1
|
Lee Y, Lee T. Machine-Learning-Accelerated Surface Exploration of Reconstructed BiVO 4(010) and Characterization of Their Aqueous Interfaces. J Am Chem Soc 2025. [PMID: 39969494 DOI: 10.1021/jacs.4c17739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Understanding the semiconductor-electrolyte interface in photoelectrochemical (PEC) systems is crucial for optimizing the stability and reactivity. Despite the challenges in establishing reliable surface structure models during PEC cycles, this study explores the complex surface reconstructions of BiVO4(010) by employing a computational workflow integrated with a state-of-the-art active learning protocol for a machine-learning interatomic potential and global optimization techniques. Within this workflow, we identified 494 unique reconstructed surface structures that surpass conventional chemical intuition-driven, bulk-truncated models. After constructing the surface Pourbaix diagram under Bi- and V-rich electrolyte conditions using density functional theory and hybrid functional calculations, we proposed structural models for the experimentally observed Bi-rich BiVO4 surfaces. By performing hybrid functional molecular dynamics simulations with the explicit treatment of water molecules on selected reconstructed BiVO4(010) surfaces, we observed water dissociation from molecular water. Our findings demonstrate significant water dissociation on reconstructed Bi-rich surfaces, highlighting the critical role of bare and undercoordinated Bi sites (only observable in reconstructed surfaces) in driving hydration processes. Our work establishes a foundation for understanding the role of complex, reconstructed Bi surfaces in surface hydration and reactivity. Additionally, our theoretical framework for exploring surface structures and predicting reactivity in multicomponent oxides offers a precise approach to describing complex surface and interface processes in PEC systems.
Collapse
Affiliation(s)
- Yonghyuk Lee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Taehun Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
2
|
Kaur H, Della Pia F, Batatia I, Advincula XR, Shi BX, Lan J, Csányi G, Michaelides A, Kapil V. Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. Faraday Discuss 2025; 256:120-138. [PMID: 39329168 PMCID: PMC11428088 DOI: 10.1039/d4fd00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy - even with the aid of machine learning potentials - is a challenge that requires sub-kJ mol-1 accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ mol-1 accuracy in the sublimation enthalpies and sub-1% error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary NPT simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results show promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.
Collapse
Affiliation(s)
- Harveen Kaur
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Flaviano Della Pia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Ilyes Batatia
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Xavier R Advincula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Benjamin X Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jinggang Lan
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
| | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Physics and Astronomy, University College, London WC1E 6BT, UK
- Thomas Young Centre and London Centre for Nanotechnology, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Chong S, Bigi F, Grasselli F, Loche P, Kellner M, Ceriotti M. Prediction rigidities for data-driven chemistry. Faraday Discuss 2025; 256:322-344. [PMID: 39319702 PMCID: PMC11423580 DOI: 10.1039/d4fd00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
The widespread application of machine learning (ML) to the chemical sciences is making it very important to understand how the ML models learn to correlate chemical structures with their properties, and what can be done to improve the training efficiency whilst guaranteeing interpretability and transferability. In this work, we demonstrate the wide utility of prediction rigidities, a family of metrics derived from the loss function, in understanding the robustness of ML model predictions. We show that the prediction rigidities allow the assessment of the model not only at the global level, but also on the local or the component-wise level at which the intermediate (e.g. atomic, body-ordered, or range-separated) predictions are made. We leverage these metrics to understand the learning behavior of different ML models, and to guide efficient dataset construction for model training. We finally implement the formalism for a ML model targeting a coarse-grained system to demonstrate the applicability of the prediction rigidities to an even broader class of atomistic modeling problems.
Collapse
Affiliation(s)
- Sanggyu Chong
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Filippo Bigi
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Federico Grasselli
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Philip Loche
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Matthias Kellner
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Charpentier T. First-principles NMR of oxide glasses boosted by machine learning. Faraday Discuss 2025; 255:370-390. [PMID: 39283591 DOI: 10.1039/d4fd00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Solid-state NMR has established itself as a cutting-edge spectroscopy for elucidating the structure of oxide glasses thanks to several decades of methodological and instrumental progress. First-principles calculations of NMR properties combined with molecular-dynamics (MD) simulations provides a powerful complementary approach for the interpretation of NMR data, although they still suffer from limitations in terms of size, time and high consumption of computational resources. We address this challenge by developing a machine-learning framework to boost predictive modelling of NMR spectra. We use kernel ridge regression techniques (least-squares support vector regression and linear ridge regression) combined with smooth overlap of atomic position (SOAP) atom-centered descriptors to efficiently predict NMR interactions: the isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in this work, this approach enables the simulation of magic-angle spinning (MAS) and multiple-quantum magic-angle spinning (MQMAS) NMR spectra of very large models (more than 10 000 atoms) and an efficient averaging of NMR properties over MD trajectories of nanoseconds for incorporating finite-temperature effects, at the computational cost of classical MD simulations. We illustrate these advances for sodium silicate glasses (SiO2-Na2O). NMR parameters (isotropic chemical shift and electric field gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of the NMR parameter values. To include vibrational effects, an approach is proposed of scaling the EFG tensor in NMR simulations with a factor obtained from the time auto-correlation functions computed on MD trajectories.
Collapse
|
5
|
Maennel H, Unke OT, Müller KR. Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties. J Phys Chem Lett 2024; 15:12513-12519. [PMID: 39670428 DOI: 10.1021/acs.jpclett.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
When physical properties of molecules are being modeled with machine learning, it is desirable to incorporate SO(3)-covariance. While such models based on low body order features are not complete, we formulate and prove general completeness properties for higher order methods and show that 6k - 5 of these features are enough for up to k atoms. We also find that the Clebsch-Gordan operations commonly used in these methods can be replaced by matrix multiplications without sacrificing completeness, lowering the scaling from O(l6) to O(l3) in the degree of the features. We apply this to quantum chemistry, but the proposed methods are generally applicable for problems involving three-dimensional point configurations.
Collapse
Affiliation(s)
- Hartmut Maennel
- Google DeepMind Zürich, Brandschenkestraße 110, 8002 Zürich, Switzerland
| | - Oliver T Unke
- Google DeepMind Berlin, Tucholskystraße 2, 10117 Berlin, Germany
| | - Klaus-Robert Müller
- Google DeepMind, https://deepmind.google/
- TU Berlin, Machine Learning Group, Marchstraße 23, 10587 Berlin, Germany
- Berlin Institute for the Foundation of Learning and Data, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
- Max Planck Institute for Informatics Saarbrücken, Saarland Informatics Campus, Building E1 4, 66123 Sarbrücken, Germany
- Department of Artificial Intelligence, Korea University, Seoul 136-713, Korea
| |
Collapse
|
6
|
Hong S, Pireddu G, Fan W, Semino R, Auerbach SM. Data science shows that entropy correlates with accelerated zeolite crystallization in Monte Carlo simulations. J Chem Phys 2024; 161:234708. [PMID: 39692496 DOI: 10.1063/5.0238061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
We have performed a data science study of Monte Carlo (MC) simulation trajectories to understand factors that can accelerate the formation of zeolite nanoporous crystals, a process that can take days or even weeks. In previous work, MC simulations predicted and experiments confirmed that using a secondary organic structure-directing agent (OSDA) accelerates the crystallization of all-silica LTA zeolite, with experiments finding a three-fold speedup [Bores et al., Phys. Chem. Chem. Phys. 24, 142-148 (2022)]. However, it remains unclear what physical factors cause the speed-up. Here, we apply data science to analyze the simulation trajectories to discover what drives accelerated zeolite crystallization in MC simulations going from a one-OSDA synthesis (1OSDA) to a two-OSDA version (2OSDA). We encoded simulation snapshots using the smooth overlap of atomic positions approach, which represents all two- and three-body correlations within a given cutoff distance. Principal component analyses failed to discriminate datasets of structures from 1OSDA and 2OSDA simulations, while the Support Vector Machine (SVM) approach succeeded at classifying such structures with an area-under-curve (AUC) score of 0.99 (where AUC = 1 is a perfect classification) with all three-body correlations and as high as 0.94 with only two-body correlations. SVM decision functions reveal relatively broad/narrow histograms for 1OSDA/2OSDA datasets, suggesting that the two simulations differ strongly in information heterogeneity. Informed by these results, we performed pair (2-body) entropy calculations during crystallization, resulting in entropy differences that semi-quantitatively account for the speedup observed in the previous MC simulations. We conclude that altering synthesis conditions in ways that substantially change the entropy of labile silica networks may accelerate zeolite crystallization, and we discuss possible approaches for achieving such acceleration.
Collapse
Affiliation(s)
- Seungbo Hong
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Wei Fan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Rocio Semino
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Scott M Auerbach
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
7
|
Prat A, Abdel Aty H, Bastas O, Kamuntavičius G, Paquet T, Norvaišas P, Gasparotto P, Tal R. HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery. J Chem Inf Model 2024; 64:5817-5831. [PMID: 39037942 DOI: 10.1021/acs.jcim.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We propose HydraScreen, a deep-learning framework for safe and robust accelerated drug discovery. HydraScreen utilizes a state-of-the-art 3D convolutional neural network designed for the effective representation of molecular structures and interactions in protein-ligand binding. We designed an end-to-end pipeline for high-throughput screening and lead optimization, targeting applications in structure-based drug design. We assessed our approach using established public benchmarks based on the CASF-2016 core set, achieving top-tier results in affinity and pose prediction (Pearson's r = 0.86, RMSE = 1.15, Top-1 = 0.95). We introduced a novel approach for interaction profiling, aimed at detecting potential biases within both the model and data sets. This approach not only enhanced interpretability but also reinforced the impartiality of our methodology. Finally, we demonstrated HydraScreen's ability to generalize effectively across novel proteins and ligands through a temporal split. We also provide insights into potential avenues for future development aimed at enhancing the robustness of machine learning scoring functions. HydraScreen (accessible at http://hydrascreen.ro5.ai/paper) provides a user-friendly GUI and a public API, facilitating the easy-access assessment of protein-ligand complexes.
Collapse
Affiliation(s)
- Alvaro Prat
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | - Hisham Abdel Aty
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | - Orestis Bastas
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | | | - Tanya Paquet
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | - Povilas Norvaišas
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | - Piero Gasparotto
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| | - Roy Tal
- AI Chemistry, Ro5 2801 Gateway Drive, Irving, 75063 Texas, United States
| |
Collapse
|
8
|
Bigi F, Pozdnyakov SN, Ceriotti M. Wigner kernels: Body-ordered equivariant machine learning without a basis. J Chem Phys 2024; 161:044116. [PMID: 39056390 DOI: 10.1063/5.0208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Machine-learning models based on a point-cloud representation of a physical object are ubiquitous in scientific applications and particularly well-suited to the atomic-scale description of molecules and materials. Among the many different approaches that have been pursued, the description of local atomic environments in terms of their discretized neighbor densities has been used widely and very successfully. We propose a novel density-based method, which involves computing "Wigner kernels." These are fully equivariant and body-ordered kernels that can be computed iteratively at a cost that is independent of the basis used to discretize the density and grows only linearly with the maximum body-order considered. Wigner kernels represent the infinite-width limit of feature-space models, whose dimensionality and computational cost instead scale exponentially with the increasing order of correlations. We present several examples of the accuracy of models based on Wigner kernels in chemical applications, for both scalar and tensorial targets, reaching an accuracy that is competitive with state-of-the-art deep-learning architectures. We discuss the broader relevance of these findings to equivariant geometric machine-learning.
Collapse
Affiliation(s)
- Filippo Bigi
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sergey N Pozdnyakov
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Du H, Hui J, Zhang L, Wang H. Rational Design of Deep Learning Networks Based on a Fusion Strategy for Improved Material Property Predictions. J Chem Theory Comput 2024. [PMID: 39020520 DOI: 10.1021/acs.jctc.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The success of machine learning in predicting material properties is largely dependent on the design of the model. However, the current designs of deep learning models in materials science have the following prominent problems. First, the model design lacks a rational guidance strategy and heavily relies on a large amount of trial and error. Second, numerous deep learning models are utilized across various fields, each with its own advantages and disadvantages. Therefore, it is important to incorporate a fusion strategy to fully leverage them and further expand the design strategies of the models. To address these problems, we analyze that the main reason is the lack of a new feedback method rich in physical insights. In this study, we developed a feedback method called the Chemical Environment Clustering Vector (CECV) of compounds at different thresholds, which is rich in physical insights. Based on CECV, we rationally designed the Long Short-Term Memory and Gated Recurrent Unit fused with Deep Convolutional Neural Network (L-G-DCNN) to explore the field of structure-agnostic material property predictions. L-G-DCNN accurately captures the interactions between elements in compounds, enabling more accurate and efficient predictions of the material properties. Our results demonstrate that the performance of the L-G-DCNN surpasses the current state-of-the-art structure-agnostic models across 28 benchmark data sets, exhibiting superior sample efficiency and faster convergence speed. By employing different visualization methods, we demonstrate that the fusion strategy based on CECV significantly enhances the comprehension of the L-G-DCNN model design and provides a fresh perspective for researchers in the field of materials informatics.
Collapse
Affiliation(s)
- Hongwei Du
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Hui
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lanting Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Cignoni E, Suman D, Nigam J, Cupellini L, Mennucci B, Ceriotti M. Electronic Excited States from Physically Constrained Machine Learning. ACS CENTRAL SCIENCE 2024; 10:637-648. [PMID: 38559300 PMCID: PMC10979507 DOI: 10.1021/acscentsci.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56126 Pisa, Italy
| | - Divya Suman
- Laboratory
of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Jigyasa Nigam
- Laboratory
of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56126 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56126 Pisa, Italy
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Gigli L, Tisi D, Grasselli F, Ceriotti M. Mechanism of Charge Transport in Lithium Thiophosphate. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1482-1496. [PMID: 38370276 PMCID: PMC10870718 DOI: 10.1021/acs.chemmater.3c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
Lithium ortho-thiophosphate (Li3PS4) has emerged as a promising candidate for solid-state electrolyte batteries, thanks to its highly conductive phases, cheap components, and large electrochemical stability range. Nonetheless, the microscopic mechanisms of Li-ion transport in Li3PS4 are far from being fully understood, the role of PS4 dynamics in charge transport still being controversial. In this work, we build machine learning potentials targeting state-of-the-art DFT references (PBEsol, r2SCAN, and PBE0) to tackle this problem in all known phases of Li3PS4 (α, β, and γ), for large system sizes and time scales. We discuss the physical origin of the observed superionic behavior of Li3PS4: the activation of PS4 flipping drives a structural transition to a highly conductive phase, characterized by an increase in Li-site availability and by a drastic reduction in the activation energy of Li-ion diffusion. We also rule out any paddle-wheel effects of PS4 tetrahedra in the superionic phases-previously claimed to enhance Li-ion diffusion-due to the orders-of-magnitude difference between the rate of PS4 flips and Li-ion hops at all temperatures below melting. We finally elucidate the role of interionic dynamical correlations in charge transport, by highlighting the failure of the Nernst-Einstein approximation to estimate the electrical conductivity. Our results show a strong dependence on the target DFT reference, with PBE0 yielding the best quantitative agreement with experimental measurements not only for the electronic band gap but also for the electrical conductivity of β- and α-Li3PS4.
Collapse
Affiliation(s)
| | | | - Federico Grasselli
- Laboratory of Computational
Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational
Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Huguenin-Dumittan K, Loche P, Haoran N, Ceriotti M. Physics-Inspired Equivariant Descriptors of Nonbonded Interactions. J Phys Chem Lett 2023; 14:9612-9618. [PMID: 37862712 PMCID: PMC10626632 DOI: 10.1021/acs.jpclett.3c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrostatic or dispersion interactions. We present an extension of the long distance equivariant (LODE) framework that can handle diverse LR interactions in a consistent way and seamlessly integrates with preexisting methods by building new sets of atom centered features. We provide a direct physical interpretation of these using the multipole expansion, which allows for simpler and more efficient implementations. The framework is applied to simple toy systems as proof of concept and a heterogeneous set of molecular dimers to push the method to its limits. By generalizing LODE to arbitrary asymptotic behaviors, we provide a coherent approach to treat arbitrary two- and many-body nonbonded interactions in the data-driven modeling of matter.
Collapse
Affiliation(s)
- Kevin
K. Huguenin-Dumittan
- Laboratory
of Computational Science and Modeling, IMX,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Philip Loche
- Laboratory
of Computational Science and Modeling, IMX,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ni Haoran
- Laboratory
of Computational Science and Modeling, IMX,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modeling, IMX,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Shao X, Paetow L, Tuckerman ME, Pavanello M. Machine learning electronic structure methods based on the one-electron reduced density matrix. Nat Commun 2023; 14:6281. [PMID: 37805614 PMCID: PMC10560258 DOI: 10.1038/s41467-023-41953-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
The theorems of density functional theory (DFT) establish bijective maps between the local external potential of a many-body system and its electron density, wavefunction and, therefore, one-particle reduced density matrix. Building on this foundation, we show that machine learning models based on the one-electron reduced density matrix can be used to generate surrogate electronic structure methods. We generate surrogates of local and hybrid DFT, Hartree-Fock and full configuration interaction theories for systems ranging from small molecules such as water to more complex compounds like benzene and propanol. The surrogate models use the one-electron reduced density matrix as the central quantity to be learned. From the predicted density matrices, we show that either standard quantum chemistry or a second machine-learning model can be used to compute molecular observables, energies, and atomic forces. The surrogate models can generate essentially anything that a standard electronic structure method can, ranging from band gaps and Kohn-Sham orbitals to energy-conserving ab-initio molecular dynamics simulations and infrared spectra, which account for anharmonicity and thermal effects, without the need to employ computationally expensive algorithms such as self-consistent field theory. The algorithms are packaged in an efficient and easy to use Python code, QMLearn, accessible on popular platforms.
Collapse
Affiliation(s)
- Xuecheng Shao
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA.
| | - Lukas Paetow
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, NY, 10003, USA.
- Courant Institute of Mathematical Science, New York University, New York, NY, 10003, USA.
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, 10003, USA.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, Shanghai, China.
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA.
- Department of Physics, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
14
|
Anstine D, Isayev O. Machine Learning Interatomic Potentials and Long-Range Physics. J Phys Chem A 2023; 127:2417-2431. [PMID: 36802360 PMCID: PMC10041642 DOI: 10.1021/acs.jpca.2c06778] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Advances in machine learned interatomic potentials (MLIPs), such as those using neural networks, have resulted in short-range models that can infer interaction energies with near ab initio accuracy and orders of magnitude reduced computational cost. For many atom systems, including macromolecules, biomolecules, and condensed matter, model accuracy can become reliant on the description of short- and long-range physical interactions. The latter terms can be difficult to incorporate into an MLIP framework. Recent research has produced numerous models with considerations for nonlocal electrostatic and dispersion interactions, leading to a large range of applications that can be addressed using MLIPs. In light of this, we present a Perspective focused on key methodologies and models being used where the presence of nonlocal physics and chemistry are crucial for describing system properties. The strategies covered include MLIPs augmented with dispersion corrections, electrostatics calculated with charges predicted from atomic environment descriptors, the use of self-consistency and message passing iterations to propagated nonlocal system information, and charges obtained via equilibration schemes. We aim to provide a pointed discussion to support the development of machine learning-based interatomic potentials for systems where contributions from only nearsighted terms are deficient.
Collapse
Affiliation(s)
- Dylan
M. Anstine
- Department of Chemistry,
Mellon College of Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Olexandr Isayev
- Department of Chemistry,
Mellon College of Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Feng C, Xi J, Zhang Y, Jiang B, Zhou Y. Accurate and Interpretable Dipole Interaction Model-Based Machine Learning for Molecular Polarizability. J Chem Theory Comput 2023; 19:1207-1217. [PMID: 36753749 DOI: 10.1021/acs.jctc.2c01094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Polarizabilities play significant roles in describing dispersive and inductive interactions of the atom and molecular systems. However, an accurate prediction of molecular polarizabilities from first principles is computationally prohibitive. Although physical models or statistical machine learning models have been proposed, either a lack of accurate description of local chemical environments or demanding a large number of samples for training has limited their practical applications. In this study, we combine a physically inspired dipole interaction model and an accurate neural network method for predicting the polarizability tensors of molecules. With the local chemical environment precisely described and the requirement of rotational covariance naturally fulfilled, this hybrid model is proven to give an accurate molecular polarizability prediction, essentially reducing the number of training samples. The atomic polarizabilities are physically interpretable and transferable to larger molecules unseen in the training set. This promising method may find its wide range of applications, such as spectroscopic simulations and the construction of polarizable force fields.
Collapse
Affiliation(s)
- Chaoqiang Feng
- Anhui Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.,Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Xi
- Anhui Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Zhou
- Anhui Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
16
|
Arab F, Nazari F, Illas F. Artificial Neural Network-Derived Unified Six-Dimensional Potential Energy Surface for Tetra Atomic Isomers of the Biogenic [H, C, N, O] System. J Chem Theory Comput 2023; 19:1186-1196. [PMID: 36735891 PMCID: PMC9979606 DOI: 10.1021/acs.jctc.2c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recognition of different structural patterns in different potential energy surface regions, such as in isomerizing quasilinear tetra atomic molecules, is important for understanding the details of underlying physics and chemistry. In this respect, using three variants of artificial neural networks (ANNs), we investigated the six-dimensional (6-D) singlet potential energy surfaces (PES) of tetra atomic isomers of the biogenic [H, C, N, O] system. At first, we constructed a separate ANN potential for each of the studied isomers. In the next step, a comparative assessment of the separate ANN models led to the setting up of a unified 6-D singlet PES equally and accurately describing all studied isomers. The constructed unified model yields relative energies comparable to those obtained either from the gold standard CCSD(T) method or from separate ANNs for each of the studied isomers. The accuracy of the unified singlet PES is on the order of 10-4 Hartrees (0.1 kcal/mol). The developed PES in this work captures the main features of nonlinear and quasilinear tetra atomic isomers of this biogenic system.
Collapse
Affiliation(s)
- Fatemeh Arab
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences, Zanjan45137-66731, Iran
| | - Fariba Nazari
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences, Zanjan45137-66731, Iran,Center
of Climate Change and Global Warming, Institute
for Advanced Studies in Basic Sciences, Zanjan45137-66731, Iran,
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028Barcelona, Spain,
| |
Collapse
|
17
|
Cersonsky RK, Pakhnova M, Engel EA, Ceriotti M. A data-driven interpretation of the stability of organic molecular crystals. Chem Sci 2023; 14:1272-1285. [PMID: 36756329 PMCID: PMC9891366 DOI: 10.1039/d2sc06198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fruitful approach involves classifying the different combinations of interacting chemical moieties, as understanding the relative energetics of different interactions enables the design of molecular crystals and fine-tuning of their stabilities. While this is usually performed based on the empirical observation of the most commonly encountered motifs in known crystal structures, we propose to apply a combination of supervised and unsupervised machine-learning techniques to automate the construction of an extensive library of molecular building blocks. We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it to a curated dataset of organic crystals, exploiting its atom-centered nature to obtain a data-driven assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then interpret this library using a low-dimensional representation of the structure-energy landscape and discuss selected examples of the insights into crystal engineering that can be extracted from this analysis, providing a complete database to guide the design of molecular materials.
Collapse
Affiliation(s)
- Rose K Cersonsky
- Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Maria Pakhnova
- Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Edgar A Engel
- TCM Group, Trinity College, Cambridge University Cambridge UK
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
18
|
Helfrecht BA, Pireddu G, Semino R, Auerbach SM, Ceriotti M. Ranking the synthesizability of hypothetical zeolites with the sorting hat. DIGITAL DISCOVERY 2022; 1:779-789. [PMID: 36561986 PMCID: PMC9721151 DOI: 10.1039/d2dd00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022]
Abstract
Zeolites are nanoporous alumino-silicate frameworks widely used as catalysts and adsorbents. Even though millions of siliceous networks can be generated by computer-aided searches, no new hypothetical framework has yet been synthesized. The needle-in-a-haystack problem of finding promising candidates among large databases of predicted structures has intrigued materials scientists for decades; yet, most work to date on the zeolite problem has been limited to intuitive structural descriptors. Here, we tackle this problem through a rigorous data science scheme-the "Zeolite Sorting Hat"-that exploits interatomic correlations to discriminate between real and hypothetical zeolites and to partition real zeolites into compositional classes that guide synthetic strategies for a given hypothetical framework. We find that, regardless of the structural descriptor used by the Zeolite Sorting Hat, there remain hypothetical frameworks that are incorrectly classified as real ones, suggesting that they might be good candidates for synthesis. We seek to minimize the number of such misclassified frameworks by using as complete a structural descriptor as possible, thus focusing on truly viable synthetic targets, while discovering structural features that distinguish real and hypothetical frameworks as an output of the Zeolite Sorting Hat. Further ranking of the candidates can be achieved based on thermodynamic stability and/or their suitability for the desired applications. Based on this workflow, we propose three hypothetical frameworks differing in their molar volume range as the top targets for synthesis, each with a composition suggested by the Zeolite Sorting Hat. Finally, we analyze the behavior of the Zeolite Sorting Hat with a hierarchy of structural descriptors including intuitive descriptors reported in previous studies, finding that intuitive descriptors produce significantly more misclassified hypothetical frameworks, and that more rigorous interatomic correlations point to second-neighbor Si-O distances around 3.2-3.4 Å as the key discriminatory factor.
Collapse
Affiliation(s)
- Benjamin A. Helfrecht
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| | - Giovanni Pireddu
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS24 rue Lhomond75005 ParisFrance,Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes InterfaciauxPHENIXF-75005 ParisFrance
| | - Rocio Semino
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes InterfaciauxPHENIXF-75005 ParisFrance,ICGM, Univ. Montpellier, CNRS, ENSCMMontpellierFrance
| | - Scott M. Auerbach
- Department of Chemistry and Department of Chemical Engineering, University of Massachusetts AmherstAmherstMA 01003USA
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| |
Collapse
|
19
|
Zhang Y, Lin Q, Jiang B. Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yaolong Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Qidong Lin
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
20
|
Actinides in complex reactive media: A combined ab initio molecular dynamics and machine learning analytics study of transuranic ions in molten salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Gugler S, Reiher M. Quantum Chemical Roots of Machine-Learning Molecular Similarity Descriptors. J Chem Theory Comput 2022; 18:6670-6689. [PMID: 36218328 DOI: 10.1021/acs.jctc.2c00718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we explore the quantum chemical foundations of descriptors for molecular similarity. Such descriptors are key for traversing chemical compound space with machine learning. Our focus is on the Coulomb matrix and on the smooth overlap of atomic positions (SOAP). We adopt a basic framework that allows us to connect both descriptors to electronic structure theory. This framework enables us to then define two new descriptors that are more closely related to electronic structure theory, which we call Coulomb lists and smooth overlap of electron densities (SOED). By investigating their usefulness as molecular similarity descriptors, we gain new insights into how and why Coulomb matrix and SOAP work. Moreover, Coulomb lists avoid the somewhat mysterious diagonalization step of the Coulomb matrix and might provide a direct means to extract subsystem information that can be compared across Born-Oppenheimer surfaces of varying dimension. For the electron density, we derive the necessary formalism to create the SOED measure in close analogy to SOAP. Because this formalism is more involved than that of SOAP, we review the essential theory as well as introduce a set of approximations that eventually allow us to work with SOED in terms of the same implementation available for the evaluation of SOAP. We focus our analysis on elementary reaction steps, where transition state structures are more similar to either reactant or product structures than the latter two are with respect to one another. The prediction of electronic energies of transition state structures can, however, be more difficult than that of stable intermediates due to multi-configurational effects. The question arises to what extent molecular similarity descriptors rooted in electronic structure theory can resolve these intricate effects.
Collapse
Affiliation(s)
- Stefan Gugler
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Fan Z, Wang Y, Ying P, Song K, Wang J, Wang Y, Zeng Z, Xu K, Lindgren E, Rahm JM, Gabourie AJ, Liu J, Dong H, Wu J, Chen Y, Zhong Z, Sun J, Erhart P, Su Y, Ala-Nissila T. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J Chem Phys 2022; 157:114801. [DOI: 10.1063/5.0106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in [Fan et al., Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package GPUMD.We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expansion approach.We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for the construction of NEP models, and we demonstrate their application in large-scale atomistic simulations.By comparing to state-of-the-art MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient.These results demonstrate that the GPUMD package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic simulations.To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent space of a pre-trained NEP model.Finally, we introduce three separate Python packages, GPYUMD, CALORINE, and PYNEP, which enable the integration of GPUMD into Python workflows.
Collapse
Affiliation(s)
- Zheyong Fan
- School of Mathematics and Physics, Bohai University, China
| | | | - Penghua Ying
- School of Science, Harbin Institute of Technology Shenzhen, China
| | - Keke Song
- University of Science and Technology Beijing, China
| | | | | | | | - Ke Xu
- Xiamen University, Xiamen University, China
| | | | | | | | - Jiahui Liu
- University of Science and Technology Beijing, China
| | | | - Jianyang Wu
- Department of Physics, Xiamen University, China
| | - Yue Chen
- Mechanical Engineering, University of Hong Kong Department of Mechanical Engineering, Hong Kong
| | - Zheng Zhong
- Harbin Institute of Technology, Shenzhen, Harbin Institute of Technology, China
| | - Jian Sun
- Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, China
| | | | - Yanjing Su
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, China
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University Department of Applied Physics, Finland
| |
Collapse
|
23
|
Sauceda HE, Gálvez-González LE, Chmiela S, Paz-Borbón LO, Müller KR, Tkatchenko A. BIGDML-Towards accurate quantum machine learning force fields for materials. Nat Commun 2022; 13:3733. [PMID: 35768400 PMCID: PMC9243122 DOI: 10.1038/s41467-022-31093-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/01/2022] [Indexed: 12/16/2022] Open
Abstract
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene-graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.
Collapse
Affiliation(s)
- Huziel E Sauceda
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico.
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
- BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587, Berlin, Germany.
| | - Luis E Gálvez-González
- Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas & Rosales, Hermosillo, C.P., 83000, Mexico
| | - Stefan Chmiela
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Lauro Oliver Paz-Borbón
- Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico
| | - Klaus-Robert Müller
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Google Research, Brain team, Berlin, Germany.
- Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, 02841, Seoul, Korea.
- Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123, Saarbrücken, Germany.
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg.
| |
Collapse
|
24
|
Nigam J, Pozdnyakov S, Fraux G, Ceriotti M. Unified theory of atom-centered representations and message-passing machine-learning schemes. J Chem Phys 2022; 156:204115. [DOI: 10.1063/5.0087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data-driven schemes that associate molecular and crystal structures with their microscopic properties share the need for a concise, effective description of the arrangement of their atomic constituents. Many types of models rely on descriptions of atom-centered environments, which are associated with an atomic property or with an atomic contribution to an extensive macroscopic quantity. Frameworks in this class can be understood in terms of atom-centered density correlations (ACDC), which are used as a basis for a body-ordered, symmetry-adapted expansion of the targets. Several other schemes that gather information on the relationship between neighboring atoms using “message-passing” ideas cannot be directly mapped to correlations centered around a single atom. We generalize the ACDC framework to include multi-centered information, generating representations that provide a complete linear basis to regress symmetric functions of atomic coordinates, and provide a coherent foundation to systematize our understanding of both atom-centered and message-passing and invariant and equivariant machine-learning schemes.
Collapse
Affiliation(s)
- Jigyasa Nigam
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sergey Pozdnyakov
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Guillaume Fraux
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Zhang Y, Xia J, Jiang B. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. J Chem Phys 2022; 156:114801. [DOI: 10.1063/5.0080766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this work, we present a general purpose deep neural network package for representing energies, forces, dipole moments, and polarizabilities of atomistic systems. This so-called recursively embedded atom neural network model takes advantages of both the physically inspired atomic descriptor based neural networks and the message-passing based neural networks. Implemented in the PyTorch framework, the training process is parallelized on both the central processing unit and the graphics processing unit with high efficiency and low memory in which all hyperparameters can be optimized automatically. We demonstrate the state-of-the-art accuracy, high efficiency, scalability, and universality of this package by learning not only energies (with or without forces) but also dipole moment vectors and polarizability tensors in various molecular, reactive, and periodic systems. An interface between a trained model and LAMMPs is provided for large scale molecular dynamics simulations. We hope that this open-source toolbox will allow for future method development and applications of machine learned potential energy surfaces and quantum-chemical properties of molecules, reactions, and materials.
Collapse
Affiliation(s)
- Yaolong Zhang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junfan Xia
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Han R, Ketkaew R, Luber S. A Concise Review on Recent Developments of Machine Learning for the Prediction of Vibrational Spectra. J Phys Chem A 2022; 126:801-812. [PMID: 35133168 DOI: 10.1021/acs.jpca.1c10417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Machine learning has become more and more popular in computational chemistry, as well as in the important field of spectroscopy. In this concise review, we walk the reader through a short summary of machine learning algorithms and a comprehensive discussion on the connection between machine learning methods and vibrational spectroscopy, particularly for the case of infrared and Raman spectroscopy. We also briefly discuss state-of-the-art molecular representations which serve as meaningful inputs for machine learning to predict vibrational spectra. In addition, this review provides an overview of the transferability and best practices of machine learning in the prediction of vibrational spectra as well as possible future research directions.
Collapse
Affiliation(s)
- Ruocheng Han
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Rangsiman Ketkaew
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
27
|
Nigam J, Willatt MJ, Ceriotti M. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties. J Chem Phys 2022; 156:014115. [PMID: 34998321 DOI: 10.1063/5.0072784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Symmetry considerations are at the core of the major frameworks used to provide an effective mathematical representation of atomic configurations that is then used in machine-learning models to predict the properties associated with each structure. In most cases, the models rely on a description of atom-centered environments and are suitable to learn atomic properties or global observables that can be decomposed into atomic contributions. Many quantities that are relevant for quantum mechanical calculations, however-most notably the single-particle Hamiltonian matrix when written in an atomic orbital basis-are not associated with a single center, but with two (or more) atoms in the structure. We discuss a family of structural descriptors that generalize the very successful atom-centered density correlation features to the N-center case and show, in particular, how this construction can be applied to efficiently learn the matrix elements of the (effective) single-particle Hamiltonian written in an atom-centered orbital basis. These N-center features are fully equivariant-not only in terms of translations and rotations but also in terms of permutations of the indices associated with the atoms-and are suitable to construct symmetry-adapted machine-learning models of new classes of properties of molecules and materials.
Collapse
Affiliation(s)
- Jigyasa Nigam
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael J Willatt
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shunning Li
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Yuanji Liu
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Dong Chen
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Yi Jiang
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Zhiwei Nie
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Feng Pan
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| |
Collapse
|
29
|
Lewis AM, Grisafi A, Ceriotti M, Rossi M. Learning Electron Densities in the Condensed Phase. J Chem Theory Comput 2021; 17:7203-7214. [PMID: 34669406 PMCID: PMC8582255 DOI: 10.1021/acs.jctc.1c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We introduce a local
machine-learning method for predicting the
electron densities of periodic systems. The framework is based on
a numerical, atom-centered auxiliary basis, which enables an accurate
expansion of the all-electron density in a form suitable for learning
isolated and periodic systems alike. We show that, using this formulation,
the electron densities of metals, semiconductors, and molecular crystals
can all be accurately predicted using symmetry-adapted Gaussian process
regression models, properly adjusted for the nonorthogonal nature
of the basis. These predicted densities enable the efficient calculation
of electronic properties, which present errors on the order of tens
of meV/atom when compared to ab initio density-functional
calculations. We demonstrate the key power of this approach by using
a model trained on ice unit cells containing only 4 water molecules
to predict the electron densities of cells containing up to 512 molecules
and see no increase in the magnitude of the errors of derived electronic
properties when increasing the system size. Indeed, we find that these
extrapolated derived energies are more accurate than those predicted
using a direct machine-learning model. Finally, on heterogeneous data
sets SALTED can predict electron densities with errors below 4%.
Collapse
Affiliation(s)
- Alan M Lewis
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrea Grisafi
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mariana Rossi
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
30
|
Nicholas T, Alexandrov EV, Blatov VA, Shevchenko AP, Proserpio DM, Goodwin AL, Deringer VL. Visualization and Quantification of Geometric Diversity in Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:8289-8300. [PMID: 35966284 PMCID: PMC9367000 DOI: 10.1021/acs.chemmater.1c02439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With ever-growing numbers of metal-organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure-property correlations in MOFs. Here, we show how structural coarse-graining and embedding ("unsupervised learning") schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies.
Collapse
Affiliation(s)
- Thomas
C. Nicholas
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Eugeny V. Alexandrov
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
University, Ac. Pavlov Street 1, Samara 443011, Russian Federation
- Samara
Branch of P.N. Lebedev Physical Institute of the Russian Academy of
Science, Novo-Sadovaya
Street 221, Samara 443011, Russian Federation
| | - Vladislav A. Blatov
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
University, Ac. Pavlov Street 1, Samara 443011, Russian Federation
| | - Alexander P. Shevchenko
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
Branch of P.N. Lebedev Physical Institute of the Russian Academy of
Science, Novo-Sadovaya
Street 221, Samara 443011, Russian Federation
| | - Davide M. Proserpio
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Milano 20133, Italy
| | - Andrew L. Goodwin
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Volker L. Deringer
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| |
Collapse
|
31
|
Pozdnyakov SN, Zhang L, Ortner C, Csányi G, Ceriotti M. Local invertibility and sensitivity of atomic structure-feature mappings. OPEN RESEARCH EUROPE 2021; 1:126. [PMID: 37645092 PMCID: PMC10445828 DOI: 10.12688/openreseurope.14156.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 08/31/2023]
Abstract
Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety of representations that can be used to convert them into a finite set of symmetric descriptors or features. Methods: Here, we analyze the sensitivity of the mapping to atomic displacements, using a singular value decomposition of the Jacobian of the transformation to quantify the sensitivity for different configurations, choice of representations and implementation details. Results: We show that the combination of symmetry and smoothness leads to mappings that have singular points at which the Jacobian has one or more null singular values (besides those corresponding to infinitesimal translations and rotations). This is in fact desirable, because it enforces physical symmetry constraints on the values predicted by regression models constructed using such representations. However, besides these symmetry-induced singularities, there are also spurious singular points, that we find to be linked to the incompleteness of the mapping, i.e. the fact that, for certain classes of representations, structurally distinct configurations are not guaranteed to be mapped onto different feature vectors. Additional singularities can be introduced by a too aggressive truncation of the infinite basis set that is used to discretize the representations. Conclusions: These results exemplify the subtle issues that arise when constructing symmetric representations of atomic structures, and provide conceptual and numerical tools to identify and investigate them in both benchmark and realistic applications.
Collapse
Affiliation(s)
- Sergey N. Pozdnyakov
- Laboratory of Computational Science and Modelling, Institute of Materials, Federal Institute of Technology (EPFL) CH-1015 Lausanne, Lausanne, 1015, Switzerland
| | - Liwei Zhang
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christoph Ortner
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Michele Ceriotti
- Laboratory of Computational Science and Modelling, Institute of Materials, Federal Institute of Technology (EPFL) CH-1015 Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
32
|
Zhang Y, Xia J, Jiang B. Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality. PHYSICAL REVIEW LETTERS 2021; 127:156002. [PMID: 34677998 DOI: 10.1103/physrevlett.127.156002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in machine-learned interatomic potentials largely benefit from the atomistic representation and locally invariant many-body descriptors. It was, however, recently argued that including three-body (or even four-body) features is incomplete to distinguish specific local structures. Utilizing an embedded density descriptor made by linear combinations of neighboring atomic orbitals and realizing that each orbital coefficient physically depends on its own local environment, we propose a recursively embedded atom neural network model. We formally prove that this model can efficiently incorporate complete many-body correlations without explicitly computing high-order terms. This model not only successfully addresses challenges regarding local completeness and nonlocality in representative systems, but also provides an easy and general way to update local many-body descriptors to have a message-passing form without changing their basic structures.
Collapse
Affiliation(s)
- Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junfan Xia
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen PB, Bhowmik A, Demortière A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson P, Franco AA. Artificial Intelligence Applied to Battery Research: Hype or Reality? Chem Rev 2021; 122:10899-10969. [PMID: 34529918 PMCID: PMC9227745 DOI: 10.1021/acs.chemrev.1c00108] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
This is a critical
review of artificial intelligence/machine learning
(AI/ML) methods applied to battery research. It aims at providing
a comprehensive, authoritative, and critical, yet easily understandable,
review of general interest to the battery community. It addresses
the concepts, approaches, tools, outcomes, and challenges of using
AI/ML as an accelerator for the design and optimization of the next
generation of batteries—a current hot topic. It intends to
create both accessibility of these tools to the chemistry and electrochemical
energy sciences communities and completeness in terms of the different
battery R&D aspects covered.
Collapse
Affiliation(s)
- Teo Lombardo
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France
| | - Marc Duquesnoy
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France
| | - Hassna El-Bouysidy
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Fabian Årén
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Alfonso Gallo-Bueno
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Peter Bjørn Jørgensen
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Building 301, 2800 Kgs. Lyngby, Denmark
| | - Arghya Bhowmik
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Building 301, 2800 Kgs. Lyngby, Denmark
| | - Arnaud Demortière
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France
| | - Elixabete Ayerbe
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Francisco Alcaide
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Marine Reynaud
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Javier Carrasco
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Alexis Grimaud
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,UMR CNRS 8260 "Chimie du Solide et Energie", Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France Sorbonne Universités - UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France
| | - Chao Zhang
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Chemistry - Ångström Laboratory, Box 538, 75121 Uppsala, Sweden
| | - Tejs Vegge
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Building 301, 2800 Kgs. Lyngby, Denmark
| | - Patrik Johansson
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Alejandro A Franco
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.,Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, France
| |
Collapse
|
34
|
Goscinski A, Musil F, Pozdnyakov S, Nigam J, Ceriotti M. Optimal radial basis for density-based atomic representations. J Chem Phys 2021; 155:104106. [PMID: 34525832 DOI: 10.1063/5.0057229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The input of almost every machine learning algorithm targeting the properties of matter at the atomic scale involves a transformation of the list of Cartesian atomic coordinates into a more symmetric representation. Many of the most popular representations can be seen as an expansion of the symmetrized correlations of the atom density and differ mainly by the choice of basis. Considerable effort has been dedicated to the optimization of the basis set, typically driven by heuristic considerations on the behavior of the regression target. Here, we take a different, unsupervised viewpoint, aiming to determine the basis that encodes in the most compact way possible the structural information that is relevant for the dataset at hand. For each training dataset and number of basis functions, one can build a unique basis that is optimal in this sense and can be computed at no additional cost with respect to the primitive basis by approximating it with splines. We demonstrate that this construction yields representations that are accurate and computationally efficient, particularly when working with representations that correspond to high-body order correlations. We present examples that involve both molecular and condensed-phase machine-learning models.
Collapse
Affiliation(s)
- Alexander Goscinski
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Félix Musil
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sergey Pozdnyakov
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jigyasa Nigam
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian Process Regression for Materials and Molecules. Chem Rev 2021; 121:10073-10141. [PMID: 34398616 PMCID: PMC8391963 DOI: 10.1021/acs.chemrev.1c00022] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/18/2022]
Abstract
We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.
Collapse
Affiliation(s)
- Volker L. Deringer
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Albert P. Bartók
- Department
of Physics and Warwick Centre for Predictive Modelling, School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Noam Bernstein
- Center
for Computational Materials Science, U.S.
Naval Research Laboratory, Washington D.C. 20375, United States
| | - David M. Wilkins
- Atomistic
Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland
| | - Gábor Csányi
- Engineering
Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
36
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
37
|
Keith JA, Vassilev-Galindo V, Cheng B, Chmiela S, Gastegger M, Müller KR, Tkatchenko A. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem Rev 2021; 121:9816-9872. [PMID: 34232033 PMCID: PMC8391798 DOI: 10.1021/acs.chemrev.1c00107] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.
Collapse
Affiliation(s)
- John A. Keith
- Department
of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valentin Vassilev-Galindo
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Bingqing Cheng
- Accelerate
Programme for Scientific Discovery, Department
of Computer Science and Technology, 15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom
| | - Stefan Chmiela
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Michael Gastegger
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Klaus-Robert Müller
- Machine
Learning Group, Technische Universität
Berlin, 10587, Berlin, Germany
- Department
of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Korea
- Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
- Google Research, Brain Team, 10117 Berlin, Germany
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
38
|
Abstract
Chemical compound space (CCS), the set of all theoretically conceivable combinations of chemical elements and (meta-)stable geometries that make up matter, is colossal. The first-principles based virtual sampling of this space, for example, in search of novel molecules or materials which exhibit desirable properties, is therefore prohibitive for all but the smallest subsets and simplest properties. We review studies aimed at tackling this challenge using modern machine learning techniques based on (i) synthetic data, typically generated using quantum mechanics based methods, and (ii) model architectures inspired by quantum mechanics. Such Quantum mechanics based Machine Learning (QML) approaches combine the numerical efficiency of statistical surrogate models with an ab initio view on matter. They rigorously reflect the underlying physics in order to reach universality and transferability across CCS. While state-of-the-art approximations to quantum problems impose severe computational bottlenecks, recent QML based developments indicate the possibility of substantial acceleration without sacrificing the predictive power of quantum mechanics.
Collapse
Affiliation(s)
- Bing Huang
- Faculty
of Physics, University of Vienna, 1090 Vienna, Austria
| | - O. Anatole von Lilienfeld
- Faculty
of Physics, University of Vienna, 1090 Vienna, Austria
- Institute
of Physical Chemistry and National Center for Computational Design
and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
40
|
Musil F, Grisafi A, Bartók AP, Ortner C, Csányi G, Ceriotti M. Physics-Inspired Structural Representations for Molecules and Materials. Chem Rev 2021; 121:9759-9815. [PMID: 34310133 DOI: 10.1021/acs.chemrev.1c00021] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first step in the construction of a regression model or a data-driven analysis, aiming to predict or elucidate the relationship between the atomic-scale structure of matter and its properties, involves transforming the Cartesian coordinates of the atoms into a suitable representation. The development of atomic-scale representations has played, and continues to play, a central role in the success of machine-learning methods for chemistry and materials science. This review summarizes the current understanding of the nature and characteristics of the most commonly used structural and chemical descriptions of atomistic structures, highlighting the deep underlying connections between different frameworks and the ideas that lead to computationally efficient and universally applicable models. It emphasizes the link between properties, structures, their physical chemistry, and their mathematical description, provides examples of recent applications to a diverse set of chemical and materials science problems, and outlines the open questions and the most promising research directions in the field.
Collapse
Affiliation(s)
- Felix Musil
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andrea Grisafi
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Albert P Bartók
- Department of Physics and Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christoph Ortner
- University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Zeni C, Rossi K, Glielmo A, de Gironcoli S. Compact atomic descriptors enable accurate predictions via linear models. J Chem Phys 2021; 154:224112. [PMID: 34241204 DOI: 10.1063/5.0052961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We probe the accuracy of linear ridge regression employing a three-body local density representation derived from the atomic cluster expansion. We benchmark the accuracy of this framework in the prediction of formation energies and atomic forces in molecules and solids. We find that such a simple regression framework performs on par with state-of-the-art machine learning methods which are, in most cases, more complex and more computationally demanding. Subsequently, we look for ways to sparsify the descriptor and further improve the computational efficiency of the method. To this aim, we use both principal component analysis and least absolute shrinkage operator regression for energy fitting on six single-element datasets. Both methods highlight the possibility of constructing a descriptor that is four times smaller than the original with a similar or even improved accuracy. Furthermore, we find that the reduced descriptors share a sizable fraction of their features across the six independent datasets, hinting at the possibility of designing material-agnostic, optimally compressed, and accurate descriptors.
Collapse
Affiliation(s)
- Claudio Zeni
- Physics Area, International School for Advanced Studies, Trieste, Italy
| | - Kevin Rossi
- Laboratory of Nanochemistry, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH, Switzerland
| | - Aldo Glielmo
- Physics Area, International School for Advanced Studies, Trieste, Italy
| | | |
Collapse
|
42
|
Abstract
Quantum-mechanically driven charge polarization and charge transfer are ubiquitous in biomolecular systems, controlling reaction rates, allosteric interactions, ligand-protein binding, membrane transport, and dynamically driven structural transformations. Molecular dynamics (MD) simulations of these processes require quantum mechanical (QM) information in order to accurately describe their reactive dynamics. However, current techniques-empirical force fields, subsystem approaches, ab initio MD, and machine learning-vary in their ability to achieve a consistent chemical description across multiple atom types, and at scale. Here we present a physics-based, atomistic force field, the ensemble DFT charge-transfer embedded-atom method, in which QM forces are described at a uniform level of theory across all atoms, avoiding the need for explicit solution of the Schrödinger equation or large, precomputed training data sets. Coupling between the electronic and atomistic length scales is effected through an ensemble density functional theory formulation of the embedded-atom method originally developed for elemental materials. Charge transfer is expressed in terms of ensembles of ionic state basis densities of individual atoms, and charge polarization, in terms of atomic excited-state basis densities. This provides a highly compact yet general representation of the force field, encompassing both local and system-wide effects. Charge rearrangement is realized through the evolution of ensemble weights, adjusted at each dynamical time step via chemical potential equalization.
Collapse
Affiliation(s)
- Susan R Atlas
- Department of Chemistry and Chemical Biology, Department of Physics and Astronomy, and Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
43
|
Goscinski A, Fraux G, Imbalzano G, Ceriotti M. The role of feature space in atomistic learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abdaf7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Affiliation(s)
- Jörg Behler
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Musil F, Veit M, Goscinski A, Fraux G, Willatt MJ, Stricker M, Junge T, Ceriotti M. Efficient implementation of atom-density representations. J Chem Phys 2021; 154:114109. [DOI: 10.1063/5.0044689] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Félix Musil
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Lausanne, Switzerland
| | - Max Veit
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Lausanne, Switzerland
| | - Alexander Goscinski
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Guillaume Fraux
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael J. Willatt
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Markus Stricker
- Laboratory for Multiscale Mechanics Modeling, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Till Junge
- Laboratory for Multiscale Mechanics Modeling, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Magdău IB, Miller TF. Machine Learning Solvation Environments in Conductive Polymers: Application to ProDOT-2Hex with Solvent Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ioan-Bogdan Magdău
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Gasparotto P, Fischer M, Scopece D, Liedke MO, Butterling M, Wagner A, Yildirim O, Trant M, Passerone D, Hug HJ, Pignedoli CA. Mapping the Structure of Oxygen-Doped Wurtzite Aluminum Nitride Coatings from Ab Initio Random Structure Search and Experiments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5762-5771. [PMID: 33464807 DOI: 10.1021/acsami.0c19270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Machine learning is changing how we design and interpret experiments in materials science. In this work, we show how unsupervised learning, combined with ab initio random structure searching, improves our understanding of structural metastability in multicomponent alloys. We focus on the case of Al-O-N alloys where the formation of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxygen can be seen as a general mechanism of solids where crystal symmetry is reduced to stabilize defects. The ideal AlN wurtzite crystal structure occupation cannot be matched due to the presence of an aliovalent hetero-element into the structure. The traditional interpretation of the c-lattice shrinkage in sputter-deposited Al-O-N films from X-ray diffraction (XRD) experiments suggests the existence of a solubility limit at 8 at % oxygen content. Here, we show that such naive interpretation is misleading. We support XRD data with accurate ab initio modeling and dimensionality reduction on advanced structural descriptors to map structure-property relationships. No signs of a possible solubility limit are found. Instead, the presence of a wide range of non-equilibrium oxygen-rich defective structures emerging at increasing oxygen contents suggests that the formation of grain boundaries is the most plausible mechanism responsible for the lattice shrinkage measured in Al-O-N sputtered films. We further confirm our hypothesis using positron annihilation lifetime spectroscopy.
Collapse
Affiliation(s)
- Piero Gasparotto
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Maria Fischer
- Laboratory for Magnetic and Functional Thin Films, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Daniele Scopece
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Maciej O Liedke
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Maik Butterling
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Andreas Wagner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Oguz Yildirim
- Laboratory for Magnetic and Functional Thin Films, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mathis Trant
- Laboratory for Magnetic and Functional Thin Films, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Daniele Passerone
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Hans J Hug
- Laboratory for Magnetic and Functional Thin Films, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
48
|
Machine Learning Predictions of Transition Probabilities in Atomic Spectra. ATOMS 2021. [DOI: 10.3390/atoms9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Forward modeling of optical spectra with absolute radiometric intensities requires knowledge of the individual transition probabilities for every transition in the spectrum. In many cases, these transition probabilities, or Einstein A-coefficients, quickly become practically impossible to obtain through either theoretical or experimental methods. Complicated electronic orbitals with higher order effects will reduce the accuracy of theoretical models. Experimental measurements can be prohibitively expensive and are rarely comprehensive due to physical constraints and sheer volume of required measurements. Due to these limitations, spectral predictions for many element transitions are not attainable. In this work, we investigate the efficacy of using machine learning models, specifically fully connected neural networks (FCNN), to predict Einstein A-coefficients using data from the NIST Atomic Spectra Database. For simple elements where closed form quantum calculations are possible, the data-driven modeling workflow performs well but can still have lower precision than theoretical calculations. For more complicated nuclei, deep learning emerged more comparable to theoretical predictions, such as Hartree–Fock. Unlike experiment or theory, the deep learning approach scales favorably with the number of transitions in a spectrum, especially if the transition probabilities are distributed across a wide range of values. It is also capable of being trained on both theoretical and experimental values simultaneously. In addition, the model performance improves when training on multiple elements prior to testing. The scalability of the machine learning approach makes it a potentially promising technique for estimating transition probabilities in previously inaccessible regions of the spectral and thermal domains on a significantly reduced timeline.
Collapse
|
49
|
Engel EA. Identification of synthesisable crystalline phases of water – a prototype for the challenges of computational materials design. CrystEngComm 2021. [DOI: 10.1039/d0ce01260b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss the identification of experimentally realisable crystalline phases of water to outline and contextualise some of the diverse building blocks of a computational materials design process.
Collapse
Affiliation(s)
- Edgar A. Engel
- TCM Group
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE
- UK
| |
Collapse
|
50
|
Grisafi A, Nigam J, Ceriotti M. Multi-scale approach for the prediction of atomic scale properties. Chem Sci 2020; 12:2078-2090. [PMID: 34163971 PMCID: PMC8179303 DOI: 10.1039/d0sc04934d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning schemes that predict quantum mechanical observables - such as the cohesive energy, the electron density, or a variety of response properties - as a sum of atom-centred contributions, based on a short-range representation of atomic environments. One of the main shortcomings of these approaches is their inability to capture physical effects ranging from electrostatic interactions to quantum delocalization, which have a long-range nature. Here we show how to build a multi-scale scheme that combines in the same framework local and non-local information, overcoming such limitations. We show that the simplest version of such features can be put in formal correspondence with a multipole expansion of permanent electrostatics. The data-driven nature of the model construction, however, makes this simple form suitable to tackle also different types of delocalized and collective effects. We present several examples that range from molecular physics to surface science and biophysics, demonstrating the ability of this multi-scale approach to model interactions driven by electrostatics, polarization and dispersion, as well as the cooperative behavior of dielectric response functions.
Collapse
Affiliation(s)
- Andrea Grisafi
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Jigyasa Nigam
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland .,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland.,Indian Institute of Space Science and Technology Thiruvananthapuram 695547 India
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland .,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|