmonic infrared spectra. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2018.1513653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- F. Calvo
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| |
Collapse
|
15
|
Sun CQ. Unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys Chem Chem Phys 2019; 21:2234-2250. [PMID: 30656293 DOI: 10.1039/c8cp06910g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Charge injection in terms of lone pairs ':', protons, and ions upon acid and base solvation mediates the hydrogen bonding network and properties of Lewis solutions, and is ubiquitously important in many subject areas of Chemical Physics. This work features the recent progress and future trends in this aspect with a focus on the solute-solvent interactions and hydrogen bond (O:H-O or HB) transition from the vibration mode of ordinary water to the hydrating states. A combination of the O:H-O bond cooperativity notion, differential phonon spectrometrics, calorimetric detection, and quantum computations clarified the solute capabilities of O:H-O bond transition in HX and YOH (X = Cl, Br, I and Y = Li, Na, K) solutions. The H+ and the lone pair do not stay alone to move or shuttle freely between adjacent H2O molecules, but they are attached to a H2O molecule to form (H3O+ and OH-)·4H2O tetrahedral motifs, which transits an O:H-O bond into the H↔H anti-HB point breaker in acidic solutions and into the O:⇔:O super-HB compressor and polarizer in basic solutions, respectively. H↔H disrupts the solvent network and surface stress, having the same effect of liquid heating on HB bond relaxation and thermal fluctuation on surface stress. The O:⇔:O compression lengthens and weakens the solute H-O bond, which heats up the solution during solvation. The H-O bonds due to H3O+ contract by 3% and due to OH- shrink by 10%. The Y+ and X- ions perform in the same manner as they do in salt solutions to form hydration shells through electrostatic polarization and hydrating H2O dipolar screen shielding. Focusing more on the O:H-O bond transition would be even more promising and revealing than on the manner and mobility of lone pair and proton transportation.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
16
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Hellström M, Ceriotti M, Behler J. Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations. J Phys Chem B 2018; 122:10158-10171. [DOI: 10.1021/acs.jpcb.8b06433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Matti Hellström
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, 37077 Göttingen, Germany
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Egan CK, Paesani F. Assessing Many-Body Effects of Water Self-Ions. I: OH–(H2O)n Clusters. J Chem Theory Comput 2018. [DOI: 10.1021/acs.jctc.7b01273] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Colin K. Egan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
|
20
|
Ayala R, Martínez JM, R Pappalardo R, Refson K, Sánchez Marcos E. Effect of Basicity on the Hydrolysis of the Bi(III) Aqua Ion in Solution: An Ab Initio Molecular Dynamics Study. J Phys Chem A 2018; 122:1905-1915. [PMID: 29376356 DOI: 10.1021/acs.jpca.7b12402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrolysis of the Bi(III) aqua ion under a range of solution conditions has been studied by means of ab initio molecular dynamics simulations. While the Bi(III) aqua ion is stable in pure water, there is an increasing degree of hydrolysis with the number of hydroxide anions in the medium. This is accompanied by a monotonic decrease of the total coordination number to an asymptotic value of ∼6, reached under extreme basicity conditions. Comparison of the simulated Bi(III) hydrolyzed species with the experimental species distribution at different degrees of basicity suggests that, at the PBE/DFT level of theory here employed, liquid water shows an overly acidic character. Predictions of theoretical EXAFS and XANES spectra were generated from the AIMD trajectories for different Bi hydrolyzed species, [Bi(HO)m(H2O)n]3-m+, m = 0-3 and n = 7-2. Comparison with available experimental spectra is presented. Spectral features joined to the degree of hydrolysis and hydration are analyzed.
Collapse
Affiliation(s)
- Regla Ayala
- Departamento Química Inorgánica, Universidad de Sevilla , 41012 Seville, Spain
| | | | | | - Keith Refson
- Royal Holloway University of London , Egham Hill, Egham, Surrey TW20 0EX, United Kingdom.,ISIS Facility, Science and Technology Facility Council , Harwell Science Campus, Didcot, OX11 0QX, United Kingdom
| | | |
Collapse
|
21
|
Yang J, Kong X, Jiang L. On the solvation of hydronium by carbon dioxide: Structural and infrared spectroscopic study of (H3O+)(CO2). Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S, Thämer M, Hassanali A. Protons and Hydroxide Ions in Aqueous Systems. Chem Rev 2016; 116:7642-72. [PMID: 27314430 DOI: 10.1021/acs.chemrev.5b00736] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.
Collapse
Affiliation(s)
- Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Huib J Bakker
- FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - R Kramer Campen
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - Richard H Henchman
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter Pohl
- Johannes Kepler University Linz , Institute of Biophysics, Gruberstrasse 40, 4020 Linz, Austria
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Material Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015, Lausanne, Switzerland
| | - Martin Thämer
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Ali Hassanali
- CMSP Section, The Abdus Salaam International Center for Theoretical Physics , I-34151 Trieste, Italy
| |
Collapse
|