1
|
Kazempour H, Teymouri F, Khatami M, Hosseini SN. Computational modelling of the therapeutic outputs of photodynamic therapy on spheroid-on-chip models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112960. [PMID: 38991293 DOI: 10.1016/j.jphotobiol.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Photodynamic therapy (PDT) is a medical radio chemotherapeutic method that uses light, photosensitizing agents, and oxygen to produce cytotoxic compounds, which eliminate malignant cells. Recently, Microfluidic systems have been used to analyse photosensitizers (PSs) due to their potential to replicate in vivo environments. While prior studies have established a strong correlation between reacted singlet oxygen concentration and PDT-induced cellular death, the effects that the ambient fluid flow might have on the concentration of oxygen and PS have been disregarded in many, which limits the reliability of the results. Herein, we coupled the transport of oxygen and PS throughout the ambient medium and within the spheroidal multicellular aggregate to initially study the profiles of oxygen and PS concentration alongside PDT-induced cellular death throughout the spheroid before and after radiation. The attained results indicate that the PDT-induced cellular death initiates on the surface of the spheroids and subsequently spreads to the neighbouring regions, which is in great accordance with experimental results. Afterward, the effects that drug-light interval (DLI), fluence rate, PS composition, microchannel height, and inlet flow rate have on the therapeutic outcomes are studied. The findings show that adequate DLI is critical to ensure uniform distribution of PS throughout the medium, and a value of 5 h was found to be sufficient. The composition of PS is critical, as ALA-PpIX induces earlier cell death but accelerates oxygen consumption, especially in the outer layers, depriving the inner layers of oxygen necessary for PDT, which in turn disrupts and prolongs the exposure time compared to mTHPC and Photofrin. Despite the fluence rate directly influencing the singlet oxygen generation rate, increasing the fluence rate by 189 mW/cm2 would not significantly benefit us. Microwell height and inlet flow rate involve competing phenomena-increasing height or decreasing flow reduces oxygen supply and increases PS "washout" and its concentration.
Collapse
Affiliation(s)
- Hossein Kazempour
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Teymouri
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Maryam Khatami
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
2
|
Flont M, Jastrzębska E, Brzózka Z. A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. Analyst 2021; 145:6937-6947. [PMID: 32851999 DOI: 10.1039/d0an00911c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cellular models of cancer tissue are necessary tools to analyze new anticancer drugs under in vitro conditions. Diagnostics and treatment of ovarian cancer are major challenges for current medicine. In our report we propose a new three-dimensional (3D) cellular model of ovarian cancer which can mimic a fragment of heterogeneous cancer tissue. We used Lab-on-a-chip technology to create a microfluidic system that allows cellular multilayer to be cultured. Cellular multilayer mimics the structure of two important elements of cancer tissue: flesh and stroma. For this reason, it has an advantage over other in vitro cellular models. We used human ovarian fibroblasts (HOF) and human ovarian cancer cells in our research (A2780). In the first stage of the study, we proved that the presence of non-malignant fibroblasts in co-culture with ovarian cancer cells stimulates the proliferation of cancer cells, which is important in the progression of ovarian cancer. In the next stage of the research, we tested the usefulness of the newly-developed cellular model in the analysis of anticancer drugs and therapies under in vitro conditions. We tested two photosensitizers (PS): free and nanoencapsulated meso-tetrafenylporphyrin, and we evaluated the potential of these drugs in anticancer photodynamic therapy (PDT) of ovarian cancer. We also studied the mechanism of PDT based on the analysis of the level of reactive oxygen species (ROS) in cell cultures. Our research confirmed that the use of new-generation PS can significantly increase the efficacy of PDT in the treatment of ovarian cancer. We also proved that the newly-developed 3D cellular model is suitable for rapid screening of anticancer drugs and has the potential to be used clinically in the future, e.g. in the selection of treatment methods for anticancer personalized medicine.
Collapse
Affiliation(s)
- Magdalena Flont
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | | | | |
Collapse
|
3
|
Kurutos A, Nikodinovic-Runic J, Veselinovic A, Veselinović JB, Kamounah FS, Ilic-Tomic T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01659h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present our work on the synthesis, investigation of the photophysical properties, interactions with nucleic acids, molecular docking, and imaging application of three carbocyanine dyes.
Collapse
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | | | - Jovana B. Veselinović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Fadhil S. Kamounah
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
4
|
AKÇAN R, AYDOGAN HC, YILDIRIM MŞ, TAŞTEKİN B, SAĞLAM N. Nanotoxicity: a challenge for future medicine. Turk J Med Sci 2020; 50:1180-1196. [PMID: 32283898 PMCID: PMC7379444 DOI: 10.3906/sag-1912-209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background/aim Due to nanomaterials’ potential benefits for diagnosis and treatment, they are widely used in medical applications and personal care products. Interaction of nanomaterials, which are very small in size, with tissue, cell and microenvironment, can reveal harmful effects that cannot be created with chemically identical and larger counterparts in biological organisms. In this review, a challenge for future medicine, nanotoxicity of nanomaterials is discussed. Materials and methods A detailed review of related literature was performed and evaluated as per medical applications of nanomaterials their toxicity. Results and conclusion Most authors state “the only valid technology will be nanotechnology in the next era”; however, there is no consensus on the impact of this technology on humankind, environment and ecological balance. Studies dealing with the toxic effect of nanomaterials on human health have also varied with developing technology. Nanotoxicology studies such as in vivo-like on 3D human organs, cells, advanced genetic studies, and -omic approaches begin to replace conventional methods. Nanotoxicity and adverse effects of nanomaterials in exposed producers, industry workers, and patients make nanomaterials a double-edged sword for future medicine. In order to control and tackle related risks, regulation and legislations should be implemented, and researchers have to conduct joint multidisciplinary studies in various fields of medical sciences, nanotechnology, nanomedicine, and biomedical engineering.
Collapse
Affiliation(s)
- Ramazan AKÇAN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Halit Canberk AYDOGAN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Mahmut Şerif YILDIRIM
- Department of Forensic Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, AfyonkarahisarTurkey
| | - Burak TAŞTEKİN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Necdet SAĞLAM
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, AnkaraTurkey
| |
Collapse
|
5
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Yu F, Goh YT, Li H, Chakrapani NB, Ni M, Xu GL, Hsieh TM, Toh YC, Cheung C, Iliescu C, Yu H. A vascular-liver chip for sensitive detection of nutraceutical metabolites from human pluripotent stem cell derivatives. BIOMICROFLUIDICS 2020; 14:034108. [PMID: 32509050 PMCID: PMC7255812 DOI: 10.1063/5.0004286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
Human pluripotent stem cell (hPSC) is a great resource for generating cell derivatives for drug efficiency testing. Metabolites of nutraceuticals can exert anti-inflammatory effects on blood vessels. However, the concentration of nutraceutical metabolites produced in hPSC-derived hepatocytes (hPSC-HEPs) is usually low. To enable the detection of these metabolites under the in vitro environment, we have developed a co-culture model consisting of parallel co-culture chambers and a recirculating microfluidic system with minimum fluid volume, optimal cell culture environment. The model allows cells to be exposed continuously to nutraceutical metabolites. In this perfused culturing model, hPSC-derived endothelial cells and hPSC-HEPs are co-cultured without physical contact. When an anti-inflammatory nutraceutical, quercetin, was administrated to the co-culture, higher levels of quercetin metabolites were detected on-chip compared with static control. We further induced inflammation with Interleukin-1β in the co-culture model and measured interleukin 8 (IL-8) generation. The IL-8 level was suppressed more significantly by quercetin metabolites in the perfusion co-culture, as compared to static culture. This is due to enhanced metabolites production on-chip. This microfluidic co-culture model enables in vitro screening of nutraceuticals using hPSC-derived cells.
Collapse
Affiliation(s)
| | | | - Huan Li
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669
| | | | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100105, Ecuador
| | | | | | | | | | | | | |
Collapse
|
7
|
Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Anal Chim Acta 2019; 1100:138-148. [PMID: 31987134 DOI: 10.1016/j.aca.2019.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer belongs to the group of gynecological cancers and indicates the high resistance to many drugs used in standard anticancer therapy. The treatment of ovarian cancer is a big challenge for the present medicine. In our report we tested the effectiveness of the combination anticancer therapy against ovarian cells: human ovarian carcinoma (A2780) and human ovarian fibroblasts (HOF). Two different types of drugs were used: doxorubicin (DOX) and a new-generation photosensitizer, nanoencapsulated meso-tetraphenylporphyrin (nano-TPP). The aim of the research was to compare the effect of the sequential combination therapy (chemotherapy with DOX and photodynamic therapy with nano-TPP) carried out in static and dynamic conditions. To achieve dynamic culture conditions, similar to in vivo environment, we designed a new microfluidic system in which the simultaneous, independent cultures of two cell lines (non-malignant and cancer cells) and their one-step analysis were possible. We observed that the sequential combination of photodynamic therapy (PDT) with chemotherapy allowed to obtain the synergistic effect of the treatment with using low doses of drugs. We also confirmed that the use of microfluidic conditions significantly increased the effectiveness of combination therapy and allowed for maintaining a high selectivity of the action of drugs on cancer cells. To the best of our knowledge, for the first time the microfluidic system was used to carry out sequential combination therapy against ovarian cancer.
Collapse
|
8
|
He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. NANOTECHNOLOGY 2018; 29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines are engineered nanoscale structures that have an extensive range of application in the diagnosis and therapy of many diseases. Despite the rapid progress in and tremendous potential of nanomedicines, their clinical translational process is still slow, owing to the difficulty in understanding, evaluating, and predicting their behavior in complex living organisms. Microfluidic techniques offer a promising way to resolve these challenges. Carefully designed microfluidic chips enable in vivo microenvironment simulation and high-throughput analysis, thus providing robust platforms for nanomedicine evaluation. Here, we summarize the recent developments and achievements in microfluidic methods for nanomedicine evaluation, categorized into four sections based on their target systems: single cell, multicellular system, organ, and organism levels. Finally, we provide our perspectives on the challenges and future directions of microfluidics-based nanomedicine evaluation.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | | | | |
Collapse
|
9
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
10
|
Szczepanowicz K, Kruk T, Świątek W, Bouzga AM, Simon CR, Warszyński P. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption. Colloids Surf B Biointerfaces 2018; 166:295-302. [PMID: 29604572 DOI: 10.1016/j.colsurfb.2018.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG.
Collapse
Affiliation(s)
- Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Wiktoria Świątek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Aud M Bouzga
- SINTEF Material and Chemistry, Forskningsveien 1, N-0314 Oslo, Norway
| | - Christian R Simon
- SINTEF Material and Chemistry, Forskningsveien 1, N-0314 Oslo, Norway
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| |
Collapse
|
11
|
Chudy M, Tokarska K, Jastrzębska E, Bułka M, Drozdek S, Lamch Ł, Wilk KA, Brzózka Z. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron 2017; 101:37-51. [PMID: 29035761 DOI: 10.1016/j.bios.2017.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
In recent years photodynamic therapy (PDT) has received widespread attention in cancer treatment due to its smaller surgical trauma, better selectivity towards tumor cells, reduced side effects and possibility of repeatable treatment. Since cancer is the second cause of death worldwide, scientists constantly seek for new potential therapeutic agents including nanotechnology-based photosensitizers used in PDT. The new-designed nanostructures must be carefully studied and well characterized what require analytically useful and powerful tools that enable real progress in nanoscience development. This review describes the current status of PDT investigations using microfluidic Lab-on-a-Chip systems, including recent developments of nanoparticle-based PDT agents, their combinations with different drugs, designs and examples of in vitro applications. This review mainly lays emphasis on biological evaluation of FDA approved photosensitizing agents as well as newly designed nanophotosensitizers. It also highlights the analytical performances of various microfluidic Lab-on-a-chip systems for PDT efficacy analysis on 3D culture and discusses microsystems designs in detail.
Collapse
Affiliation(s)
- Michał Chudy
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sławomir Drozdek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
12
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
13
|
Szczepanowicz K, Para G, Wilk KA, Warszyński P. Co-adsorption of polyanions and esterquat surfactants; effect on formation and stability of micellar core nanocapsules. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Bazylińska U, Pietkiewicz J, Rossowska J, Chodaczek G, Gamian A, Wilk KA. Polyelectrolyte Oil-Core Nanocarriers for Localized and Sustained Delivery of Daunorubicin to Colon Carcinoma MC38 Cells: The Case of Polysaccharide Multilayer Film in Relation to PEG-ylated Shell. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology; Faculty of Chemistry; Wroclaw University of Science and Technology; Wybrzeze Wyspianskiego 27 50-370 Wroclaw Poland
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry; Medical University of Wroclaw; Chalubinskiego 10 50-368 Wroclaw Poland
| | - Joanna Rossowska
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences; Rudolfa Weigla 12 53-114 Wroclaw Poland
| | - Grzegorz Chodaczek
- Wroclaw Research Centre EIT+; Confocal Microscopy Laboratory; Stablowicka 147 54-066 Wroclaw Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry; Medical University of Wroclaw; Chalubinskiego 10 50-368 Wroclaw Poland
| | - Kazimiera A. Wilk
- Department of Organic and Pharmaceutical Technology; Faculty of Chemistry; Wroclaw University of Science and Technology; Wybrzeze Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
15
|
Pucek A, Lewińska A, Wilk KA. Co-encapsulating solid lipid nanoparticles for multifunctional therapeutics: Preparation and characterization. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0409-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Choi JH, Lee J, Shin W, Choi JW, Kim HJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. NANO CONVERGENCE 2016; 3:24. [PMID: 28191434 PMCID: PMC5271165 DOI: 10.1186/s40580-016-0084-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 05/17/2023]
Abstract
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jaewon Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107 Republic of Korea
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea
| |
Collapse
|
18
|
Jastrzębska E, Bazylińska U, Bułka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzózka Z. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. BIOMICROFLUIDICS 2016; 10:014116. [PMID: 26909122 PMCID: PMC4752532 DOI: 10.1063/1.4941681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/27/2016] [Indexed: 05/12/2023]
Abstract
The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of tested nanocapsules can result from the type of last PE layer and their different surface charge.
Collapse
Affiliation(s)
- Elżbieta Jastrzębska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Bułka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Chudy
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Artur Dybko
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera Anna Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|