1
|
Vera-Choqqueccota S, Belmekki BEY, Alouini MS, Teodorescu M, Haussler D, Mostajo-Radji MA. Reducing education inequalities through cloud-enabled live-cell biotechnology. Trends Biotechnol 2024:S0167-7799(24)00209-9. [PMID: 39209603 DOI: 10.1016/j.tibtech.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Biotechnology holds the potential to drive innovations across various fields from agriculture to medicine. However, despite numerous interventions, biotechnology education remains highly unequal worldwide. Historically, the high costs and potential exposure to hazardous materials have hindered biotechnology education. Integration of cloud technologies into classrooms has emerged as an alternative solution that is already enabling biotechnology experiments to reach thousands of students globally. We describe several innovations that collectively facilitate real-time experimentation in biotechnology education in remote locations. These advances enable remote access to scientific data and live experiments, promote collaborative research, and ensure educational inclusivity. We propose cloud-enabled live-cell biotechnology as a mechanism for reducing inequalities in biotechnology education and promoting sustainable development.
Collapse
Affiliation(s)
- Samira Vera-Choqqueccota
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Baha Eddine Youcef Belmekki
- Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed-Slim Alouini
- Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mircea Teodorescu
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mohammed A Mostajo-Radji
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
2
|
Hupp AM, Kovarik ML, McCurry DA. Emerging Areas in Undergraduate Analytical Chemistry Education: Microfluidics, Microcontrollers, and Chemometrics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:197-219. [PMID: 38424028 DOI: 10.1146/annurev-anchem-061622-041922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Analytical chemistry is a fast-paced field with frequent introduction of new techniques via research labs; however, incorporation of new techniques into academic curricula lags their adoption in research and industry. This review describes the recent educational literature on microfluidics, microcontrollers, and chemometrics in the undergraduate analytical chemistry curriculum. Each section highlights opportunities for nonexpert faculty to get started with these techniques and more advanced implementations suitable for experienced practitioners. While the addition of new topics to any curriculum brings some opportunity costs, student engagement with cutting edge techniques brings many benefits, including enhanced preparation for graduate school and professional careers and development of transferable skills, such as coding. Formal assessment of student outcomes is encouraged to promote broader adoption of these techniques.
Collapse
Affiliation(s)
- Amber M Hupp
- 1Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts, USA
| | | | - Daniel A McCurry
- 3Department of Biochemistry, Chemistry, Engineering, and Physics, Commonwealth University-Bloomsburg, Bloomsburg, Pennsylvania, USA
| |
Collapse
|
3
|
Delgado P, Luna CA, Dissanayaka A, Oshinowo O, Waggoner JJ, Schley S, Fernandez T, Myers DR. An economical in-class sticker microfluidic activity develops student expertise in microscale physics and device manufacturing. LAB ON A CHIP 2024; 24:2176-2192. [PMID: 38328814 PMCID: PMC11019833 DOI: 10.1039/d3lc00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Educating new students in miniaturization science remains challenging due to the non-intuitive behavior of microscale objects and specialized layer-by-layer assembly approaches. In our analysis of the existing literature, we noted that it remains difficult to have low cost activities that elicit deep learning. Furthermore, few activities have stated learning goals and measurements of effectiveness. To that end, we created a new educational activity that enables students to build and test microfluidic mixers, valves, and bubble generators in the classroom setting with inexpensive, widely-available materials. Although undergraduate and graduate engineering students are able to successfully construct the devices, our activity is unique in that the focus is not on successfully building and operating each device. Instead, it is to gain understanding about miniaturization science, device design, and construction so as to be able to do so independently. Our data show that the activity is appropriate for developing the conceptual understanding of graduate and advanced undergraduate students (n = 57), as well as makes a lasting impression on the students. We also report on observations related to student patterns of misunderstanding and how miniaturization science provides a unique opportunity for educational researchers to elicit and study misconceptions. More broadly, since this activity teaches participants a viable approach to creating microsystems and can be implemented in nearly any global setting, our work democratizes the education of miniaturization science. Noting the broad potential of point-of-care technologies in the global setting, such an activity could empower local experts to address their needs.
Collapse
Affiliation(s)
- Priscilla Delgado
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Pediatric Haematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Alessandra Luna
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Pediatric Haematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anjana Dissanayaka
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Pediatric Haematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Pediatric Haematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
- Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
| | - Sara Schley
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| | - Todd Fernandez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| | - David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Pediatric Haematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
5
|
Lee SA, Riedel-Kruse IH. Micro-HBI: Human-Biology Interaction With Living Cells, Viruses, and Molecules. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.849887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human-Biology Interaction (HBI) is a field that aims to provide first-hand experience with living matter and the modern life-sciences to the lay public. Advances in optical, bioengineering, and digital technologies as well as interaction design now also enable real and direct experiences at the microscale, such as with living cells and molecules, motivating the sub-field of “micro-HBI.” This is distinct from simulating any biological processes. There is a significant need for HBI as new educational modalities are required to enable all strata of society to become informed about new technologies and biology in general, as we face challenges like global pandemics, environmental loss, and species extinctions. Here we review this field in order to provide a jump-off point for future work and to bring stakeholder from different disciplines together. By now, the field has explored and demonstrated many such interactive systems, the use of different microorganisms, new interaction design principles, and versatile applications, such as museum exhibits, biotic games, educational cloud labs, citizen science platforms, and hands-on do-it-yourself (DIY) Bio maker activities. We close with key open questions for the field to move forward.
Collapse
|
6
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
7
|
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 2021; 16:e0245206. [PMID: 33534849 PMCID: PMC7857642 DOI: 10.1371/journal.pone.0245206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.
Collapse
|
8
|
Salek MM, Fernandez V, D'souza G, Puigmartí-Luis J, Stocker R, Secchi E. An interdisciplinary and application-oriented approach to teach microfluidics. BIOMICROFLUIDICS 2021; 15:014104. [PMID: 33537111 PMCID: PMC7826165 DOI: 10.1063/5.0038389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Microfluidics is a relatively novel interdisciplinary research area with broad applications in chemistry, physics, material science, and biology. Despite the rapid growth of the field, students' exposure to microfluidic technologies is still limited and often insufficient to appreciate the advantages over other commonly used technologies. To this end, we designed a five-day course, "Microfluidics for microbial ecology," in which students with very different backgrounds learn the basics of microfluidic technologies and sample a range of applications in microbial ecology. The course was created for Master and Ph.D. students interested in applying microfluidics to their research and, therefore, followed an application-oriented approach. The presentation of critical aspects of fluid flow phenomena at the microscale and an outline of the advantages and constraints of the technology provide students with the background to design and perform microfluidics-based experiments. In order to improve the effectiveness of learning in a class with diverse interests and backgrounds, two active learning exercises were implemented. The first comprised the design of an individualized microfluidics experiment in parallel with the lectures: students were guided to apply each module to their personalized application and discuss it in groups. The second was a group experimental activity, in which students jointly set up, performed, analyzed, and presented a microfluidics-based experiment. Given the multidisciplinary teaching context, the course was able to foster common conceptual ground and promote discussion among students. This application-oriented approach built upon experimental activities and in-class discussion is well suited to promote learning in a technology-related subject such as microfluidics.
Collapse
Affiliation(s)
| | - Vicente Fernandez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Glen D'souza
- Department of Environmental Microbiology, ETH Zürich, Zürich 8093, Switzerland
| | | | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
9
|
Zargaryan A, Farhoudi N, Haworth G, Ashby JF, Au SH. Hybrid 3D printed-paper microfluidics. Sci Rep 2020; 10:18379. [PMID: 33110199 PMCID: PMC7591913 DOI: 10.1038/s41598-020-75489-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
3D printed and paper-based microfluidics are promising formats for applications that require portable miniaturized fluid handling such as point-of-care testing. These two formats deployed in isolation, however, have inherent limitations that hamper their capabilities and versatility. Here, we present the convergence of 3D printed and paper formats into hybrid devices that overcome many of these limitations, while capitalizing on their respective strengths. Hybrid channels were fabricated with no specialized equipment except a commercial 3D printer. Finger-operated reservoirs and valves capable of fully-reversible dispensation and actuation were designed for intuitive operation without equipment or training. Components were then integrated into a versatile multicomponent device capable of dynamic fluid pathing. These results are an early demonstration of how 3D printed and paper microfluidics can be hybridized into versatile lab-on-chip devices.
Collapse
Affiliation(s)
- Arthur Zargaryan
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Nathalie Farhoudi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - George Haworth
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julian F Ashby
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Sam H Au
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
11
|
Ćatić N, Wells L, Al Nahas K, Smith M, Jing Q, Keyser UF, Cama J, Kar-Narayan S. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. APPLIED MATERIALS TODAY 2020; 19:100618. [PMID: 33521242 PMCID: PMC7821597 DOI: 10.1016/j.apmt.2020.100618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microfluidics has emerged as a powerful analytical tool for biology and biomedical research, with uses ranging from single-cell phenotyping to drug discovery and medical diagnostics, and only small sample volumes required for testing. The ability to rapidly prototype new designs is hugely beneficial in a research environment, but the high cost, slow turnaround, and wasteful nature of commonly used fabrication techniques, particularly for complex multi-layer geometries, severely impede the development process. In addition, microfluidic channels in most devices currently play a passive role and are typically used to direct flows. The ability to "functionalize" the channels with different materials in precise spatial locations would be a major advantage for a range of applications. This would involve incorporating functional materials directly within the channels that can partake in, guide or facilitate reactions in precisely controlled microenvironments. Here we demonstrate the use of Aerosol Jet Printing (AJP) to rapidly produce bespoke molds for microfluidic devices with a range of different geometries and precise "in-channel" functionalization. We show that such an advanced microscale additive manufacturing method can be used to rapidly design cost-efficient and customized microfluidic devices, with the ability to add functional coatings at specific locations within the microfluidic channels. We demonstrate the functionalization capabilities of our technique by specifically coating a section of a microfluidic channel with polyvinyl alcohol to render it hydrophilic. This versatile microfluidic device prototyping technique will be a powerful aid for biological and bio-medical research in both academic and industrial contexts.
Collapse
Affiliation(s)
- Nordin Ćatić
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK
| | - Laura Wells
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK
| | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Michael Smith
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK
| | - Qingshen Jing
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Corresponding author at: Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sohini Kar-Narayan
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK
- Corresponding author at: Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| |
Collapse
|
12
|
Chen X, Wang L, Lou J. Nanotechnology Strategies for the Analysis of Circulating Tumor DNA: A Review. Med Sci Monit 2020; 26:e921040. [PMID: 32200389 PMCID: PMC7111132 DOI: 10.12659/msm.921040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor DNA (ctDNA) describes the fragmented DNA released from tumor cells into the blood. The ctDNA may have the same genetic changes as the primary tumor. Currently, ctDNA has become a popular biomarker for diagnosis, treatment, real-time clinical response monitoring, and prognosis, for solid tumors. Detection of ctDNA is minimally invasive, and repeat sampling can easily be performed. However, due to its low quality and short DNA fragment length, ctDNA detection still faces challenges and requires highly sensitive analytical techniques. Recently, liquid biopsies for the analysis of circulating tumor cells (CTCs) and circulating tumor-derived exosomes have been studied, and nanotechnology techniques have rapidly developed. Compared to traditional analytical methods, these nanotechnology-based platforms have the advantages of sensitivity, multiplex detection, simplicity, miniaturization, and automation, which support their potential use in clinical practice. This review aims to discuss the recent nanotechnological strategies for ctDNA analysis and the design of reliable techniques for ctDNA detection and to identify the potential clinical applications.
Collapse
Affiliation(s)
- Xiaomin Chen
- Nano Biomedical Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (mainland).,Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
13
|
Kong T, Shum HC, Weitz DA. The Fourth Decade of Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000070. [PMID: 32133792 DOI: 10.1002/smll.202000070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, 518000, Guangdong, China
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
14
|
Ehrlich K, Parker HE, McNicholl DK, Reid P, Reynolds M, Bussiere V, Crawford G, Deighan A, Garrett A, Kufcsák A, Norberg DR, Spennati G, Steele G, Szoor-McElhinney H, Jimenez M. Demonstrating the Use of Optical Fibres in Biomedical Sensing: A Collaborative Approach for Engagement and Education. SENSORS (BASEL, SWITZERLAND) 2020; 20:E402. [PMID: 31936827 PMCID: PMC7014119 DOI: 10.3390/s20020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022]
Abstract
This paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact. With the aim of improving lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway. The activity comprises an inexpensive educational tool (<$70) adapted from a clinical optical endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created by high school science teachers and researchers in a collaborative way that can be implemented into any engagement development process.
Collapse
Affiliation(s)
- Katjana Ehrlich
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Helen E. Parker
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Duncan K. McNicholl
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Science, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Peter Reid
- College of Science and Engineering Engagement Team, King’s Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK; (P.R.); (M.R.)
| | - Mark Reynolds
- College of Science and Engineering Engagement Team, King’s Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK; (P.R.); (M.R.)
| | - Vincent Bussiere
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | | | | | - Alice Garrett
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | - András Kufcsák
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Dominic R. Norberg
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Giulia Spennati
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| | - Gregor Steele
- Scottish Schools Education Research Centre (SSERC), Dunfermline KY11 8UU, UK;
| | - Helen Szoor-McElhinney
- EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.K.); (D.R.N.); (H.S.-M.)
| | - Melanie Jimenez
- James Watt School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, UK; (V.B.); (A.G.); (G.S.); (M.J.)
| |
Collapse
|
15
|
Taylor AW, Harris DM. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:116102. [PMID: 31779402 DOI: 10.1063/1.5123130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidics provides a platform for efficient and transportable microanalysis, catalyzing advancements in fields such as biochemistry, materials science, and microbial ecology. While the analysis is cost-effective, standard device fabrication techniques are disproportionately expensive and specialized. A commercially available desktop cutting plotter provides an accessible method for rapidly fabricating microfluidic devices at extremely low costs. The optimized technique described in the present work enables fabrication of microchannels with dimensions as small as ∼100 μm. Straightness of channel walls is comparable to other common fabrication techniques but achieved here at a fraction of the cost and fabrication time. Solute dispersion experiments are performed using the rapidly prototyped channels to measure the effective dispersion coefficient in laminar flow through rectangular channels. The results of these experiments compare favorably to predictions from classical Taylor-Aris dispersion theory. This note provides all necessary tools for researchers and educators to seamlessly apply the desktop cutter fabrication technique. Materials list, fabrication instructions, and detailed channel characterization results are available in the supplementary material.
Collapse
Affiliation(s)
- Abigail W Taylor
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Daniel M Harris
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|