1
|
Wang Z, Chen M, Wu J, Ji X, Zeng L, Peng J, Yan J, Kornyshev AA, Mao B, Feng G. Constant-Potential Modeling of Electrical Double Layers Accounting for Electron Spillover. PHYSICAL REVIEW LETTERS 2025; 134:046201. [PMID: 39951602 DOI: 10.1103/physrevlett.134.046201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025]
Abstract
Constant-potential molecular dynamics (MD) simulations are indispensable for understanding the structure, capacitance, and dynamics of electrical double layers (EDLs) at the atomistic level. However, the classical constant-potential method, relying on the so-called "fluctuating charges" to keep electrode equipotential, overlooks quantum effects on the electrode and always underestimates EDL capacitance for typical metal electrode and aqueous electrolyte interfaces. Here, we propose a constant potential method accounting for electron spillover on the outermost nuclei of the electrode. For EDLs at Au(111) electrodes, our MD simulation reveals bell-shaped capacitance curves in magnitude and shape both quantitatively consistent with experiments. It unveils the electrode-polarization-dependent local electric fields, agreeing with experimental observations of redshift vibration of interfacial water under negative polarization and predicting a blueshift under positive polarization, and further identifies geometry dependence of two timescales during charging.
Collapse
Affiliation(s)
- Zhenxiang Wang
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Ming Chen
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiedu Wu
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Xiangyu Ji
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Liang Zeng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiaxing Peng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiawei Yan
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Alexei A Kornyshev
- Imperial College London, Department of Chemistry, Faculty of Natural Sciences, Molecular Sciences Research Hub, White City Campus, W12 0BZ, London, United Kingdom
| | - Bingwei Mao
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Guang Feng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| |
Collapse
|
2
|
Coello Escalante L, Limmer DT. Microscopic Origin of Twist-Dependent Electron Transfer Rate in Bilayer Graphene. NANO LETTERS 2024; 24:14868-14874. [PMID: 39527706 DOI: 10.1021/acs.nanolett.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2024]
Abstract
Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated by the twist angle in bilayer graphene electrodes. By establishing a connection between the twist angle and the screening length of charge carriers within the electrode, we investigate how tunable metallicity modifies the statistics of the electron transfer energy gap. Constant potential molecular simulations show that the activation free energy for electron transfer increases with screening length, leading to a non-monotonic dependence on the twist angle. The twist angle alters the density of states, tuning the number of thermally accessible channels for electron transfer and the reorganization energy by affecting the stability of the vertically excited state through attenuated image charge interactions. Understanding these effects allows us to express the Marcus rate of interfacial electron transfer as a function of the twist angle in a manner consistent with experimental observations.
Collapse
Affiliation(s)
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- MSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- CSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Müser MH. Dissipative split-charge formalism: Ohm's law, Nyquist noise, and non-contact friction. J Chem Phys 2024; 161:184112. [PMID: 39530366 DOI: 10.1063/5.0242185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The split-charge equilibration method is extended to describe dissipative charge transfer similarly as the Drude model, whereby the complex-valued frequency-dependent dielectric permittivities or conductivities of dielectrics and metals can be mimicked at non-zero frequencies. To demonstrate its feasibility, a resistor-capacitor circuit is simulated using an all-atom representation for the resistor and capacitor. The dynamics reproduce the expected charging process and Nyquist noise, the latter resulting from the thermal voltages acting on individual split charges. The method bears promise to model friction caused by the motion of charged particles past metallic or highly polarizable media.
Collapse
Affiliation(s)
- Martin H Müser
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Reinauer A, Kondrat S, Holm C. Electrolytes in conducting nanopores: Revisiting constant charge and constant potential simulations. J Chem Phys 2024; 161:104101. [PMID: 39248380 DOI: 10.1063/5.0226959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Simulating electrolyte-electrode systems poses challenges due to the need to account for the electrode's response to ion movements in order to maintain a constant electrode potential, which slows down the simulations. To circumvent this, computationally more efficient constant charge (CC) simulations are sometimes employed. However, the accuracy of CC simulations in capturing the behavior of electrolyte-electrode systems remains unclear, especially for microporous electrodes. Herein, we consider electrolyte-filled slit nanopores and systematically analyze the in-pore ion structure and diffusivity using CC and constant potential simulations. Our results indicate that CC simulations provide comparable pore occupancies at high bulk ion densities and for highly charged pores, but they fail to accurately describe the ion structure and dynamics, particularly in quasi-2D (single-layer) pores and at low ion densities. We attribute these results to the superionic state emerging in conducting nanoconfinement and its interplay with excluded volume interactions.
Collapse
Affiliation(s)
- Alexander Reinauer
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany
| | - Svyatoslav Kondrat
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Goloviznina K, Fleischhaker J, Binninger T, Rotenberg B, Ers H, Ivanistsev V, Meissner R, Serva A, Salanne M. Accounting for the Quantum Capacitance of Graphite in Constant Potential Molecular Dynamics Simulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405230. [PMID: 39096068 DOI: 10.1002/adma.202405230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Molecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.
Collapse
Affiliation(s)
- Kateryna Goloviznina
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Johann Fleischhaker
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Institute of Polymers and Composites, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Tobias Binninger
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293, Montpellier, France
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Benjamin Rotenberg
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Heigo Ers
- University of Tartu, Ravila 14a, Tartu, 51004, Estonia
| | | | - Robert Meissner
- Institute of Polymers and Composites, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Alessandra Serva
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Mathieu Salanne
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
- Institut Universitaire de France (IUF), 75231, Paris, France
| |
Collapse
|
6
|
Grisafi A, Salanne M. Accelerating QM/MM simulations of electrochemical interfaces through machine learning of electronic charge densities. J Chem Phys 2024; 161:024109. [PMID: 38984956 DOI: 10.1063/5.0218379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
A crucial aspect in the simulation of electrochemical interfaces consists in treating the distribution of electronic charge of electrode materials that are put in contact with an electrolyte solution. Recently, it has been shown how a machine-learning method that specifically targets the electronic charge density, also known as SALTED, can be used to predict the long-range response of metal electrodes in model electrochemical cells. In this work, we provide a full integration of SALTED with MetalWalls, a program for performing classical simulations of electrochemical systems. We do so by deriving a spherical harmonics extension of the Ewald summation method, which allows us to efficiently compute the electric field originated by the predicted electrode charge distribution. We show how to use this method to drive the molecular dynamics of an aqueous electrolyte solution under the quantum electric field of a gold electrode, which is matched to the accuracy of density-functional theory. Notably, we find that the resulting atomic forces present a small error of the order of 1 meV/Å, demonstrating the great effectiveness of adopting an electron-density path in predicting the electrostatics of the system. Upon running the data-driven dynamics over about 3 ns, we observe qualitative differences in the interfacial distribution of the electrolyte with respect to the results of a classical simulation. By greatly accelerating quantum-mechanics/molecular-mechanics approaches applied to electrochemical systems, our method opens the door to nanosecond timescales in the accurate atomistic description of the electrical double layer.
Collapse
Affiliation(s)
- Andrea Grisafi
- Institut Sciences du Calcul et des Données, ISCD, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut Universitaire de France (IUF), F-75231 Paris, France
| |
Collapse
|
7
|
Zhai Z, Chen Q, Wang Y, Ren W, Guo P. Orientational dynamics of the water layer adjacent to Au surface accelerated by polarization effect. J Chem Phys 2024; 160:234704. [PMID: 38884408 DOI: 10.1063/5.0198777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
The orientation and rearrangement of water on a gold electrode significantly influences its physicochemical heterogeneous performance. Despite numerous experimental and theoretical studies aimed at uncovering the structural characteristics of interfacial water, the orientational behavior resulting from electrode-induced rearrangements remains a subject of ongoing debate. Here, we employed molecular dynamics simulations to investigate the adaptive structure and dynamics properties of interfacial water on Au(111) and Au(100) surfaces by considering a polarizable model for Au atoms in comparison with the non-polarizable model. Compared to the nonpolarizable systems, the polarization effect can enhance the interaction between water molecules and the gold surface. Unexpectedly, the rotational dynamics directly associated with the orientational behavior of water adjacent to the gold surface is accelerated, thereby reducing the hydrogen bond lifetime. The underlying mechanism for this anomalous phenomenon originates from the polarization effect, which induces the attraction of the positive hydrogen atoms to the surface by the negative image charge. This leads to a change in orientation that disrupts the hydrogen bonds in the first water layer and subsequently accelerates reorientation dynamics of water molecules adjacent to the gold surface. These results shed light on the intricate interplay between polarization effects and water molecule dynamics on metal surfaces, establishing the foundation for the rational regulation of the orientation of interfacial water.
Collapse
Affiliation(s)
- Zhidong Zhai
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Qun Chen
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Yin Wang
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Pan Guo
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
9
|
Serva A, Pezzotti S. S.O.S: Shape, orientation, and size tune solvation in electrocatalysis. J Chem Phys 2024; 160:094707. [PMID: 38426524 DOI: 10.1063/5.0186925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Current models to understand the reactivity of metal/aqueous interfaces in electrochemistry, e.g., volcano plots, are based on the adsorption free energies of reactants and products, which are often small hydrophobic molecules (such as in CO2 and N2 reduction). Calculations played a major role in the quantification and comprehension of these free energies in terms of the interactions that the reactive species form with the surface. However, solvation free energies also come into play in two ways: (i) by modulating the adsorption free energy together with solute-surface interactions, as the solute has to penetrate the water adlayer in contact with the surface and get partially desolvated (which costs free energy); (ii) by regulating transport across the interface, i.e., the free energy profile from the bulk to the interface, which is strongly non-monotonic due to the unique nature of metal/aqueous interfaces. Here, we use constant potential molecular dynamics to study the solvation contributions, and we uncover huge effects of the shape and orientation (on top of the already known size effect) of small hydrophobic and amphiphilic solutes on their adsorption free energy. We propose a minimal theoretical model, the S.O.S. model, that accounts for size, orientation, and shape effects. These novel aspects are rationalized by recasting the concepts at the base of the Lum-Chandler-Weeks theory of hydrophobic solvation (for small solutes in the so-called volume-dominated regime) into a layer-by-layer form, where the properties of each interfacial region close to the metal are explicitly taken into account.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
10
|
Liao X, Chen S, Chen J, Li Y, Wang W, Lu T, Chen Z, Cao L, Wang Y, Huang R, Sun X, Lv R, Wang H. Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries. Proc Natl Acad Sci U S A 2024; 121:e2317796121. [PMID: 38346201 PMCID: PMC10895276 DOI: 10.1073/pnas.2317796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.
Collapse
Affiliation(s)
- Xuelong Liao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shan Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youzeng Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiantian Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lixin Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoting Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Runyu Lv
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huan Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Sitlapersad RS, Thornton AR, den Otter WK. Charging and discharging a supercapacitor in molecular simulations. J Chem Phys 2024; 160:044111. [PMID: 38275193 DOI: 10.1063/5.0177103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
As the world moves more toward unpredictable renewable energy sources, better energy storage devices are required. Supercapacitors are a promising technology to meet the demand for short-term, high-power energy storage. Clearly, understanding their charging and discharging behaviors is essential to improving the technology. Molecular Dynamics (MD) simulations provide microscopic insights into the complex interplay between the dynamics of the ions in the electrolyte and the evolution of the charge distributions on the electrodes. Traditional MD simulations of (dis)charging supercapacitors impose a pre-determined evolving voltage difference between the electrodes, using the Constant Potential Method (CPM). Here, we present an alternative method that explicitly simulates the charge flow to and from the electrodes. For a disconnected capacitor, i.e., an open circuit, the charges are allowed to redistribute within each electrode while the sum charges on both electrodes remain constant. We demonstrate, for a model capacitor containing an aqueous salt solution, that this method recovers the charge-potential curve of CPM simulations. The equilibrium voltage fluctuations are related to the differential capacitance. We next simulate a closed circuit by introducing equations of motion for the sum charges, by explicitly accounting for the external circuit element(s). Charging and discharging of the model supercapacitor via a resistance proceed by double exponential processes, supplementing the usual time scale set by the electrolyte dynamics with a novel time scale set by the external circuit. Finally, we propose a simple equivalent circuit that reproduces the main characteristics of this supercapacitor.
Collapse
Affiliation(s)
- Ranisha S Sitlapersad
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Anthony R Thornton
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
12
|
Lin X, Tee SR, Kent PRC, Searles DJ, Cummings PT. Development of Heteroatomic Constant Potential Method with Application to MXene-Based Supercapacitors. J Chem Theory Comput 2024; 20:651-664. [PMID: 38211325 PMCID: PMC10809414 DOI: 10.1021/acs.jctc.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
We describe a method for modeling constant-potential charges in heteroatomic electrodes, keeping pace with the increasing complexity of electrode composition and nanostructure in electrochemical research. The proposed "heteroatomic constant potential method" (HCPM) uses minimal added parameters to handle differing electronegativities and chemical hardnesses of different elements, which we fit to density functional theory (DFT) partial charge predictions in this paper by using derivative-free optimization. To demonstrate the model, we performed molecular dynamics simulations using both HCPM and conventional constant potential method (CPM) for MXene electrodes with Li-TFSI/AN (lithium bis(trifluoromethane sulfonyl)imide/acetonitrile)-based solvent-in-salt electrolytes. Although the two methods show similar accumulated charge storage on the electrodes, the results indicated that HCPM provides a more reliable depiction of electrode atom charge distribution and charge response compared with CPM, accompanied by increased cationic attraction to the MXene surface. These results highlight the influence of elemental composition on electrode performance, and the flexibility of our HCPM opens up new avenues for studying the performance of diverse heteroatomic electrodes including other types of MXenes, two-dimensional materials, metal-organic frameworks (MOFs), and doped carbonaceous electrodes.
Collapse
Affiliation(s)
- Xiaobo Lin
- Multiscale
Modeling and Simulation Center, Vanderbilt
University, Nashville, Tennessee 37235-1604, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
| | - Shern R. Tee
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul R. C. Kent
- Computational
Sciences and Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter T. Cummings
- Multiscale
Modeling and Simulation Center, Vanderbilt
University, Nashville, Tennessee 37235-1604, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
- School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, Scotland EH14 4AS, U.K.
| |
Collapse
|
13
|
Sitlapersad RS, Thornton AR, den Otter WK. A simple efficient algorithm for molecular simulations of constant potential electrodes. J Chem Phys 2024; 160:034107. [PMID: 38235800 DOI: 10.1063/5.0171502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Increasingly, society requires high power, high energy storage devices for applications ranging from electric vehicles to buffers on the electric grid. Supercapacitors are a promising contribution to meeting these demands, though there still remain unsolved practical problems. Molecular dynamics simulations can shed light on the relevant molecular level processes in electric double layer capacitors, but these simulations are computationally very demanding. Our focus here is on the algorithmic complexity of the constant potential method (CPM), which uses dedicated electrostatics solvers to maintain a fixed potential difference between two conducting electrodes. We show how any standard electrostatics solver-capable of calculating the energies and forces on all atoms-can be used to implement CPM with a minimum of coding. As an example, we compare our generalized implementation of CPM, based on invocations of the particle-particle-particle-mesh routine of the Large-scale Atomic/Molecular Massively Parallel Simulator, with a traditional implementation based on a dedicated re-implementation of Ewald summation. Both methods yield comparable results on four test systems, with the former achieving a substantial gain in speed and improved scalability. The step from dedicated electrostatic solvers to generic routines is made possible by noting that CPM's traditional narrow Gaussian point-spread of atomic charges on the electrodes effectively endows point-like atoms with chemical hardness, i.e., an intra-atomic energy quadratic in the charge.
Collapse
Affiliation(s)
- Ranisha S Sitlapersad
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Anthony R Thornton
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
14
|
Becker M, Loche P, Rezaei M, Wolde-Kidan A, Uematsu Y, Netz RR, Bonthuis DJ. Multiscale Modeling of Aqueous Electric Double Layers. Chem Rev 2024; 124:1-26. [PMID: 38118062 PMCID: PMC10785765 DOI: 10.1021/acs.chemrev.3c00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Majid Rezaei
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Institute
of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | | | - Yuki Uematsu
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, 820-8502 Iizuka, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute
of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
15
|
Wang J, Li H, Tavakol M, Serva A, Nener B, Parish G, Salanne M, Warr GG, Voïtchovsky K, Atkin R. Ions Adsorbed at Amorphous Solid/Solution Interfaces Form Wigner Crystal-like Structures. ACS NANO 2024; 18:1181-1194. [PMID: 38117206 DOI: 10.1021/acsnano.3c11349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2023]
Abstract
When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia
| | - Mahdi Tavakol
- Department of Physics, Durham University, Durham DH1 3LE, U.K
| | - Alessandra Serva
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Paris F-75005, France
| | - Brett Nener
- School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Giacinta Parish
- School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Paris F-75005, France
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney 2006, Australia
| | | | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
16
|
Jiménez-Ángeles F, Ehlen A, Olvera de la Cruz M. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors. Faraday Discuss 2023; 246:576-591. [PMID: 37450272 DOI: 10.1039/d3fd00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/13/2023]
Abstract
Layered materials that perform mixed electron and ion transport are promising for energy harvesting, water desalination, and bioinspired functionalities. These functionalities depend on the interaction between ionic and electronic charges on the surface of materials. Here we investigate ion transport by an external electric field in an electrolyte solution confined in slit-like channels formed by two surfaces separated by distances that fit only a few water layers. We study different electrolyte solutions containing monovalent, divalent, and trivalent cations, and we consider walls made of non-polarizable surfaces and conductors. We show that considering the surface polarization of the confining surfaces can result in a significant increase in ionic conduction. The ionic conductivity is increased because the conductors' screening of electrostatic interactions enhances ionic correlations, leading to faster collective transport within the slit. While important, the change in water's dielectric constant in confinement is not enough to explain the enhancement of ion transport in polarizable slit-like channels.
Collapse
Affiliation(s)
- Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Ali Ehlen
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
17
|
Ntim S, Sulpizi M. Molecular dynamics simulations of electrified interfaces including the metal polarisation. Phys Chem Chem Phys 2023; 25:22619-22625. [PMID: 37555300 DOI: 10.1039/d3cp01472j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/10/2023]
Abstract
Understanding electrified interfaces requires an accurate description of the electric double layer which also takes into account the metal polarisation. Here we present a simple approach to the molecular dynamics simulation of electrified interfaces which combines fixed charges and a core-shell model for the description of the polarisable electron density on the metal electrode. The approach has been applied to the Au(111) surface in contact with a NaCl aqueous electrolyte solution in order to calculate the differential capacitance and to gain a detailed picture of the charging mechanism. Metal polarisation enhances the interfacial capacitance with a difference between the cathode and anode. In particular, we find that the influence of the metal polarisation on the electric double layer depends on the ion's solvation shell structure and, for the investigated interface, is more important at the cathode, where it modifies the sodium ion distribution.
Collapse
Affiliation(s)
- Samuel Ntim
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany
| | - Marialore Sulpizi
- Institut für Physik, Ruhr Universität Bochum, Universitätstrasse 150, 44801 Bochum, Germany.
| |
Collapse
|
18
|
Dufils T, Knijff L, Shao Y, Zhang C. PiNNwall: Heterogeneous Electrode Models from Integrating Machine Learning and Atomistic Simulation. J Chem Theory Comput 2023; 19:5199-5209. [PMID: 37477645 PMCID: PMC10413855 DOI: 10.1021/acs.jctc.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Indexed: 07/22/2023]
Abstract
Electrochemical energy storage always involves the capacitive process. The prevailing electrode model used in the molecular simulation of polarizable electrode-electrolyte systems is the Siepmann-Sprik model developed for perfect metal electrodes. This model has been recently extended to study the metallicity in the electrode by including the Thomas-Fermi screening length. Nevertheless, a further extension to heterogeneous electrode models requires introducing chemical specificity, which does not have any analytical recipes. Here, we address this challenge by integrating the atomistic machine learning code (PiNN) for generating the base charge and response kernel and the classical molecular dynamics code (MetalWalls) dedicated to the modeling of electrochemical systems, and this leads to the development of the PiNNwall interface. Apart from the cases of chemically doped graphene and graphene oxide electrodes as shown in this study, the PiNNwall interface also allows us to probe polarized oxide surfaces in which both the proton charge and the electronic charge can coexist. Therefore, this work opens the door for modeling heterogeneous and complex electrode materials often found in energy storage systems.
Collapse
Affiliation(s)
- Thomas Dufils
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Lisanne Knijff
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Yunqi Shao
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Chao Zhang
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| |
Collapse
|
19
|
Pivnic K, de Souza JP, Kornyshev AA, Urbakh M, Bazant MZ. Orientational Ordering in Nano-confined Polar Liquids. NANO LETTERS 2023. [PMID: 37285463 DOI: 10.1021/acs.nanolett.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Water and other polar liquids exhibit nanoscale structuring near charged interfaces. When a polar liquid is confined between two charged surfaces, the interfacial solvent layers begin to overlap, resulting in solvation forces. Here, we perform molecular dynamics simulations of polar liquids with different dielectric constants and molecular shapes and sizes confined between charged surfaces, demonstrating strong orientational ordering in the nanoconfined liquids. To rationalize the observed structures, we apply a coarse-grained continuum theory that captures the orientational ordering and solvation forces of those liquids. Our findings reveal the subtle behavior of different nanoconfined polar liquids and establish a simple law for the decay length of the interfacial orientations of the solvents, which depends on their molecular size and polarity. These insights shed light on the nature of solvation forces, which are important in colloid and membrane science, scanning probe microscopy, and nano-electrochemistry.
Collapse
Affiliation(s)
- Karina Pivnic
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Di Pasquale N, Finney AR, Elliott JD, Carbone P, Salvalaglio M. Constant chemical potential-quantum mechanical-molecular dynamics simulations of the graphene-electrolyte double layer. J Chem Phys 2023; 158:134714. [PMID: 37031135 DOI: 10.1063/5.0138267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/10/2023] Open
Abstract
We present the coupling of two frameworks-the pseudo-open boundary simulation method known as constant potential molecular dynamics simulations (CμMD), combined with quantum mechanics/molecular dynamics (QMMD) calculations-to describe the properties of graphene electrodes in contact with electrolytes. The resulting CμQMMD model was then applied to three ionic solutions (LiCl, NaCl, and KCl in water) at bulk solution concentrations ranging from 0.5 M to 6 M in contact with a charged graphene electrode. The new approach we are describing here provides a simulation protocol to control the concentration of electrolyte solutions while including the effects of a fully polarizable electrode surface. Thanks to this coupling, we are able to accurately model both the electrode and solution side of the double layer and provide a thorough analysis of the properties of electrolytes at charged interfaces, such as the screening ability of the electrolyte and the electrostatic potential profile. We also report the calculation of the integral electrochemical double layer capacitance in the whole range of concentrations analyzed for each ionic species, while the quantum mechanical simulations provide access to the differential and integral quantum capacitance. We highlight how subtle features, such as the adsorption of potassium graphene or the tendency of the ions to form clusters contribute to the ability of graphene to store charge, and suggest implications for desalination.
Collapse
Affiliation(s)
- Nicodemo Di Pasquale
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Aaron R Finney
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Joshua D Elliott
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paola Carbone
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
21
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
22
|
Pireddu G, Rotenberg B. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098001. [PMID: 36930930 DOI: 10.1103/physrevlett.130.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation relation for the capacitance recovered in the low-frequency limit and provide an illustration on water-gold nanocapacitors. This Letter opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
23
|
Robert A, Berthoumieux H, Bocquet ML. Coupled Interactions at the Ionic Graphene-Water Interface. PHYSICAL REVIEW LETTERS 2023; 130:076201. [PMID: 36867792 DOI: 10.1103/physrevlett.130.076201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
We compute ionic free energy adsorption profiles at an aqueous graphene interface by developing a self-consistent approach. To do so, we design a microscopic model for water and put the liquid on an equal footing with the graphene described by its electronic band structure. By evaluating progressively the electronic and dipolar coupled electrostatic interactions, we show that the coupling level including mutual graphene and water screening permits one to recover remarkably the precision of extensive quantum simulations. We further derive the potential of mean force evolution of several alkali cations.
Collapse
Affiliation(s)
- Anton Robert
- PASTEUR, Département de chimie, École normale supérieure, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hélène Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Marie-Laure Bocquet
- LPENS, École normale supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
24
|
Ers H, Voroshylova IV, Pikma P, Ivaništšev VB. Double layer in ionic liquids: Temperature effect and bilayer model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
25
|
Ma J, Zhao S, Li Z. New crowding states of ionic liquid induced by configuration change of ion adsorption on charged electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
26
|
Kavokine N, Robin P, Bocquet L. Interaction confinement and electronic screening in two-dimensional nanofluidic channels. J Chem Phys 2022; 157:114703. [DOI: 10.1063/5.0102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The transport of fluids at the nanoscale is fundamental to manifold biological and industrial processes, ranging from neurotransmission to ultrafiltration. Yet, it is only recently that well-controlled channels with cross- sections as small as a few molecular diameters became an experimental reality. When aqueous electrolytes are confined within such channels, the Coulomb interactions between the dissolved ions are reinforced due to dielectric contrast at the channel walls: we dub this effect 'interaction confinement'. Yet, no systematic way of computing these confined interactions has been proposed beyond the limiting cases of perfectly metallic or perfectly insulating channel walls. Here, we introduce a new formalism, based on the so-called surface response functions, that expresses the effective Coulomb interactions within a two-dimensional channel in terms of the wall's electronic structure, described to any desired level of precision. We use it to demonstrate that in few-nanometer-wide channels, the ionic interactions can be tuned by the wall material's screening length. We illustrate this approach by implementing these interactions in brownian dynamics simulations of a strongly confined electrolyte, and show that the resulting ionic conduction can be adjusted between Ohm's law and a Wien effect behavior. Our results provide a quantitative approach to tuning nanoscale ion transport through the electronic properties of the channel wall material.
Collapse
Affiliation(s)
| | - Paul Robin
- Ecole Normale Supérieure Département de Physique, France
| | | |
Collapse
|
27
|
Loche P, Scalfi L, Ali Amu M, Schullian O, Bonthuis D, Rotenberg B, Netz RR. Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces. J Chem Phys 2022; 157:094707. [DOI: 10.1063/5.0101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Using classical molecular dynamics simulations we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane and water vapor. For graphite we compare metallic and non-metallic versions. At the vapor-liquid water and hexane-water interfaces the laterally averaged dielectric profiles are significantly broadened due to interfacial roughness and only slightly anisotropic. In contrast, at the rigid graphene surface the dielectric profiles are strongly anisotropic and the perpendicular dielectric profile exhibits pronounced oscillations and sign changes. The interfacial dielectric excess, characterized by the shift of the dielectric-dividing-surface with respect to the Gibbs-dividing-surface, is positive for all surfaces, showing that water has an enhanced dielectric response at hydrophobic surfaces. The dielectric-dividing-surface positions vary significantly among the different surfaces, which points to pronounced surface-specific dielectric behavior. The interfacial repulsion of a chloride ion is shown to be dominated by electrostatic interactions for the soft fluid-fluid interfaces and by non-electrostatic Lennard-Jones interactions for the rigid graphene-water interface. A linear tensorial dielectric model for the ion-interface interaction with sharp dielectric interfaces located on the dielectric-dividing-surface positions works well for graphene but fails for vapor and hexane, because these interfaces are smeared out. The repulsion of chloride from the metallic and non-metallic graphite versions differs very little, which reflects the almost identical interfacial water structure and can be understood based on linear continuum dielectric theory. Interface flexibility shows up mostly in the non-linear Coulomb part of the ion-interface interaction, which changes significantly close to the interfaces and signals the breakdown of linear dielectric continuum theory.
Collapse
Affiliation(s)
| | - Laura Scalfi
- Freie Universitat Berlin Fachbereich Physik, Germany
| | | | - Otto Schullian
- Max Planck Institute of Colloids and Interfaces, Germany
| | - Douwe Bonthuis
- Institute of Theoretical and Computational Physics, Graz University of Technology Institute of Theoretical and Computational Physics, Austria
| | | | - Roland R. Netz
- Physics, Freie Universitat Berlin Fachbereich Physik, Germany
| |
Collapse
|
28
|
Langford L, Winner N, Hwang A, Williams H, Vergari L, Scarlat RO, Asta M. Constant-Potential Molecular Dynamics Simulations of Molten-Salt Double Layers for FLiBe and FLiNaK. J Chem Phys 2022; 157:094705. [DOI: 10.1063/5.0097697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
We report the results of constant-potential molecular dynamics simulations of the double- layer interface between molten FLiBe and FLiNaK fluoride mixtures and idealized solid electrodes. Employing methods similar to those used in studies of chloride double layers, we compute the structure and differential capacitance of molten fluoride electric double layers as a function of applied voltage. The role of molten salt structure is probed through comparisons between FLiBe and FLiNaK, which serve as models for strong and weak associate- forming salts, respectively. In FLiBe, screening involves changes in Be-F-Be angles and alignment of the oligomers parallel to the electrode, while in FLiNaK the electric field is screened mainly by rearrangement of individual ions, predominantly the polarizable potassium cation.
Collapse
Affiliation(s)
- Luke Langford
- Materials Science and Engineering, University of California Berkeley, United States of America
| | | | - Andrea Hwang
- University of California Berkeley, United States of America
| | - Haley Williams
- University of California Berkeley, United States of America
| | - Lorenzo Vergari
- Nuclear Engineering, University of California Berkeley, United States of America
| | | | - Mark Asta
- Department of Materials Science and Engineering, University of California Berkeley, United States of America
| |
Collapse
|
29
|
Ahrens-Iwers LJ, Janssen M, Tee SR, Meißner RH. ELECTRODE: An electrochemistry package for atomistic simulations. J Chem Phys 2022; 157:084801. [DOI: 10.1063/5.0099239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Constant potential methods (CPM) enable computationally efficient simulations of the solid-liquid interface at conducting electrodes in molecular dynamics (MD). They have been successfully used, for example, to realistically model the behavior of ionic liquids or water-in-salt electrolytes in supercapacitors and batteries. The CPM models conductive electrodes by updating charges of individual electrode atoms according to the applied electric potential and the (time-dependent) local electrolyte structure. Here we present a feature-rich CPM implementation, called ELECTRODE, for the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), which includes a constrained charge method and a thermo-potentiostat. The ELECTRODE package also contains a finite-field approach, multiple corrections for non-periodic boundary conditions of the particle-particle particle-mesh solver, and a Thomas-Fermi model for using non-ideal metals as electrodes. We demonstrate the capabilities of this implementation for a parallel-plate electrical double-layer capacitor, for which we have investigated the charging times with the different implemented methods and found an interesting relationship between water and ionic dipole relaxations. To prove the validity of the one-dimensional correction for the long-range electrostatics, we estimated the vacuum capacitance of two co-axial carbon nanotubes and compared it to structureless cylinders, for which an analytical expression exists. In summary, the ELECTRODE package enables efficient electrochemical simulations using state-of-the-art methods, allowing one to simulate even heterogeneous electrodes. Moreover, it allows unveiling more rigorously how electrode curvature affects the capacitance with the one-dimensional correction.
Collapse
Affiliation(s)
| | | | - Shern Ren Tee
- The University of Queensland Australian Institute for Bioengineering and Nanotechnology, Australia
| | | |
Collapse
|
30
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
31
|
Tee SR, Searles DJ. Fully periodic, computationally efficient constant potential molecular dynamics simulations of ionic liquid supercapacitors. J Chem Phys 2022; 156:184101. [DOI: 10.1063/5.0086986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Molecular dynamics (MD) simulations of complex electrochemical systems, such as ionic liquid supercapacitors, are increasingly including the constant potential method (CPM) to model conductive electrodes at a specified potential difference, but the inclusion of CPM can be computationally expensive. We demonstrate the computational savings available in CPM MD simulations of ionic liquid supercapacitors when the usual non-periodic slab geometry is replaced with fully periodic boundary conditions. We show how a doubled cell approach, previously used in non-CPM MD simulations of charged interfaces, can be used to enable fully periodic CPM MD simulations. Using either a doubled cell approach or a finite field approach previously reported by others, fully periodic CPM MD simulations produce comparable results to the traditional slab geometry simulations with a nearly double speedup in computational time. Indeed, these savings can offset the additional cost of the CPM algorithm, resulting in periodic CPM MD simulations that are computationally competitive with the non-periodic, fixed charge equivalent simulations for the ionic liquid supercapacitors studied here.
Collapse
Affiliation(s)
- Shern R. Tee
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J. Searles
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Sundararaman R, Vigil-Fowler D, Schwarz K. Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chem Rev 2022; 122:10651-10674. [PMID: 35522135 PMCID: PMC10127457 DOI: 10.1021/acs.chemrev.1c00800] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Atomistic simulation of the electrochemical double layer is an ambitious undertaking, requiring quantum mechanical description of electrons, phase space sampling of liquid electrolytes, and equilibration of electrolytes over nanosecond time scales. All models of electrochemistry make different trade-offs in the approximation of electrons and atomic configurations, from the extremes of classical molecular dynamics of a complete interface with point-charge atoms to correlated electronic structure methods of a single electrode configuration with no dynamics or electrolyte. Here, we review the spectrum of simulation techniques suitable for electrochemistry, focusing on the key approximations and accuracy considerations for each technique. We discuss promising approaches, such as enhanced sampling techniques for atomic configurations and computationally efficient beyond density functional theory (DFT) electronic methods, that will push electrochemical simulations beyond the present frontier.
Collapse
Affiliation(s)
- Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Derek Vigil-Fowler
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
33
|
Shandilya A, Schwarz K, Sundararaman R. Interfacial water asymmetry at ideal electrochemical interfaces. J Chem Phys 2022; 156:014705. [PMID: 34998343 DOI: 10.1063/5.0076038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Controlling electrochemical reactivity requires a detailed understanding of the charging behavior and thermodynamics of the electrochemical interface. Experiments can independently probe the overall charge response of the electrochemical double layer by capacitance measurements and the thermodynamics of the inner layer with potential of maximum entropy measurements. Relating these properties by computational modeling of the electrochemical interface has so far been challenging due to the low accuracy of classical molecular dynamics (MD) for capacitance and the limited time and length scales of ab initio MD. Here, we combine large ensembles of long-time-scale classical MD simulations with charge response from electronic density functional theory to predict the potential-dependent capacitance of a family of ideal aqueous electrochemical interfaces with different peak capacitances. We show that while the potential of maximum capacitance varies, this entire family exhibits an electrode charge of maximum capacitance (CMC) between -2.9 and -2.2 μC/cm2, regardless of the details in the electronic response. Simulated heating of the same interfaces reveals that the entropy peaks at a charge of maximum entropy (CME) of -5.1 ± 0.6 μC/cm2, in agreement with experimental findings for metallic electrodes. The CME and CMC both indicate asymmetric response of interfacial water that is stronger for negatively charged electrodes, while the difference between CME and CMC illustrates the richness in behavior of even the ideal electrochemical interface.
Collapse
Affiliation(s)
- Abhishek Shandilya
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
34
|
Microscopic origin of the effect of substrate metallicity on interfacial free energies. Proc Natl Acad Sci U S A 2021; 118:2108769118. [PMID: 34876519 DOI: 10.1073/pnas.2108769118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
We investigate the effect of the metallic character of solid substrates on solid-liquid interfacial thermodynamics using molecular simulations. Building on the recent development of a semiclassical Thomas-Fermi model to tune the metallicity in classical molecular dynamics simulations, we introduce a thermodynamic integration framework to compute the evolution of the interfacial free energy as a function of the Thomas-Fermi screening length. We validate this approach against analytical results for empty capacitors and by comparing the predictions in the presence of an electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived in this work highlights the role of the charge distribution within the metal. We further propose a simple model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi length, which allows us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free energy with the metallic character of the substrate. This methodology opens the door to the molecular-scale study of the effect of the metallic character of the substrate on confinement-induced transitions in ionic systems, as reported in recent atomic force microscopy and surface force apparatus experiments.
Collapse
|
35
|
Pireddu G, Scalfi L, Rotenberg B. A molecular perspective on induced charges on a metallic surface. J Chem Phys 2021; 155:204705. [PMID: 34852473 DOI: 10.1063/5.0076127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode-electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
36
|
Joly L, Meißner RH, Iannuzzi M, Tocci G. Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description. ACS NANO 2021; 15:15249-15258. [PMID: 34491721 DOI: 10.1021/acsnano.1c05931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Osmotic transport in nanoconfined aqueous electrolytes provides alternative venues for water desalination and "blue energy" harvesting. The osmotic response of nanofluidic systems is controlled by the interfacial structure of water and electrolyte solutions in the so-called electrical double layer (EDL), but a molecular-level picture of the EDL is to a large extent still lacking. Particularly, the role of the electronic structure has not been considered in the description of electrolyte/surface interactions. Here, we report enhanced sampling simulations based on ab initio molecular dynamics, aiming at unravelling the free energy of prototypical ions adsorbed at the aqueous graphene and hBN interfaces, and its consequences on nanofluidic osmotic transport. Specifically, we predicted the zeta potential, the diffusio-osmotic mobility, and the diffusio-osmotic conductivity for a wide range of salt concentrations from the ab initio water and ion spatial distributions through an analytical framework based on Stokes equation and a modified Poisson-Boltzmann equation. We observed concentration-dependent scaling laws, together with dramatic differences in osmotic transport between the two interfaces, including diffusio-osmotic flow and current reversal on hBN but not on graphene. We could rationalize the results for the three osmotic responses with a simple model based on characteristic length scales for ion and water adsorption at the surface, which are quite different on graphene and on hBN. Our work provides fundamental insights into the structure and osmotic transport of aqueous electrolytes on 2D materials and explores alternative pathways for efficient water desalination and osmotic energy conversion.
Collapse
Affiliation(s)
- Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Robert H Meißner
- Hamburg University of Technology, Insitute of Polymers and Composites, Hamburg 21073, Germany
- Helmholtz-Zentrum Hereon, Institute of Surface Science, Geesthacht 21502, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
37
|
Abstract
Molecular dynamics simulations in a constant potential ensemble are an increasingly important tool to investigate charging mechanisms in next-generation energy storage devices. We present a highly efficient approach to compute electrostatic interactions in simulations employing a constant potential method (CPM) by introducing a particle-particle particle-mesh solver specifically designed for treating long-range interactions in a CPM. Moreover, we present evidence that a dipole correction term-commonly used in simulations with a slab-like geometry-must be used with caution if it is also to be used within a CPM. It is demonstrated that artifacts arising from the usage of the dipole correction term can be circumvented by enforcing a charge neutrality condition in the evaluation of the electrode charges at a given external potential.
Collapse
Affiliation(s)
| | - Robert H Meißner
- Institute of Polymers and Composites, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
38
|
Serva A, Scalfi L, Rotenberg B, Salanne M. Effect of the metallicity on the capacitance of gold-aqueous sodium chloride interfaces. J Chem Phys 2021; 155:044703. [PMID: 34340400 DOI: 10.1063/5.0060316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Electrochemistry experiments have established that the capacitance of electrode-electrolyte interfaces is much larger for good metals, such as gold and platinum, than for carbon-based materials. Despite the development of elaborate electrode interaction potentials, to date molecular dynamics simulations are not able to capture this effect. Here, we show that changing the width of the Gaussian charge distribution used to represent the atomic charges in gold is an effective way to tune its metallicity. Larger Gaussian widths lead to a capacitance of aqueous solutions (pure water and 1 M NaCl) in good agreement with recent ab initio molecular dynamics results. For pure water, the increase in the capacitance is not accompanied by structural changes, while in the presence of salt, the Na+ cations tend to adsorb significantly on the surface. For a strongly metallic gold electrode, these ions can even form inner sphere complexes on hollow sites of the surface.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
39
|
Abstract
Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
40
|
Oshiki J, Nakano H, Sato H. Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding. J Chem Phys 2021; 154:144107. [PMID: 33858148 DOI: 10.1063/5.0047992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
A proper understanding and description of the electronic response of the electrode surfaces in electrochemical systems are quite important because the interactions between the electrode surface and electrolyte give rise to unique and useful interfacial properties. Atomistic modeling of the electrodes requires not only an accurate description of the electronic response under a constant-potential condition but also computational efficiency in order to deal with systems large enough to investigate the interfacial electrolyte structures. We thus develop a self-consistent-charge density functional tight binding based method to model a pair of electrodes in electrochemical cells under the constant-potential condition. The method is more efficient than the (ab initio) density functional theory calculations so that it can treat systems as large as those studied in classical atomistic simulations. It can also describe the electronic response of electrodes quantum mechanically and more accurately than the classical counterparts. The constant-potential condition is introduced through a Legendre transformation of the electronic energy with respect to the difference in the number of electrons in the two electrodes and their electrochemical potential difference, through which the Kohn-Sham equations for each electrode are variationally derived. The method is applied to platinum electrodes faced parallel to each other under an applied voltage. The electronic response to the voltage and a charged particle is compared with the result of a classical constant-potential method based on the chemical potential equalization principle.
Collapse
Affiliation(s)
- Jun Oshiki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
41
|
Scalfi L, Coasne B, Rotenberg B. On the Gibbs-Thomson equation for the crystallization of confined fluids. J Chem Phys 2021; 154:114711. [PMID: 33752374 DOI: 10.1063/5.0044330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The Gibbs-Thomson (GT) equation describes the shift of the crystallization temperature for a confined fluid with respect to the bulk as a function of pore size. While this century old relation is successfully used to analyze experiments, its derivations found in the literature often rely on nucleation theory arguments (i.e., kinetics instead of thermodynamics) or fail to state their assumptions, therefore leading to similar but different expressions. Here, we revisit the derivation of the GT equation to clarify the system definition, corresponding thermodynamic ensemble, and assumptions made along the way. We also discuss the role of the thermodynamic conditions in the external reservoir on the final result. We then turn to numerical simulations of a model system to compute independently the various terms entering in the GT equation and compare the predictions of the latter with the melting temperatures determined under confinement by means of hyper-parallel tempering grand canonical Monte Carlo simulations. We highlight some difficulties related to the sampling of crystallization under confinement in simulations. Overall, despite its limitations, the GT equation may provide an interesting alternative route to predict the melting temperature in large pores using molecular simulations to evaluate the relevant quantities entering in this equation. This approach could, for example, be used to investigate the nanoscale capillary freezing of ionic liquids recently observed experimentally between the tip of an atomic force microscope and a substrate.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Benoît Coasne
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|