1
|
Xu J, Pham MD, Corbo V, Ponz-Sarvise M, Oni T, Öhlund D, Hwang CI. Advancing pancreatic cancer research and therapeutics: the transformative role of organoid technology. Exp Mol Med 2025; 57:50-58. [PMID: 39814914 PMCID: PMC11799150 DOI: 10.1038/s12276-024-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025] Open
Abstract
Research on pancreatic cancer has transformed with the advent of organoid technology, providing a better platform that closely mimics cancer biology in vivo. This review highlights the critical advancements facilitated by pancreatic organoid models in understanding disease progression, evaluating therapeutic responses, and identifying biomarkers. These three-dimensional cultures enable the proper recapitulation of the cellular architecture and genetic makeup of the original tumors, providing insights into the complex molecular and cellular dynamics at various stages of pancreatic ductal adenocarcinoma (PDAC). We explore the applications of pancreatic organoids in dissecting the tumor microenvironment (TME); elucidating cancer progression, metastasis, and drug resistance mechanisms; and personalizing therapeutic strategies. By overcoming the limitations of traditional 2D cultures and animal models, the use of pancreatic organoids has significantly accelerated translational research, which is promising for improving diagnostic and therapeutic approaches in clinical settings, ultimately aiming to improve the outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jihao Xu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Minh Duc Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology and Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Pamplona, Spain
| | - Tobiloba Oni
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Daniel Öhlund
- Umeå University, Department of Diagnostics and Intervention, and Wallenberg Centre for Molecular Medicine at Umeå University, Umeå, Sweden
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA.
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Andersson-Rolf A, Groot K, Korving J, Begthel H, Hanegraaf MAJ, VanInsberghe M, Salmén F, van den Brink S, Lopez-Iglesias C, Peters PJ, Krueger D, Beumer J, Geurts MH, Alemany A, Gehart H, Carlotti F, de Koning EJP, Chuva de Sousa Lopes SM, van Oudenaarden A, van Es JH, Clevers H. Long-term in vitro expansion of a human fetal pancreas stem cell that generates all three pancreatic cell lineages. Cell 2024; 187:7394-7413.e22. [PMID: 39626658 DOI: 10.1016/j.cell.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/29/2024]
Abstract
The mammalian pancreas consists of three epithelial compartments: the acini and ducts of the exocrine pancreas and the endocrine islets of Langerhans. Murine studies indicate that these three compartments derive from a transient, common pancreatic progenitor. Here, we report derivation of 18 human fetal pancreas organoid (hfPO) lines from gestational weeks 8-17 (8-17 GWs) fetal pancreas samples. Four of these lines, derived from 15 to 16 GWs samples, generate acinar-, ductal-, and endocrine-lineage cells while expanding exponentially for >2 years under optimized culture conditions. Single-cell RNA sequencing identifies rare LGR5+ cells in fetal pancreas and in hfPOs as the root of the developmental hierarchy. These LGR5+ cells share multiple markers with adult gastrointestinal tract stem cells. Organoids derived from single LGR5+ organoid-derived cells recapitulate this tripotency in vitro. We describe a human fetal tripotent stem/progenitor cell capable of long-term expansion in vitro and of generating all three pancreatic cell lineages.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Kelvin Groot
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike A J Hanegraaf
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michael VanInsberghe
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Fredrik Salmén
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Stieneke van den Brink
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland
| | - Maarten H Geurts
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands
| | - Helmuth Gehart
- ETH Zurich, Institute of Molecular Health Sciences, 8093 Zürich, Schweiz
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Alexander van Oudenaarden
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands; Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland.
| |
Collapse
|
3
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Zook HN, Quijano JC, Ortiz JA, Donohue C, Lopez K, Li W, Erdem N, Jou K, Crook CJ, Garcia I, Kandeel F, Montero E, Ku HT. Activation of ductal progenitor-like cells from adult human pancreas requires extracellular matrix protein signaling. iScience 2024; 27:109237. [PMID: 38433896 PMCID: PMC10904999 DOI: 10.1016/j.isci.2024.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Ductal progenitor-like cells are a sub-population of ductal cells in the adult human pancreas that have the potential to contribute to regenerative medicine. However, the microenvironmental cues that regulate their activation are poorly understood. Here, we establish a 3-dimensional suspension culture system containing six defined soluble factors in which primary human ductal progenitor-like and ductal non-progenitor cells survive but do not proliferate. Expansion and polarization occur when suspension cells are provided with a low concentration (5% v/v) of Matrigel, a sarcoma cell product enriched in many extracellular matrix (ECM) proteins. Screening of ECM proteins identified that collagen IV can partially recapitulate the effects of Matrigel. Inhibition of integrin α1β1, a major collagen IV receptor, negates collagen IV- and Matrigel-stimulated effects. These results demonstrate that collagen IV is a key ECM protein that stimulates the expansion and polarization of human ductal progenitor-like and ductal non-progenitor cells via integrin α1β1 receptor signaling.
Collapse
Affiliation(s)
- Heather N. Zook
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Janine C. Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jose A. Ortiz
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Cecile Donohue
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kassandra Lopez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wendong Li
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Neslihan Erdem
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kevin Jou
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Christiana J. Crook
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isaac Garcia
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Enrique Montero
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hsun Teresa Ku
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Song Y, Lu S, Gao F, Wei T, Ma W. The application of organoid models in research into metabolic diseases. Diabetes Obes Metab 2024; 26:809-819. [PMID: 38100156 DOI: 10.1111/dom.15390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Metabolic diseases have become a major threat to human health worldwide as a result of changing lifestyles. The exploration of the underlying molecular mechanisms of metabolic diseases and the development of improved therapeutic methods have been hindered by the lack of appropriate human experimental models. Organoids are three-dimensional in vitro models of self-renewing cells that spontaneously self-organize into structures similar to the corresponding in vivo tissues, recapitulating the original tissue function. Off-body organoid technology has been successfully applied to disease modelling, developmental biology, regenerative medicine, and tumour precision medicine. This new generation of biological models has received widespread attention. This article focuses on the construction process and research progress with regard to organoids related to metabolic diseases in recent years, and looks forward to their prospective applications.
Collapse
Affiliation(s)
- Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tianshu Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wanshan Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Chan WS, Mo X, Ip PPC, Tse KY. Patient-derived organoid culture in epithelial ovarian cancers-Techniques, applications, and future perspectives. Cancer Med 2023; 12:19714-19731. [PMID: 37776168 PMCID: PMC10587945 DOI: 10.1002/cam4.6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease composed of different cell types with different molecular aberrations. Traditional cell lines and mice models cannot recapitulate the human tumor biology and tumor microenvironment (TME). Patient-derived organoids (PDOs) are freshly derived from patients' tissues and are then cultured with extracellular matrix and conditioned medium. The high concordance of epigenetic, genomic, and proteomic landscapes between the parental tumors and PDOs suggests that PDOs can provide more reliable results in studying cancer biology, allowing high throughput drug screening, and identifying their associated signaling pathways and resistance mechanisms. However, despite having a heterogeneity of cells in PDOs, some cells in TME will be lost during the culture process. Next-generation organoids have been developed to circumvent some of the limitations. Genetically engineered organoids involving targeted gene editing can facilitate the understanding of tumorigenesis and drug response. Co-culture systems where PDOs are cultured with different cell components like immune cells can allow research using immunotherapy which is otherwise impossible in conventional cell lines. In this review, the limitations of the traditional in vitro and in vivo assays, the use of PDOs, the challenges including some tips and tricks of PDO generation in EOC, and the future perspectives, will be discussed.
Collapse
Affiliation(s)
- Wai Sun Chan
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | - Xuetang Mo
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | | | - Ka Yu Tse
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| |
Collapse
|
7
|
Quijano JC, Wedeken L, Ortiz JA, Zook HN, LeBon JM, Luo A, Rawson J, Tremblay JR, Mares JM, Lopez K, Chen MH, Jou K, Mendez-Dorantes C, Al-Abdullah IH, Thurmond DC, Kandeel F, Riggs AD, Ku HT. Methylcellulose colony assay and single-cell micro-manipulation reveal progenitor-like cells in adult human pancreatic ducts. Stem Cell Reports 2023; 18:618-635. [PMID: 36868230 PMCID: PMC10031308 DOI: 10.1016/j.stemcr.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Progenitor cells capable of self-renewal and differentiation in the adult human pancreas are an under-explored resource for regenerative medicine. Using micro-manipulation and three-dimensional colony assays we identify cells within the adult human exocrine pancreas that resemble progenitor cells. Exocrine tissues were dissociated into single cells and plated into a colony assay containing methylcellulose and 5% Matrigel. A subpopulation of ductal cells formed colonies containing differentiated ductal, acinar, and endocrine lineage cells, and expanded up to 300-fold with a ROCK inhibitor. When transplanted into diabetic mice, colonies pre-treated with a NOTCH inhibitor gave rise to insulin-expressing cells. Both colonies and primary human ducts contained cells that simultaneously express progenitor transcription factors SOX9, NKX6.1, and PDX1. In addition, in silico analysis identified progenitor-like cells within ductal clusters in a single-cell RNA sequencing dataset. Therefore, progenitor-like cells capable of self-renewal and tri-lineage differentiation either pre-exist in the adult human exocrine pancreas, or readily adapt in culture.
Collapse
Affiliation(s)
- Janine C Quijano
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Lena Wedeken
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jose A Ortiz
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Heather N Zook
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jeanne M LeBon
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Angela Luo
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jacob R Tremblay
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jacob M Mares
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Kassandra Lopez
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Min-Hsuan Chen
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Kevin Jou
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Debbie C Thurmond
- Department of Molecular & Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Department of Clinical Diabetes, Endocrinology & Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Arthur D Riggs
- Department of Diabetes & Drug Discovery, City of Hope, Duarte, CA 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research & Cellular Therapeutics, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Kozlowski MT, Zook HN, Chigumba DN, Johnstone CP, Caldera LF, Shih HP, Tirrell DA, Ku HT. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front Bioeng Biotechnol 2023; 11:1144209. [PMID: 36970620 PMCID: PMC10033864 DOI: 10.3389/fbioe.2023.1144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The transplantation of pancreatic endocrine islet cells from cadaveric donors is a promising treatment for type 1 diabetes (T1D), which is a chronic autoimmune disease that affects approximately nine million people worldwide. However, the demand for donor islets outstrips supply. This problem could be solved by differentiating stem and progenitor cells to islet cells. However, many current culture methods used to coax stem and progenitor cells to differentiate into pancreatic endocrine islet cells require Matrigel, a matrix composed of many extracellular matrix (ECM) proteins secreted from a mouse sarcoma cell line. The undefined nature of Matrigel makes it difficult to determine which factors drive stem and progenitor cell differentiation and maturation. Additionally, it is difficult to control the mechanical properties of Matrigel without altering its chemical composition. To address these shortcomings of Matrigel, we engineered defined recombinant proteins roughly 41 kDa in size, which contain cell-binding ECM peptides derived from fibronectin (ELYAVTGRGDSPASSAPIA) or laminin alpha 3 (PPFLMLLKGSTR). The engineered proteins form hydrogels through association of terminal leucine zipper domains derived from rat cartilage oligomeric matrix protein. The zipper domains flank elastin-like polypeptides whose lower critical solution temperature (LCST) behavior enables protein purification through thermal cycling. Rheological measurements show that a 2% w/v gel of the engineered proteins display material behavior comparable to a Matrigel/methylcellulose-based culture system previously reported by our group to support the growth of pancreatic ductal progenitor cells. We tested whether our protein hydrogels in 3D culture could derive endocrine and endocrine progenitor cells from dissociated pancreatic cells of young (1-week-old) mice. We found that both protein hydrogels favored growth of endocrine and endocrine progenitor cells, in contrast to Matrigel-based culture. Because the protein hydrogels described here can be further tuned with respect to mechanical and chemical properties, they provide new tools for mechanistic study of endocrine cell differentiation and maturation.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - Desnor N. Chigumba
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Luis F. Caldera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
- *Correspondence: Hsun Teresa Ku,
| |
Collapse
|
9
|
Seeberger KL, Salama BF, Kelly S, Rosko M, Castro C, DesAulniers J, Korbutt GS. Heterogenous expression of endocrine and progenitor cells within the neonatal porcine pancreatic lobes-Implications for neonatal porcine islet xenotransplantation. Xenotransplantation 2023; 30:e12793. [PMID: 36748727 DOI: 10.1111/xen.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas. In this study we are the first to evaluate all three neonatal porcine pancreatic lobes and NPIs isolated from these lobes. We report, a significant difference in endocrine and progenitor cell composition between lobes, and observed pancreatic duct glands (PDG) within the mesenchyme surrounding exocrine ducts in the DL and CL. Following in vitro differentiation, NPIs isolated from each lobe differed significantly in the percent increase of endocrine cells and final cell composition. Compared to other recipients, diabetic immunodeficient mice transplanted with NPIs isolated from the SL demonstrated euglycemic control as early as 4 weeks (p < 0.05) and achieved normoglycemia by 6 weeks post-transplant (p < 0.01). For the first time we report significant differences between the neonatal porcine pancreatic lobes and demonstrate that NPIs from these lobes differ in xenograft function.
Collapse
Affiliation(s)
- Karen L Seeberger
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bassem F Salama
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Grapin-Botton A, Kim YH. Pancreas organoid models of development and regeneration. Development 2022; 149:278610. [DOI: 10.1242/dev.201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Organoids have become one of the fastest progressing and applied models in biological and medical research, and various organoids have now been developed for most of the organs of the body. Here, we review the methods developed to generate pancreas organoids in vitro from embryonic, fetal and adult cells, as well as pluripotent stem cells. We discuss how these systems have been used to learn new aspects of pancreas development, regeneration and disease, as well as their limitations and potential for future discoveries.
Collapse
Affiliation(s)
- Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics 1 , Dresden D-01307 , Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden 2 , Dresden D-01307 , Germany
- Cluster of Excellence Physics of Life, TU Dresden 3 , 01062 Dresden , Germany
| | - Yung Hae Kim
- Max Planck Institute of Molecular Cell Biology and Genetics 1 , Dresden D-01307 , Germany
| |
Collapse
|
11
|
Kou X, Liu J, Wang D, Yu M, Li C, Lu L, Chen C, Liu D, Yu W, Yu T, Liu Y, Mao X, Naji A, Cai T, Sun L, Shi S. Exocrine pancreas regeneration modifies original pancreas to alleviate diabetes in mouse models. Sci Transl Med 2022; 14:eabg9170. [PMID: 35921475 DOI: 10.1126/scitranslmed.abg9170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes is a major public health issue because of its widely epidemic nature and lack of cure. Here, we show that pancreas-derived mesenchymal stem cells (PMSCs) are capable of regenerating exocrine pancreas when implanted into the kidney capsule of mice with streptozotocin (STZ)-induced diabetes. Mechanistically, we found that the regenerated exocrine pancreas elevated interleukin-6 (IL-6) in PMSC implants, which transiently activated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) to inhibit IL-17, thereby rescuing damaged exocrine pancreas and islet β cells. In addition, we used knockout mouse models to show that global lack of IL-6, TNF-α, or IFN-γ resulted in increased severity of STZ-induced diabetes and resistance to PMSC implantation therapy, confirming the roles of these factors in safeguarding pancreatic β cells. Furthermore, removal of the kidney capsule PMSC implants at 28 days after implantation did not affect the PMSC-initiated therapeutic effect on diabetic mice. This study reveals a previously unknown role of exocrine pancreas regeneration in safeguarding β cells and demonstrates a "soil-rescues-seed" strategy for type 1 diabetes therapy.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Laboratory for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yu
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Tingting Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
12
|
Du S, Li Y, Geng Z, Zhang Q, Buhler LH, Gonelle-Gispert C, Wang Y. Engineering Islets From Stem Cells: The Optimal Solution for the Treatment of Diabetes? Front Immunol 2022; 13:869514. [PMID: 35572568 PMCID: PMC9092457 DOI: 10.3389/fimmu.2022.869514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a metabolic disease characterized by insulin deficiency. Bioengineering of stem cells with the aim to restore insulin production and glucose regulation has the potential to cure diabetic patients. In this review, we focus on the recent developments for bioengineering of induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and pancreatic progenitor cells in view of generating insulin producing and glucose regulating cells for β-cell replacement therapies. Recent clinical trials using islet cells derived from stem cells have been initiated for the transplantation into diabetic patients, with crucial bottlenecks of tumorigenesis, post-transplant survival, genetic instability, and immunogenicity that should be further optimized. As a new approach given high expectations, bioengineered islets from stem cells occupies considerable potential for the future clinical application and addressing the treatment dilemma of diabetes.
Collapse
Affiliation(s)
- Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H Buhler
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
13
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
14
|
Wang J, Wang D, Chen X, Yuan S, Bai L, Liu C, Zeng YA. Isolation of mouse pancreatic islet Procr + progenitors and long-term expansion of islet organoids in vitro. Nat Protoc 2022; 17:1359-1384. [PMID: 35396545 DOI: 10.1038/s41596-022-00683-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Insulin production is required for glucose homeostasis. Pancreatic islet β cells are the only cells that produce insulin in humans; however, generation of functional β cells in vitro from embryonic or adult tissues has been challenging. Here, we describe isolation of pancreatic islet progenitors from adult mice, which enables the efficient generation and long-term expansion of functional islet organoids in vitro. This protocol starts with purification of protein C receptor (Procr)-expressing islet progenitors. Coculture with endothelial cells generates islet organoids in vitro that can be expanded by passage. Functional maturation is achieved as a consequence of a prolonged culture period and cyclic glucose stimulation. Primary islet organoids form in 7-10 days. Subsequently, each passage takes 1 week, with the final maturation step requiring 3 weeks of additional culture. The resulting organoids are predominantly composed of β cells but also contain small proportions of α, δ and pancreatic polypeptide cells. The organoids sense glucose and secrete insulin. This approach thus provides a strategy for β cell generation in vitro and an organoid system to study islet regeneration and diseases.
Collapse
Affiliation(s)
- Jingqiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daisong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht, Netherlands, Utrecht University and Princess Maxima Center, Utrecht, Netherlands
| | - Xinyi Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shubo Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lanyue Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunye Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
- Bio-Research Innovation Center, Institute of Biochemistry and Cell Biology, Suzhou, China.
| |
Collapse
|
15
|
Abstract
Organoids-cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature-are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.
Collapse
Affiliation(s)
- Mark T Kozlowski
- DEVCOM US Army Research Laboratory, Weapons and Materials Research Directorate, Science of Extreme Materials Division, Polymers Branch, 6300 Rodman Rd. Building 4600, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA.
| | - Christiana J Crook
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
16
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Alvarez Fallas ME, Pedraza-Arevalo S, Cujba AM, Manea T, Lambert C, Morrugares R, Sancho R. Stem/progenitor cells in normal physiology and disease of the pancreas. Mol Cell Endocrinol 2021; 538:111459. [PMID: 34543699 PMCID: PMC8573583 DOI: 10.1016/j.mce.2021.111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/19/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.
Collapse
Affiliation(s)
- Mario Enrique Alvarez Fallas
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sergio Pedraza-Arevalo
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Teodora Manea
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Christopher Lambert
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Rosario Morrugares
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany.
| |
Collapse
|
18
|
Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials 2021; 276:121020. [PMID: 34280822 DOI: 10.1016/j.biomaterials.2021.121020] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Organoids are a new class of biological model systems that have garnered significant interest in the life sciences. When provided with the proper 3D matrix and biochemical factors, stem cells can self-organize and form tissue-specific organoids. Thus far, there has been a substantial effort to identify soluble niche components essential for organoid culture; however, the role of the solid extracellular matrix (ECM) as an essential element of the niche is still largely lacking. In this review, we discuss the importance of the ECM in intestinal, hepatic, and pancreatic organoid culture and how biomaterial-based approaches can be used to probe different ECM properties required for more physiologically and translationally relevant organoid models.
Collapse
Affiliation(s)
- S Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland
| | - N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
20
|
Linke F, Aldighieri M, Lourdusamy A, Grabowska AM, Stolnik S, Kerr ID, Merry CL, Coyle B. 3D hydrogels reveal medulloblastoma subgroup differences and identify extracellular matrix subtypes that predict patient outcome. J Pathol 2020; 253:326-338. [PMID: 33206391 PMCID: PMC7986745 DOI: 10.1002/path.5591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children and is subdivided into four subgroups: WNT, SHH, Group 3, and Group 4. These molecular subgroups differ in their metastasis patterns and related prognosis rates. Conventional 2D cell culture methods fail to recapitulate these clinical differences. Realistic 3D models of the cerebellum are therefore necessary to investigate subgroup‐specific functional differences and their role in metastasis and chemoresistance. A major component of the brain extracellular matrix (ECM) is the glycosaminoglycan hyaluronan. MB cell lines encapsulated in hyaluronan hydrogels grew as tumour nodules, with Group 3 and Group 4 cell lines displaying clinically characteristic laminar metastatic patterns and levels of chemoresistance. The glycoproteins, laminin and vitronectin, were identified as subgroup‐specific, tumour‐secreted ECM factors. Gels of higher complexity, formed by incorporation of laminin or vitronectin, revealed subgroup‐specific adhesion and growth patterns closely mimicking clinical phenotypes. ECM subtypes, defined by relative levels of laminin and vitronectin expression in patient tissue microarrays and gene expression data sets, were able to identify novel high‐risk MB patient subgroups and predict overall survival. Our hyaluronan model system has therefore allowed us to functionally characterize the interaction between different MB subtypes and their environment. It highlights the prognostic and pathological role of specific ECM factors and enables preclinical development of subgroup‐specific therapies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Franziska Linke
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Macha Aldighieri
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Catherine Lr Merry
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, Zeng YA. Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr + Progenitors. Cell 2020; 180:1198-1211.e19. [PMID: 32200801 DOI: 10.1016/j.cell.2020.02.048] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
It has generally proven challenging to produce functional β cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. β cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.
Collapse
Affiliation(s)
- Daisong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingqiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lanyue Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Feng
- Omics Core, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht, Utrecht, the Netherlands; Utrecht University and Princess Maxima Center, Utrecht, the Netherlands
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
22
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Ruud KF, Hiscox WC, Yu I, Chen RK, Li W. Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Res 2020; 22:82. [PMID: 32736579 PMCID: PMC7395363 DOI: 10.1186/s13058-020-01321-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cells invading the connective tissues outside the mammary lobule or duct immerse in a reservoir of extracellular matrix (ECM) that is structurally and biochemically distinct from that of their site of origin. The ECM is a spatial network of matrix proteins, which not only provide physical support but also serve as bioactive ligands to the cells. It becomes evident that the dimensional, mechanical, structural, and biochemical properties of ECM are all essential mediators of many cellular functions. To better understand breast cancer development and cancer cell biology in native tissue environment, various tissue-mimicking culture models such as hydrogel have been developed. Collagen I (Col I) and Matrigel are the most common hydrogels used in cancer research and have opened opportunities for addressing biological questions beyond the two-dimensional (2D) cell cultures. Yet, it remains unclear whether these broadly used hydrogels can recapitulate the environmental properties of tissue ECM, and whether breast cancer cells grown on CoI I or Matrigel display similar phenotypes as they would on their native ECM. METHODS We investigated mammary epithelial cell phenotypes and metabolic profiles on animal breast ECM-derived tissue matrix gel (TMG), Col I, and Matrigel. Atomic force microscopy (AFM), fluorescence microscopy, acini formation assay, differentiation experiments, spatial migration/invasion assays, proliferation assay, and nuclear magnetic resonance (NMR) spectroscopy were used to examine biological phenotypes and metabolic changes. Student's t test was applied for statistical analyses. RESULTS Our data showed that under a similar physiological stiffness, the three types of hydrogels exhibited distinct microstructures. Breast cancer cells grown on TMG displayed quite different morphologies, surface receptor expression, differentiation status, migration and invasion, and metabolic profiles compared to those cultured on Col I and Matrigel. Depleting lactate produced by glycolytic metabolism of cancer cells abolished the cell proliferation promoted by the non-tissue-specific hydrogel. CONCLUSION The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.
Collapse
Affiliation(s)
- Kelsey F Ruud
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - William C Hiscox
- Center for NMR Spectroscopy, Washington State University, Pullman, WA, 99164, USA
| | - Ilhan Yu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Roland K Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
24
|
Li S, Li L, Wu J, Song F, Qin Z, Hou L, Xiao C, Weng J, Qin X, Xu J. TDO Promotes Hepatocellular Carcinoma Progression. Onco Targets Ther 2020; 13:5845-5855. [PMID: 32606795 PMCID: PMC7311207 DOI: 10.2147/ott.s252929] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Tryptophan 2,3-dioxygenase (TDO), encoded by the gene TDO2, is an enzyme that catalyses the first and rate-limiting step of tryptophan (Try) degradation in the kynurenine (Kyn) pathway in the liver. Recently, TDO has been demonstrated to be expressed in various human tumours, especially hepatocellular carcinoma (HCC). However, the role of TDO in HCC is still not very clear. Here, we studied the role of TDO in HCC. Methods We demonstrated that TDO is overexpressed in human HCC tissues and is significantly correlated with malignant phenotype characteristics, including tumour size, tumour differentiation, vascular invasion, etc. Kaplan–Meier analysis showed a poor overall survival rate in patients with TDO-overexpressing tumours. In addition, the effects of TDO on HCC tumour growth and metastasis were detected both in vivo and in vitro. TDO overexpression facilitated HCC cell growth, invasion and migration. Conclusion Our results suggest that TDO positively regulates HCC proliferation and invasion and acts as a new prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Fangbin Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Lei Hou
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Pathology, Tulane National Primate Research Center, Health Sciences Campus, Covington, LA 70433, USA
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
25
|
Abstract
Diabetes is one of the most challenging health concerns facing society. Available drugs treat the symptoms but there is no cure. This presents an urgent need to better understand human diabetes in order to develop improved treatments or target remission. New disease models need to be developed that more accurately describe the pathology of diabetes. Organoid technology provides an opportunity to fill this knowledge gap. Organoids are 3D structures, established from pluripotent stem cells or adult stem/progenitor cells, that recapitulate key aspects of the in vivo tissues they mimic. In this review we briefly introduce organoids and their benefits; we focus on organoids generated from tissues important for glucose homeostasis and tissues associated with diabetic complications. We hope this review serves as a touchstone to demonstrate how organoid technology extends the research toolbox and can deliver a step change of discovery in the field of diabetes.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Patricia Fonseca Pedro
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Gavin A Bewick
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
26
|
Georgakopoulos N, Prior N, Angres B, Mastrogiovanni G, Cagan A, Harrison D, Hindley CJ, Arnes-Benito R, Liau SS, Curd A, Ivory N, Simons BD, Martincorena I, Wurst H, Saeb-Parsy K, Huch M. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC DEVELOPMENTAL BIOLOGY 2020; 20:4. [PMID: 32098630 PMCID: PMC7043048 DOI: 10.1186/s12861-020-0209-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pancreatic organoid systems have recently been described for the in vitro culture of pancreatic ductal cells from mouse and human. Mouse pancreatic organoids exhibit unlimited expansion potential, while previously reported human pancreas organoid (hPO) cultures do not expand efficiently long-term in a chemically defined, serum-free medium. We sought to generate a 3D culture system for long-term expansion of human pancreas ductal cells as hPOs to serve as the basis for studies of human pancreas ductal epithelium, exocrine pancreatic diseases and the development of a genomically stable replacement cell therapy for diabetes mellitus. RESULTS Our chemically defined, serum-free, human pancreas organoid culture medium supports the generation and expansion of hPOs with high efficiency from both fresh and cryopreserved primary tissue. hPOs can be expanded from a single cell, enabling their genetic manipulation and generation of clonal cultures. hPOs expanded for months in vitro maintain their ductal morphology, biomarker expression and chromosomal integrity. Xenografts of hPOs survive long-term in vivo when transplanted into the pancreas of immunodeficient mice. Notably, mouse orthotopic transplants show no signs of tumorigenicity. Crucially, our medium also supports the establishment and expansion of hPOs in a chemically defined, modifiable and scalable, biomimetic hydrogel. CONCLUSIONS hPOs can be expanded long-term, from both fresh and cryopreserved human pancreas tissue in a chemically defined, serum-free medium with no detectable tumorigenicity. hPOs can be clonally expanded, genetically manipulated and are amenable to culture in a chemically defined hydrogel. hPOs therefore represent an abundant source of pancreas ductal cells that retain the characteristics of the tissue-of-origin, which opens up avenues for modelling diseases of the ductal epithelium and increasing understanding of human pancreas exocrine biology as well as for potentially producing insulin-secreting cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Nikitas Georgakopoulos
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Nicole Prior
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | | | - Gianmarco Mastrogiovanni
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Daisy Harrison
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Christopher J Hindley
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | - Robert Arnes-Benito
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Siong-Seng Liau
- Hepatopancreatobiliary Surgical Unit, Addenbrooke's Hospital and MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Abbie Curd
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Natasha Ivory
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Benjamin D Simons
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | | | | | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
| | - Meritxell Huch
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| |
Collapse
|
27
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Novel 3D organoid culture techniques have enabled long-term expansion of pancreatic tissue. This review comprehensively summarizes and evaluates the applications of primary tissue-derived pancreatic organoids in regenerative studies, disease modelling, and personalized medicine. RECENT FINDINGS Organoids derived from human fetal and adult pancreatic tissue have been used to study pancreas development and repair. Generated adult human pancreatic organoids harbor the capacity for clonal expansion and endocrine cell formation. In addition, organoids have been generated from human pancreatic ductal adenocarcinoma in order to study tumor behavior and assess drug responses. Pancreatic organoids constitute an important translational bridge between in vitro and in vivo models, enhancing our understanding of pancreatic cell biology. Current applications for pancreatic organoid technology include studies on tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Jeetindra R. A. Balak
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juri Juksar
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Françoise Carlotti
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Antonio Lo Nigro
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Eelco J. P. de Koning
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| |
Collapse
|
29
|
Bakhti M, Scheibner K, Tritschler S, Bastidas-Ponce A, Tarquis-Medina M, Theis FJ, Lickert H. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol Metab 2019; 30:16-29. [PMID: 31767167 PMCID: PMC6812400 DOI: 10.1016/j.molmet.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Translation of basic research from bench-to-bedside relies on a better understanding of similarities and differences between mouse and human cell biology, tissue formation, and organogenesis. Thus, establishing ex vivo modeling systems of mouse and human pancreas development will help not only to understand evolutionary conserved mechanisms of differentiation and morphogenesis but also to understand pathomechanisms of disease and design strategies for tissue engineering. METHODS Here, we established a simple and reproducible Matrigel-based three-dimensional (3D) cyst culture model system of mouse and human pancreatic progenitors (PPs) to study pancreatic epithelialization and endocrinogenesis ex vivo. In addition, we reanalyzed previously reported single-cell RNA sequencing (scRNA-seq) of mouse and human pancreatic lineages to obtain a comprehensive picture of differential expression of key transcription factors (TFs), cell-cell adhesion molecules and cell polarity components in PPs during endocrinogenesis. RESULTS We generated mouse and human polarized pancreatic epithelial cysts derived from PPs. This system allowed to monitor establishment of pancreatic epithelial polarity and lumen formation in cellular and sub-cellular resolution in a dynamic time-resolved fashion. Furthermore, both mouse and human pancreatic cysts were able to differentiate towards the endocrine fate. This differentiation system together with scRNA-seq analysis revealed how apical-basal polarity and tight and adherens junctions change during endocrine differentiation. CONCLUSIONS We have established a simple 3D pancreatic cyst culture system that allows to tempo-spatial resolve cellular and subcellular processes on the mechanistical level, which is otherwise not possible in vivo.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
30
|
Tremblay JR, Lopez K, Ku HT. A GLIS3-CD133-WNT-signaling axis regulates the self-renewal of adult murine pancreatic progenitor-like cells in colonies and organoids. J Biol Chem 2019; 294:16634-16649. [PMID: 31533988 PMCID: PMC6851293 DOI: 10.1074/jbc.ra118.002818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
The existence and regenerative potential of resident stem and progenitor cells in the adult pancreas are controversial topics. A question that has been only minimally addressed is the capacity of a progenitor cell to self-renew, a key attribute that defines stem cells. Previously, our laboratory has identified putative stem and progenitor cells from the adult murine pancreas. Using an ex vivo colony/organoid culture system, we demonstrated that these stem/progenitor-like cells have self-renewal and multilineage differentiation potential. We have named these cells pancreatic colony-forming units (PCFUs) because they can give rise to three-dimensional colonies. However, the molecular mechanisms by which PCFUs self-renew have remained largely unknown. Here, we tested the hypothesis that PCFU self-renewal requires GLIS family zinc finger 3 (GLIS3), a zinc-finger transcription factor important in pancreas development. Pancreata from 2- to 4-month-old mice were dissociated, sorted for CD133highCD71low ductal cells, known to be enriched for PCFUs, and virally transduced with shRNAs to knock down GLIS3 and other proteins. We then plated these cells into our colony assays and analyzed the resulting colonies for protein and gene expression. Our results revealed a previously unknown GLIS3-to-CD133-to-WNT signaling axis in which GLIS3 and CD133 act as factors necessary for maintaining WNT receptors and signaling molecules in colonies, allowing responses to WNT ligands. Additionally, we found that CD133, but not GLIS3 or WNT, is required for phosphoinositide 3-kinase (PI3K)/AKT Ser/Thr kinase (AKT)-mediated PCFU survival. Collectively, our results uncover a molecular pathway that maintains self-renewal of adult murine PCFUs.
Collapse
Affiliation(s)
- Jacob R Tremblay
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91006
| | - Kassandra Lopez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91006
| |
Collapse
|
31
|
Zhang F, Ma D, Liu T, Liu YH, Guo J, Song J, Wu Q, Pan Y, Zhang Y, Guo C, Teng C, Jin L. Expansion and Maintenance of CD133-Expressing Pancreatic Ductal Epithelial Cells by Inhibition of TGF-β Signaling. Stem Cells Dev 2019; 28:1236-1252. [PMID: 31311463 DOI: 10.1089/scd.2019.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restoring β-cell mass by the transplantation of pancreatic islets is an effective diabetes treatment, but it is limited by the shortage of donor organs. CD133-expressing pancreatic ductal epithelial cells (PDECs) have the ability to generate insulin-producing cells. The expansion of these cells is dependent on extrinsic niche factors, but few of those signals have been identified. In this study, CD133-expressing PDECs were purified by sorting from adult wild-type C57BL/6 mice and TGFβRIInull/null mice. Furthermore, using immunofluorescence and transplantation assays, we found that the inhibition of the transforming growth factor-β (TGF-β) pathway promoted the expansion of CD133-expressing PDECs for many generations and maintained the ability of CD133-expressing PDECs to generate insulin-producing cells. Moreover, western blot, qRT-PCR, and dual luciferase assays using TGF-β inhibitors were performed to identify the mechanisms by which TGF-β signaling regulates proliferation and differentiation. The results showed that the inhibition of TGF-β signaling enhanced Id2 binding to the promoter region of the cell proliferation repressor p16 and promoted the expansion of CD133-expressing PDECs, and the increased Id2 binding to NeuroD1 decreased the transcription of Pax6 to maintain CD133-expressing PDECs in the Pdx1-expression stage. Taken together, the effect of TGF-β antagonists on CD133-expressing PDECs reveals a novel paradigm of signaling that explains the balance between the expansion and differentiation of pancreatic duct epithelial progenitors.
Collapse
Affiliation(s)
- Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Dongshen Ma
- Department of Pathology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingsheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu Hong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiamin Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiong Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
32
|
Abstract
Pancreatitis is a major risk factor for the development of pancreatic cancer. In genetically engineered mouse models, induction of pancreatic inflammation dramatically accelerates oncogenic KRas-induced fibrosis, precancerous PanIN formation, and tumorigenesis. Here we describe simple methods of secretagogue-induced experimental acute and chronic pancreatitis, the most commonly used pancreatitis models, and their applications in pancreatic cancer research. Additionally, the preparation of primary pancreatic acinar cells is introduced. Primary acinar cells can be used to study the early events of pancreatic inflammation and pancreatic acinar-to-ductal (ADM) metaplasia.
Collapse
|
33
|
Huang CH, Lei KF, Tsang NM. Apoptosis and cell cycle arrest of hepatocellular carcinoma spheroids treated by an alternating electric field. Biotechnol Prog 2019; 35:e2787. [DOI: 10.1002/btpr.2787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chun-Hao Huang
- Program in Biomedical Engineering; College of Engineering, Chang Gung University; Taoyuan Taiwan
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University; Taoyuan Taiwan
- Department of Radiation Oncology; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology; Chang Gung Memorial Hospital; Linkou Taiwan
- Department of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
| |
Collapse
|
34
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
35
|
Li H, Natarajan A, Ezike J, Barrasa MI, Le Y, Feder ZA, Yang H, Ma C, Markoulaki S, Lodish HF. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. Dev Cell 2019; 49:118-129.e7. [PMID: 30827895 DOI: 10.1016/j.devcel.2019.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.
Collapse
Affiliation(s)
- Hojun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Natarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Yenthanh Le
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zoë A Feder
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Huan Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Clement Ma
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | | | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Wu Y, Shi W, Tang T, Wang Y, Yin X, Chen Y, Zhang Y, Xing Y, Shen Y, Xia T, Guo C, Pan Y, Jin L. miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis 2019; 10:176. [PMID: 30792382 PMCID: PMC6385178 DOI: 10.1038/s41419-019-1437-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide, which remains incurable once metastatic. Breast cancer stem cells (BCSCs) are a small subset of breast cancer cells which are essential in tumor formation, metastasis, and drug resistance. microRNAs (miRNAs) play important roles in the breast cancer cells and BCSCs by regulating specific genes. In this study, we found that miR-29a was up-regulated in BCSCs, in aggressive breast cancer cell line and in breast cancer tissues. We also confirmed suppressor of variegation 4–20 homolog 2 (SUV420H2), which is a histone methyltransferase that specifically trimethylates Lys-20 of histone H4 (H4K20), as the target of miR-29a. Both miR-29a overexpression and SUV420H2 knockdown in breast cancer cells promoted their migration and invasion in vitro and in vivo. Furthermore, we discovered that SUV420H2-targeting miR-29a attenuated the repression of connective tissue growth factor (CTGF) and growth response protein-1 (EGR1) by H4K20 trimethylation and promoted the EMT progress of breast cancer cells. Taken together, our findings reveal that miR-29a plays critical roles in the EMT and metastasis of breast cancer cells through targeting SUV420H2. These findings may provide new insights into novel molecular therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Wanyue Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yidong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Xin Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu province, China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| |
Collapse
|
37
|
Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, de Sousa Lopes SMC, Roost MS, Bonner-Weir S, Engelse MA, Rabelink TJ, Heimberg H, Vries RGJ, van Oudenaarden A, Carlotti F, Clevers H, de Koning EJP. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports 2019. [PMID: 29539434 PMCID: PMC5918840 DOI: 10.1016/j.stemcr.2018.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.
Collapse
Affiliation(s)
- Cindy J M Loomans
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nerys Williams Giuliani
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jeetindra Balak
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Femke Ringnalda
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Léon van Gurp
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Meritxell Huch
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge CB2 1QN, UK
| | - Sylvia F Boj
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Toshiro Sato
- Department of Gastroenterology, Keio University, Tokyo 108-8345, Japan
| | - Lennart Kester
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Susan Bonner-Weir
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Robert G J Vries
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hans Clevers
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Eelco J P de Koning
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
38
|
Isolation and Characterization of Colony-Forming Progenitor Cells from Adult Pancreas. Methods Mol Biol 2019; 2029:63-80. [PMID: 31273734 DOI: 10.1007/978-1-4939-9631-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obtaining, growing, and analysis of pancreatic progenitor cells. Adult stem and progenitor cells have been successfully used for cell-based therapies such as transplantation of hematopoietic stem cells for various diseases. Whether stem and progenitor cells in the adult pancreas can be identified and used for replacement therapy has been a highly controversial topic. To address this controversy, our laboratory has developed in vitro colony assays to detect and characterize individual pancreatic stem and progenitor-like cells. We found that a subpopulation of ductal cells in the adult murine pancreas has the abilities to self-renew and differentiate into multiple pancreatic lineages in three-dimensional space in methylcellulose-containing semisolid media. This protocol details the techniques used for culturing and characterizing these pancreatic stem and progenitor-like cells, which we have named pancreatic colony-forming units (PCFUs), as well as their progenies (colonies). The techniques presented here include dissociation of pancreases, sorting antibody-stained cells with a fluorescence-activated cell sorter, viral transduction of dissociated pancreatic cells, growth of PCFUs in semi-solid media, whole-mount immunostaining and Western blot analysis for proteins expressed in colonies, and kidney capsule transplantation of colonies for in vivo functional analysis.
Collapse
|
39
|
Rezanejad H, Lock JH, Sullivan BA, Bonner-Weir S. Generation of Pancreatic Ductal Organoids and Whole-Mount Immunostaining of Intact Organoids. ACTA ACUST UNITED AC 2018; 83:e82. [PMID: 30548444 DOI: 10.1002/cpcb.82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditionally, studies of cells and tissues have been performed on isolated primary cells or immortalized cell lines by culturing them in 2D culture dishes or flasks. However, a caveat regarding 2D culture is that the cells poorly recapitulate their in vivo counterparts, mainly due to a lack of 3D cell-cell and cell-extracellular matrix interactions. In recent years, the development of in vitro organoids as 3D culture has gained substantial attention as a model to study different tissues. In adults, pancreatic ductal cells are considered as a source of stem or progenitor cells, so developing new methods to study ductal cells would be useful. Here, we provide a protocol to isolate mouse pancreatic ductal cells and a cost-effective protocol to generate 3D organoid structures from such ductal cells. Additionally, we have devised a protocol for immunostaining of intact whole organoids without sectioning. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Habib Rezanejad
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Hollister Lock
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Brooke A Sullivan
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Functional Maturation and In Vitro Differentiation of Neonatal Porcine Islet Grafts. Transplantation 2018; 102:e413-e423. [DOI: 10.1097/tp.0000000000002354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Tang T, Yang Z, Zhu Q, Wu Y, Sun K, Alahdal M, Zhang Y, Xing Y, Shen Y, Xia T, Xi T, Pan Y, Jin L. Up-regulation of miR-210 induced by a hypoxic microenvironment promotes breast cancer stem cells metastasis, proliferation, and self-renewal by targeting E-cadherin. FASEB J 2018; 32:fj201801013R. [PMID: 30188754 DOI: 10.1096/fj.201801013r] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer stem cells (BCSCs), a small subset of breast cancer cells with stem cell-like properties, are essential in tumor formation, metastasis, resistance to anticancer therapies, and cancer recurrence. MicroRNAs (miRNAs) are involved in tumorigenicity by regulating specific oncogenes and tumor-suppressor genes, and their roles in BCSCs are becoming apparent. A novel, 3-dimensional (3D), semisolid culture system was established to culture MCF-7 spheroid cells with high percentage of BCSCs. The differences in miRNA expression among the MCF-7 parental cells, BCSC-enriched MCF-7 spheroid cells, and CD44+/CD24- MCF-7 cells were evaluated by miRNA microarray, and the high expression of miR-210 in MCF-7 spheroid cells and CD44+/CD24- MCF-7 cells was verified by quantitative RT-PCR. MCF-7 cells were cultured in a hypoxic chamber to detect the effect of hypoxia on miR-210 expression and the stemness of the cells. The 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide (MTT), transwell, and sphere-formation assays were performed to detect the proliferation, migration, and self-renewal ability of miR-210-overexpressed MCF-7 cells and MCF-7 spheroid cells with miR-210 knocked down. The target of miR-210 was validated with a dual-luciferase reporter assay and Western blotting. In vivo xenograft assay and metastasis assay were performed to study the effects of miR-210 targeting E-cadherin on BCSCs growth and lung metastasis, and the tumors were assessed by immunohistochemistry and immunofluorescence. We developed a novel 3D, semisolid culture system to culture MCF-7 spheroid cells, which are enriched in BCSCs, and found, by performing miRNAs expression profiling, miR-210 was up-regulated in those cells compared with MCF-7 parental cells. High miR-210 expression was also detected in CD44+/CD24- MCF-7 cells and human CD44+/CD24- breast cancer cells, which was demonstrated to be partially due to the hypoxic microenvironment around BCSCs in MCF-7 spheroids or solid tumors. Ectopic expression of miR-210 in MCF-7 cells promoted their migration, invasion, proliferation, and self-renewal in both in vitro and in vivo studies. We further reported that miR-210 suppressed E-cadherin expression by targeting the open reading frame region of E-cadherin mRNA and by up-regulation of E-cadherin transcription repressor, Snail. Accordingly, E-cadherin overexpression compromises the migration, invasion, proliferation, and self-renewal ability of miR-210-overexpressed MCF-7 both in vitro and in vivo. These findings reveal a novel regulatory pathway centered on hypoxia-mediated miR-210 targeting of E-cadherin, which contributes to the properties and breast tumorigenesis of BCSCs.-Tang, T., Yang, Z., Zhu, Q., Wu, Y., Sun, K., Alahdal, M., Zhang, Y., Xing, Y., Shen, Y., Xia, T., Xi, T., Pan, Y., Jin, L. Up-regulation of miR-210 induced by a hypoxic microenvironment promotes breast cancer stem cells metastasis, proliferation, and self-renewal by targeting E-cadherin.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhaocong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qinhua Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - You Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kun Sun
- Nanjing No. 3 Senior School, Nanjing, China
| | - Murad Alahdal
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, Chen C, Hsu J, LeBon J, Kozlowski MT, Rawson J, Tirrell DA, Yip MLR, Ku HT. Glucocorticoid Signaling Enhances Expression of Glucose-Sensing Molecules in Immature Pancreatic Beta-Like Cells Derived from Murine Embryonic Stem Cells In Vitro. Stem Cells Dev 2018; 27:898-909. [PMID: 29717618 DOI: 10.1089/scd.2017.0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
Collapse
Affiliation(s)
- Nadiah Ghazalli
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
- 2 The Irell and Manella Graduate School of Biological Sciences, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
- 3 Faculty of Medicine and Health Sciences, Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia , Serdang, Malaysia
| | - Xiaoxing Wu
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Stephanie Walker
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Nancy Trieu
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Li-Yu Hsin
- 4 High Throughput Screening Core, Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Justin Choe
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Chialin Chen
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Jasper Hsu
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Jeanne LeBon
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Mark T Kozlowski
- 5 Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California
| | - Jeffrey Rawson
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - David A Tirrell
- 5 Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California
| | - M L Richard Yip
- 4 High Throughput Screening Core, Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| | - Hsun Teresa Ku
- 1 Department of Translational Research and Cellular Therapeutics, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
- 2 The Irell and Manella Graduate School of Biological Sciences, and Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope , Duarte, California
| |
Collapse
|
43
|
α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation. Int J Mol Sci 2018; 19:ijms19040943. [PMID: 29565299 PMCID: PMC5979286 DOI: 10.3390/ijms19040943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133- cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.
Collapse
|
44
|
Rezanejad H, Ouziel-Yahalom L, Keyzer CA, Sullivan BA, Hollister-Lock J, Li WC, Guo L, Deng S, Lei J, Markmann J, Bonner-Weir S. Heterogeneity of SOX9 and HNF1β in Pancreatic Ducts Is Dynamic. Stem Cell Reports 2018; 10:725-738. [PMID: 29478894 PMCID: PMC5918495 DOI: 10.1016/j.stemcr.2018.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Pancreatic duct epithelial cells have been suggested as a source of progenitors for pancreatic growth and regeneration. However, genetic lineage-tracing experiments with pancreatic duct-specific Cre expression have given conflicting results. Using immunofluorescence and flow cytometry, we show heterogeneous expression of both HNF1β and SOX9 in adult human and murine ductal epithelium. Their expression was dynamic and diminished significantly after induced replication. Purified pancreatic duct cells formed organoid structures in 3D culture, and heterogeneity of expression of Hnf1β and Sox9 was maintained even after passaging. Using antibodies against a second cell surface molecule CD51 (human) or CD24 (mouse), we could isolate living subpopulations of duct cells enriched for high or low expression of HNF1β and SOX9. Only the CD24high (Hnfβhigh/Sox9high) subpopulation was able to form organoids. HNF1β and SOX9 are differentially expressed across the pancreatic ductal tree Their expression was dynamic and diminished significantly after replication Live subpopulations can be isolated using CD51 (human) and CD24 (mouse). Only the CD24high (Hnfβhigh/Sox9high) subpopulation was able to form organoids
Collapse
Affiliation(s)
- Habib Rezanejad
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Limor Ouziel-Yahalom
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charlotte A Keyzer
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brooke A Sullivan
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer Hollister-Lock
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wan-Chun Li
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lili Guo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shaopeng Deng
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston 02114, USA
| | - Ji Lei
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston 02114, USA
| | - James Markmann
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston 02114, USA
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Culturing and transcriptome profiling of progenitor-like colonies derived from adult mouse pancreas. Stem Cell Res Ther 2017; 8:172. [PMID: 28747214 PMCID: PMC5530554 DOI: 10.1186/s13287-017-0626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background Transplantation of insulin-producing cells is considered an important diabetes therapy. Many research studies have shown that insulin-producing cells can be derived from the in-vitro cultured pancreatic colonies with self-renewal ability and multilineage potential. Even though these progenitor-like colonies have been prepared from adult pancreas cells, the efficient culture method is hardly established and regulation of the colonies is rarely known. We confirmed previously that single cells acquired from adult mouse pancreas could form cyst-like colonies in a 3D semi-solid system containing Matrigel and methylcellulose. These colonies could be passaged continuously without losing progenitor-like capacity. In the previous culturing system, however, conditioned medium from murine embryonic-stem-cell-derived pancreatic-like cells was used. This unregulated ingredient may reduce repeatability and affect following study. Thus, a new culturing system with certain components needs to be developed. Methods Single cell suspension was acquired from adult mouse pancreas and cultured in a Matrigel-based 3D system with epidermal growth factor, Nicotinamide, B27, and Noggin to form ring colonies. Serial-passage assay was performed to evaluate self-renewal ability. Real-time polymerase chain reaction and immunostaining were used to detect the expression of progenitor-related genes. A 2D differentiation method was used to testify the multilineage potency of the colonies. High-throughput sequencing (HTS) of the colonies was performed to profile the differentially expressed genes. Results We developed a 3D culturing system deprived of conditioned medium to propagate those colonies with high proliferative efficiency. HTS of the transcriptome of mRNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) showed differentially expressed genes compared to the whole pancreas (as control). In mRNAs, several surface marker genes were identified in the colonies. Moreover in noncoding RNAs, miR-21a, miR-31 and miR-155 were upregulated and miR-217, miR-802 and miR-375 were downregulated in colonies along with a number of other miRNAs and lncRNAs. Conclusions Our results offer an efficient culture system for pancreatic progenitor-like colonies and HTS of the colonies serves as a target resource for following study of in-vitro cultured pancreatic progenitors. These findings should also contribute to our understanding of the transcriptional regulation of these progenitor-like colonies and the mechanisms behind their functions. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0626-y) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Afelik S, Rovira M. Pancreatic β-cell regeneration: Facultative or dedicated progenitors? Mol Cell Endocrinol 2017; 445:85-94. [PMID: 27838399 DOI: 10.1016/j.mce.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention.
Collapse
Affiliation(s)
- Solomon Afelik
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, 840 South Wood Street, CSB 920 (Rm 502), Chicago, IL 60612, USA.
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
47
|
miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells. Sci Rep 2017; 7:45002. [PMID: 28332553 PMCID: PMC5362961 DOI: 10.1038/srep45002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/17/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK).
Collapse
|
48
|
Lei KF, Kao CH, Tsang NM. High throughput and automatic colony formation assay based on impedance measurement technique. Anal Bioanal Chem 2017; 409:3271-3277. [DOI: 10.1007/s00216-017-0270-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
49
|
Jiang FX, Li K, Archer M, Mehta M, Jamieson E, Charles A, Dickinson JE, Matsumoto M, Morahan G. Differentiation of Islet Progenitors Regulated by Nicotinamide into Transcriptome-Verified β Cells That Ameliorate Diabetes. Stem Cells 2017; 35:1341-1354. [DOI: 10.1002/stem.2567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Fang-Xu Jiang
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Kevin Li
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | | | - Munish Mehta
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Emma Jamieson
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Adrian Charles
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | - Jan E. Dickinson
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| |
Collapse
|
50
|
Wedeken L, Luo A, Tremblay JR, Rawson J, Jin L, Gao D, Quijano J, Ku HT. Adult Murine Pancreatic Progenitors Require Epidermal Growth Factor and Nicotinamide for Self-Renewal and Differentiation in a Serum- and Conditioned Medium-Free Culture. Stem Cells Dev 2017; 26:599-607. [PMID: 28095743 DOI: 10.1089/scd.2016.0328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult pancreatic stem and progenitor cells may serve as an alternative source of insulin-secreting endocrine cells in cell replacement therapy for type 1 diabetes, but much remained unknown about these cells. We previously identified adult murine pancreatic progenitor-like cells that displayed in vitro self-renewal and tri-lineage differentiation activities in a three-dimensional colony/organoid assay containing 1% methylcellulose and 5% Matrigel. However, the presence of other undefined culture components, such as serum and conditioned medium, has prevented a complete understanding of the signals required for progenitor cell growth. Here, we have established a serum-free, conditioned medium-free colony assay with the inclusion of seven defined factors: epidermal growth factor (EGF), R-Spondin 1 (RSPO1), Noggin, nicotinamide, exendin-4, activin B, and vascular endothelial growth factor (VEGF)-A. The requirements for colony growth were characterized and we found that EGF and nicotinamide were necessary and sufficient for the colony growth and long-term self-renewal of these progenitors. However, the seven factor (7F) culture medium better induced colony size and self-renewal in long-term culture than EGF plus nicotinamide alone. Individual 3-week-old colonies grown in the 7F culture medium expressed ductal, acinar, and endocrine lineage markers, suggesting that tri-lineage differentiation of the tri-potent progenitors was occurring without genetic manipulation. A delayed inhibition of Notch signaling using small molecules in 2-week-old cultures enhanced endocrine gene expression in 3-week-old colonies. This better-defined colony assay system will enable our and other laboratories for in-depth mechanistic studies on the biology of these progenitor cells.
Collapse
Affiliation(s)
- Lena Wedeken
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Angela Luo
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Jacob R Tremblay
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California.,2 Irell & Manella Graduate School of Biological Sciences , Duarte, California
| | - Jeffrey Rawson
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Liang Jin
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Dan Gao
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Janine Quijano
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Hsun Teresa Ku
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California.,2 Irell & Manella Graduate School of Biological Sciences , Duarte, California
| |
Collapse
|