1
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
3
|
Catarino B, Andrade L, Cordeiro AM, Carvalho P, Barros PM, Blázquez MA, Saibo NJM. Light and temperature signals are integrated through a phytochrome B-dependent gene regulatory network in rice. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:562-575. [PMID: 39374096 DOI: 10.1093/jxb/erae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Angiosperms are the most dominant land plant flora and have colonized most of the terrestrial habitats, thriving in different environmental conditions, among which light and temperature play a crucial role. In the eudicot Arabidopsis thaliana, light and temperature are integrated into a phytochrome B (phyB)-dependent signalling network that regulates development. However, whether this signal integration controls the development in other angiosperm lineages and whether phyB is a conserved hub of this integratory network in angiosperms is unclear. We used a combination of phylogenetic, phenotypic, and transcriptomic analyses to understand the phyB-dependent light and temperature integratory network in the monocot Oryza sativa and infer its conservation in angiosperms. Here, we showed that light and temperature co-regulate rice growth through a phyB-dependent regulatory network that shares conserved features between O. sativa and A. thaliana. Despite the conservation of the components of this regulatory network, the transcriptional regulation between the components has changed qualitatively since monocots and eudicots diverged (~192-145 million years ago). The evolutionary flexibility of this integratory network might underlie the successful adaptation of plants to diverse ecological niches. Furthermore, our findings provide promising candidate genes whose activity and expression can be fine-tuned to improve plant growth and productivity in a warming planet.
Collapse
Affiliation(s)
- Bruno Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Luís Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
5
|
Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, Lee W, Choi MG, Ahn YJ, Lim C, Kim JI, Kwon M, Kim ST, Paek NC, Cho H, Sohn KH, Seo PJ, Song YH. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. PLANT PHYSIOLOGY 2024; 197:kiae550. [PMID: 39418078 DOI: 10.1093/plphys/kiae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
In plants, balancing growth and environmental responses is crucial for maximizing fitness. Close proximity among plants and canopy shade, which negatively impacts reproduction, elicits morphological adjustments such as hypocotyl growth and leaf hyponasty, mainly through changes in light quality and auxin levels. However, how auxin, synthesized from a shaded leaf blade, distally induces elongation of hypocotyl and petiole cells remains to be elucidated. We demonstrated that ASYMMETRIC LEAVES1 (AS1) promotes leaf hyponasty through the regulation of auxin biosynthesis, polar auxin transport, and auxin signaling genes in Arabidopsis (Arabidopsis thaliana). AS1 overexpression leads to elongation of the abaxial petiole cells with auxin accumulation in the petiole, resulting in hyponastic growth, which is abolished by the application of an auxin transport inhibitor to the leaf blade. In addition, the as1 mutant exhibits reduced hypocotyl growth under shade conditions. We observed that AS1 protein accumulates in the nucleus in response to shade or far-red light. Chromatin immunoprecipitation analysis identified the association of AS1 with the promoters of YUCCA8 (YUC8) and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). In addition, AS1 forms complexes with PHYTOCHROME-INTERACTING FACTORs in the nucleus and synergistically induces YUC8 and IAA19 expression. Our findings suggest that AS1 plays a crucial role in facilitating phenotypic plasticity to the surroundings by connecting light and phytohormone action.
Collapse
Affiliation(s)
- Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon 16499, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyeona Hwang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Wonbok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Min Gi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Moonhyuk Kwon
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Nam-Chon Paek
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Zhao Y, Han Q, Kang X, Tan W, Yao X, Zhang Y, Shi H, Xia R, Wu X, Lin H, Zhang D. The HAT1 transcription factor regulates photomorphogenesis and skotomorphogenesis via phytohormone levels. PLANT PHYSIOLOGY 2024; 197:kiae542. [PMID: 39404113 DOI: 10.1093/plphys/kiae542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 12/24/2024]
Abstract
Plants dynamically modulate their growth and development to acclimate to the fluctuating light environment via a complex phytohormone network. However, the dynamic molecular regulatory mechanisms underlying how plants regulate phytohormones during skotomorphogenesis and photomorphogenesis are largely unknown. Here, we identified a HD-ZIP II transcription factor, HOMEODOMAIN ARABIDOPSIS THALIANA1 (HAT1), as a key node that modulates the dose effects of brassinosteroids (BRs) and auxin on hypocotyl growth during skotomorphogenesis and photomorphogenesis. Compared with the wild-type (Col-0), both HAT1 loss of function and its overexpression led to disrupted photomorphogenic and skotomorphogenic hypocotyl growth. HAT1 overexpression (HAT1OX) plants displayed longer hypocotyls in the light but shorter hypocotyls in darkness, whereas the triple mutant hat1hat2hat3 showed the opposite phenotype. Furthermore, we found that CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) interacted with dephosphorylated HAT1 and facilitated the degradation of HAT1 by ubiquitination in darkness, while HAT1 was phosphorylated and stabilized by BRASSINOSTEROID INSENSITIVE2 (BIN2) in the light. Interestingly, we observed distinct dose-dependent effects of BR and auxin on hypocotyl elongation under varying light conditions and that HAT1 functioned as a key node in this process. The shorter hypocotyl of HAT1OX in darkness was due to the inhibition of BR biosynthetic gene BRASSINOSTEROID-6-OXIDASE2 (BR6OX2) expression to reduce BRs content, while brassinolide (BL) treatment alleviated this growth repression. In the light, HAT1 inhibited BR biosynthesis but enhanced auxin signaling by directly repressing IAA3/SHORT HYPOCOTYL 2 (SHY2) expression. Our findings uncover a dual function of HAT1 in regulating BR biosynthesis and auxin signaling that is crucial for ensuring proper skotomorphogenic and photomorphogenic growth.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyu Shi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ran Xia
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xuemei Wu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Yang X, Ma Y, Chen J, Huang M, Qi M, Han N, Bian H, Qiu T, Yan Q, Wang J. Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE-3-ACETIC ACID gene set confer shade avoidance-like responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:4483-4497. [PMID: 39012193 DOI: 10.1111/pce.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
Collapse
Affiliation(s)
- Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyuan Qi
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qingfeng Yan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Do BH, Nguyen NH. H2A.Z removal mediates the activation of genes accounting for cell elongation under light and temperature stress. PLANT CELL REPORTS 2024; 43:286. [PMID: 39562374 DOI: 10.1007/s00299-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE The histone variant H2A.Z is crucial for the expression of genes involved in cell elongation under elevated temperatures and shade. Its removal facilitates the activation of these genes, particularly through the activities of PHYTOCHROME INTERACTING FACTORs (PIFs) and the SWR1-related INOSITOL REQUIRING 80 (INO80) complex. Arabidopsis seedlings exhibit rapid elongation of hypocotyls and cotyledon petioles in response to environmental stresses, namely elevated temperatures and shade. These phenotypic alterations are regulated by various phytohormones, notably auxin. Under these stress conditions, auxin biosynthesis is swiftly induced in the cotyledons and transported to the hypocotyls, where it stimulates cell elongation. The histone variant H2A.Z plays a pivotal role in this regulatory mechanism. H2A.Z affects the transcription of numerous genes, particularly those activated by the mentioned environmental stresses. Recent studies highlighted that the eviction of H2A.Z from gene bodies is crucial for the activation of genes, especially auxin biosynthetic and responsive genes, under conditions of elevated temperature and shade. Additionally, experimental evidence suggests that PHYTOCHROME INTERACTING FACTORs (PIFs) can recruit the SWR1-related INOSITOL REQUIRING 80 (INO80) complex to remove H2A.Z from targeted loci, thereby activating gene transcription in response to these environmental stresses. This review provides a comprehensive overview of the regulatory role of H2A.Z, emphasizing how its eviction from gene loci is instrumental in the activation of stress-responsive genes under elevated temperature and shade conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
9
|
Pastor-Andreu P, Moreno-Romero J, Urdin-Bravo M, Palau-Rodriguez J, Paulisic S, Kastanaki E, Vives-Peris V, Gomez-Cadenas A, Esteve-Codina A, Martín-Mur B, Rodríguez-Villalón A, Martínez-García JF. Temporal and spatial frameworks supporting plant responses to vegetation proximity. PLANT PHYSIOLOGY 2024; 196:2048-2063. [PMID: 39140970 PMCID: PMC11531833 DOI: 10.1093/plphys/kiae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
After the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation. Other components, such as phyA and ELONGATED HYPOCOTYL 5, also participate in the shade regulation of the hypocotyl elongation response by repressing it. However, why and how so many regulators with either positive or negative activities modulate the same response remains unclear. Our physiological, genetic, cellular, and transcriptomic analyses showed that (i) these components are organized into 2 main branches or modules and (ii) the connection between them is dynamic and changes with the time of shade exposure. We propose a model for the regulation of shade-induced hypocotyl elongation in which the temporal and spatial functional importance of the various SAS regulators analyzed here helps to explain the coexistence of differentiated regulatory branches with overlapping activities.
Collapse
Affiliation(s)
- Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Departament de Bioquimica I Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Mikel Urdin-Bravo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Julia Palau-Rodriguez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Sandi Paulisic
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Vicente Vives-Peris
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Aurelio Gomez-Cadenas
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Anna Esteve-Codina
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Beatriz Martín-Mur
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Antía Rodríguez-Villalón
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Jaume F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| |
Collapse
|
10
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Liu W, Lowrey H, Xu A, Leung CC, Adamchek C, He J, Du J, Chen M, Gendron JM. A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation. Proc Natl Acad Sci U S A 2024; 121:e2408322121. [PMID: 39163340 PMCID: PMC11363348 DOI: 10.1073/pnas.2408322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Harper Lowrey
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Anxu Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| |
Collapse
|
12
|
Liu Q, Ke X, Goto E. High Photosynthetic Photon Flux Density Differentially Improves Edible Biomass Space Use Efficacy in Edamame and Dwarf Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1858. [PMID: 38999699 PMCID: PMC11243976 DOI: 10.3390/plants13131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Improving edible biomass space use efficacy (EBSUE) is important for sustainably producing edamame and dwarf tomatoes in plant factories with artificial light. Photosynthetic photon flux density (PPFD) may increase EBSUE and space use efficacy (SUE). However, no study has quantitatively explained how PPFD affects EBSUE in edamame and dwarf tomatoes. This study aimed to quantitatively validate the effects of PPFD on EBSUE in dwarf tomatoes and edamame and verify whether this effect differs between these crops. The edamame and dwarf tomato cultivars 'Enrei' and 'Micro-Tom', respectively, were cultivated under treatments with PPFDs of 300, 500, and 700 µmol m-2 s-1. The results showed that the EBSUE and SUE increased with increasing PPFD in both crops. The EBSUE increased depending on the increase in SUE, the dry mass ratio of the edible part to the total plant in the edamame, and the SUE only in the dwarf tomatoes. In conclusion, a high PPFD can improve the EBSUE and SUE of edamame and dwarf tomatoes in different ways at the reproductive growth stage. The findings from this study offer valuable information on optimizing space and resource usage in plant factories with artificial light and vertical farms. Additionally, they shed light on the quantitative impact of PPFD on both EBSUE and SUE.
Collapse
Affiliation(s)
- Qingxin Liu
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo 271-8510, Chiba, Japan
| | - Xinglin Ke
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo 271-8510, Chiba, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo 271-8510, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo 648, Matsudo 271-8510, Chiba, Japan
| |
Collapse
|
13
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
14
|
Sun F, Cheng H, Song Z, Yan H, Liu H, Xiao X, Zhang Z, Luo M, Wu F, Lu J, Luo K, Wei H. Phytochrome-interacting factors play shared and distinct roles in regulating shade avoidance responses in Populus trees. PLANT, CELL & ENVIRONMENT 2024; 47:2058-2073. [PMID: 38404129 DOI: 10.1111/pce.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.
Collapse
Affiliation(s)
- Fan Sun
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongli Cheng
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Song
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huiting Yan
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huajie Liu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyue Xiao
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhichao Zhang
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengting Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Feier Wu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Jun Lu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongbin Wei
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Liu W, Lowrey H, Leung CC, Adamchek C, Du J, He J, Chen M, Gendron JM. The circadian clock regulates PIF3 protein stability in parallel to red light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558326. [PMID: 37781622 PMCID: PMC10541125 DOI: 10.1101/2023.09.18.558326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.
Collapse
|
17
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
18
|
Sharma A, Pridgeon AJ, Liu W, Segers F, Sharma B, Jenkins GI, Franklin KA. ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) maintain shade avoidance suppression in UV-B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1394-1407. [PMID: 37243898 PMCID: PMC10953383 DOI: 10.1111/tpj.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.
Collapse
Affiliation(s)
- Ashutosh Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Ashley J. Pridgeon
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Francisca Segers
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Bhavana Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Gareth I. Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Keara A. Franklin
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
19
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
20
|
Han R, Ma L, Lv Y, Qi L, Peng J, Li H, Zhou Y, Song P, Duan J, Li J, Li Z, Terzaghi W, Guo Y, Li J. SALT OVERLY SENSITIVE2 stabilizes phytochrome-interacting factors PIF4 and PIF5 to promote Arabidopsis shade avoidance. THE PLANT CELL 2023; 35:2972-2996. [PMID: 37119311 PMCID: PMC10396385 DOI: 10.1093/plcell/koad119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Lv
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pengyu Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Kusuma P, Bugbee B. On the contrasting morphological response to far-red at high and low photon fluxes. FRONTIERS IN PLANT SCIENCE 2023; 14:1185622. [PMID: 37332690 PMCID: PMC10274578 DOI: 10.3389/fpls.2023.1185622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Plants compete for sunlight and have evolved to perceive shade through both relative increases in the flux of far-red photons (FR; 700 to 750 nm) and decreases in the flux of all photons (intensity). These two signals interact to control stem elongation and leaf expansion. Although the interacting effects on stem elongation are well quantified, responses for leaf expansion are poorly characterized. Here we report a significant interaction between far-red fraction and total photon flux. Extended photosynthetic photon flux density (ePPFD; 400 to 750 nm) was maintained at three levels (50/100, 200 and 500 µmol m-2 s-1), each with a range of 2 to 33% FR. Increasing FR increased leaf expansion in three cultivars of lettuce at the highest ePPFD but decreased expansion at the lowest ePPFD. This interaction was attributed to differences in biomass partitioning between leaves and stems. Increased FR favored stem elongation and biomass partitioning to stems at low ePPFD and favored leaf expansion at high ePPFD. In cucumber, leaf expansion was increased with increasing percent FR under all ePPFD levels showing minimal interaction. The interactions (and lack thereof) have important implications for horticulture and warrant further study for plant ecology.
Collapse
Affiliation(s)
- Paul Kusuma
- Department of Plant Sciences, Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
- Crop Physiology Laboratory, Department of Plants Soils and Climate, Utah State University, Logan, UT, United States
| | - Bruce Bugbee
- Crop Physiology Laboratory, Department of Plants Soils and Climate, Utah State University, Logan, UT, United States
| |
Collapse
|
22
|
Korobova A, Ivanov R, Timergalina L, Vysotskaya L, Nuzhnaya T, Akhiyarova G, Kusnetsov V, Veselov D, Kudoyarova G. Effect of Low Light Stress on Distribution of Auxin (Indole-3-acetic Acid) between Shoot and Roots and Development of Lateral Roots in Barley Plants. BIOLOGY 2023; 12:787. [PMID: 37372072 DOI: 10.3390/biology12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants. Following two days' reduction in illumination, a 10-fold reduction in the emergence of lateral roots was found. Auxin (IAA, indole-3-acetic acid) content decreased by 84% in roots and by 30% in shoots, and immunolocalization revealed lowered IAA levels in phloem cells of leaf sections. The reduced content of IAA found in the plants under low light suggests an inhibition of production of this hormone under these conditions. At the same time, two-fold downregulation of the LAX3 gene expression, facilitating IAA influx into the cells, was detected in the roots, as well as a decline in auxin diffusion from shoots through the phloem by about 60%. It was suggested that the reduced emergence of lateral roots in barley under a low level of illumination was due to a disturbance of auxin transport through the phloem and down-regulation of the genes responsible for auxin transport in plant roots. The results confirm the importance of the long distance transport of auxins for the control of the growth of roots under conditions of low light. Further study of the mechanisms that control the transport of auxins from shoots to roots in other plant species is required.
Collapse
Affiliation(s)
- Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Leila Timergalina
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Victor Kusnetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| |
Collapse
|
23
|
Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics. Curr Biol 2023; 33:75-85.e5. [PMID: 36538931 PMCID: PMC9839380 DOI: 10.1016/j.cub.2022.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole. This results in upward movement that brings the leaf blades into better lit zones of the canopy. The plant hormone auxin is required for this response, but it is not understood how non-differential leaf tip-derived auxin can remotely regulate movement. Here, we show that remote signaling of far-red light promotes auxin accumulation in the abaxial petiole. This local auxin accumulation is facilitated by reinforcing an intrinsic directionality of the auxin transport protein PIN3 on the petiole endodermis, as visualized with a PIN3-GFP line. Using an auxin biosensor, we show that auxin accumulates in all cell layers from endodermis to epidermis in the abaxial petiole, upon far-red light signaling in the remote leaf tip. In the petiole, auxin elicits a response to both auxin itself as well as a second growth promoter; gibberellin. We show that this dual regulation is necessary for hyponastic leaf movement in response to light. Our data indicate that gibberellin is required to permit cell growth, whereas differential auxin accumulation determines which cells can grow. Our results reveal how plants can spatially relay information about neighbor proximity from their sensory leaf tips to the petiole base, thus driving adaptive growth.
Collapse
|
24
|
Abstract
When neighbouring competitors shade the tip of a leaf, differential growth at the other end of the organ elevates its position to avoid shade. A new study elucidates how waves of growth hormones communicate these distant leaf sectors.
Collapse
Affiliation(s)
- Jorge J Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina; Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina.
| |
Collapse
|
25
|
Luo F, Zhang Q, Xin H, Liu H, Yang H, Doblin MS, Bacic A, Li L. A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. PLANT COMMUNICATIONS 2022; 3:100416. [PMID: 35927944 PMCID: PMC9700123 DOI: 10.1016/j.xplc.2022.100416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
Secondary cell walls (SCWs) in stem cells provide mechanical strength and structural support for growth. SCW thickening varies under different light conditions. Our previous study revealed that blue light enhances SCW thickening through the redundant function of MYC2 and MYC4 directed by CRYPTOCHROME1 (CRY1) signaling in fiber cells of the Arabidopsis inflorescence stem. In this study, we find that the Arabidopsis PHYTOCHROME B mutant phyB displays thinner SCWs in stem fibers, but thicker SCWs are deposited in the PHYTOCHROME INTERACTING FACTOR (PIF) quadruple mutant pif1pif3pif4pif5 (pifq). The shaded light condition with a low ratio of red to far-red light inhibits stem SCW thickening. PIF4 interacts with MYC2 and MYC4 to affect their localization in nuclei, and this interaction results in inhibition of the MYCs' transactivation activity on the NST1 promoter. Genetic evidence shows that regulation of SCW thickening by PIFs is dependent on MYC2/MYC4 function. Together, the results of this study reveal a PHYB-PIF4-MYC2/MYC4 module that inhibits SCW thickening in fiber cells of the Arabidopsis stem.
Collapse
Affiliation(s)
- Fang Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Xin
- Key Laboratory of Biodiversity Conservation in Southwest, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongquan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Monika S Doblin
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. Nat Commun 2022; 13:5659. [PMID: 36216814 PMCID: PMC9550796 DOI: 10.1038/s41467-022-33384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes. Plants subject to vegetative shade receive a low quantity of blue light (LB) and a low ratio of red to far-red light (LFLR). Here the authors show that while LB induces autophagy, LFLR leads to changes in lipid metabolism, and propose that these processes may contribute to shade avoidance responses.
Collapse
|
27
|
Zhou LJ, Wang Y, Wang Y, Song A, Jiang J, Chen S, Ding B, Guan Z, Chen F. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum. PLANT PHYSIOLOGY 2022; 190:1134-1152. [PMID: 35876821 PMCID: PMC9516746 DOI: 10.1093/plphys/kiac342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 05/14/2023]
Abstract
Light is essential to plant survival and elicits a wide range of plant developmental and physiological responses under different light conditions. A low red-to-far red (R/FR) light ratio induces shade-avoidance responses, including decreased anthocyanin accumulation, whereas a high R/FR light ratio promotes anthocyanin biosynthesis. However, the detailed molecular mechanism underpinning how different R/FR light ratios regulate anthocyanin homeostasis remains elusive, especially in non-model species. Here, we demonstrate that a low R/FR light ratio induced the expression of CmMYB4, which suppressed the anthocyanin activator complex CmMYB6-CmbHLH2, leading to the reduction of anthocyanin accumulation in Chrysanthemum (Chrysanthemum morifolium) petals. Specifically, CmMYB4 recruited the corepressor CmTPL (TOPLESS) to directly bind the CmbHLH2 promoter and suppressed its transcription by impairing histone H3 acetylation. Moreover, the low R/FR light ratio inhibited the PHYTOCHROME INTERACTING FACTOR family transcription factor CmbHLH16, which can competitively bind to CmMYB4 and destabilize the CmMYB4-CmTPL protein complex. Under the high R/FR light ratio, CmbHLH16 was upregulated, which impeded the formation of the CmMYB4-CmTPL complex and released the suppression of CmbHLH2, thus promoting anthocyanin accumulation in Chrysanthemum petals. Our findings reveal a mechanism by which different R/FR light ratios fine-tune anthocyanin homeostasis in flower petals.
Collapse
Affiliation(s)
| | | | - Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
28
|
PIF7 is a master regulator of thermomorphogenesis in shade. Nat Commun 2022; 13:4942. [PMID: 36038577 PMCID: PMC9424238 DOI: 10.1038/s41467-022-32585-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density. Plant hypocotyl elongation response to light and temperature. Here the authors show that shade combined with warm temperature synergistically enhances the hypocotyl growth response via the PIF7 transcription factor, auxin, and as yet unknown factor.
Collapse
|
29
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. Plants response to light stress. J Genet Genomics 2022; 49:735-747. [DOI: 10.1016/j.jgg.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
30
|
Lanoue J, Little C, Hao X. The Power of Far-Red Light at Night: Photomorphogenic, Physiological, and Yield Response in Pepper During Dynamic 24 Hour Lighting. FRONTIERS IN PLANT SCIENCE 2022; 13:857616. [PMID: 35557729 PMCID: PMC9087831 DOI: 10.3389/fpls.2022.857616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Supplemental light is needed during the winter months in high latitude regions to achieve the desired daily light integral (DLI) (photoperiod × intensity) for greenhouse pepper (Capsicum annuum) production. Peppers tend to have short internodes causing fruit stacking and higher labor time for plant maintenance when grown under supplemental light. Far-red light can increase internode length, and our previous study on tomatoes (Solanum lycopersicum) also discovered monochromatic blue light at night during continuous lighting (CL, 24 h) increased stem elongation. Furthermore, the use of low-intensity, long photoperiod lighting can reduce light fixture costs and overall electricity costs due to lower power prices during the night. Therefore, we investigated the use of blue and/or far-red light during the night period of CL to increase stem elongation. Three pepper cultivars with different internode lengths/growing characteristics ('Maureno,' 'Gina,' and 'Eurix') were used to investigate the effects on plant morphology in a short experiment, and one cultivar 'Maureno' was used in a long experiment to assess the impact on fruit yield. The five lighting treatments that were used are as follows: 16 h of white light during the day followed by either 8 h of darkness (16W - control), white light (24W), blue light only (16W + 8B), blue + far-red light (16W + 8BFR), or far-red light only (16W + 8FR). Calculated nighttime phytochrome photostationary state (PSS) was 0.833, 0.566, 0.315, and 0.186 for 24W, 16W + 8B, 16W + 8BFR, and 16W + 8FR respectively. All five treatments had the same DLI in photosynthetically active radiation (PAR) and far-red light. The 16W + 8BFR and 16W + 8FR treatments significantly increased internode length compared to 16W and 24W but neither was more impactful than the other. The 16W + 8B treatment also increased internode length but to a lesser extent than 16W + 8BFR and 16W + 8FR. This indicates that a nighttime PSS of 0.315 is sufficient to maximize stem elongation. Both 16W + 8B and 16W + 8BFR drove photosynthesis during the nighttime supporting a similar yield compared to 16W. Therefore, 16W + 8BFR is the most potential lighting strategy as it can lead to a greater reduction in the light fixture and electrical costs while maintaining yield and enhancing internode length.
Collapse
|
31
|
Colombo M, Montazeaud G, Viader V, Ecarnot M, Prosperi J, David J, Fort F, Violle C, Freville H. A genome‐wide analysis suggests pleiotropic effects of Green Revolution genes on shade avoidance in wheat. Evol Appl 2022; 15:1594-1604. [PMID: 36330302 PMCID: PMC9624089 DOI: 10.1111/eva.13349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
A classic example of phenotypic plasticity in plants is the suit of phenotypic responses induced by a change in the ratio of red to far-red light (R∶FR) as a result of shading, also known as the shade avoidance syndrome (SAS). While the adaptive consequences of this syndrome have been extensively discussed in natural ecosystems, how SAS varies within crop populations and how SAS evolved during crop domestication and breeding remain poorly known. In this study, we grew a panel of 180 durum wheat (Triticum turgidum ssp. durum) genotypes spanning diversity from wild, early domesticated, and elite genetic compartments under two light treatments: low R:FR light (shaded treatment) and high R:FR light (unshaded treatment). We first quantified the genetic variability of SAS, here measured as a change in plant height at the seedling stage. We then dissected the genetic basis of this variation through genome-wide association mapping. Genotypes grown in shaded conditions were taller than those grown under unshaded conditions. Interaction between light quality and genotype did not affect plant height. We found six QTLs affecting plant height. Three significantly interacted with light quality among which the well-known Rht1 gene introgressed in elite germplasm during the Green Revolution. Interestingly at three loci, short genotypes systematically expressed reduced SAS, suggesting a positive genetic correlation between plant height and plant height plasticity. Overall, our study sheds light on the evolutionary history of crops and illustrates the relevance of genetic approaches to tackle agricultural challenges.
Collapse
Affiliation(s)
- Michel Colombo
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Germain Montazeaud
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
- Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
| | - Veronique Viader
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | - Martin Ecarnot
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | | | - Jacques David
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | - Florian Fort
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Cyrille Violle
- CEFE Univ. Montpellier CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Helene Freville
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| |
Collapse
|
32
|
Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera). J Proteomics 2021; 257:104455. [PMID: 34923171 DOI: 10.1016/j.jprot.2021.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022]
Abstract
Bowl lotus is categorized as a heliophyte, and shaded environments can severely retard its development and blossoming. We conducted a comparative omics study of light response difference between two cultivars, 'HongYunDieYing' (shade tolerant) and 'YingYing' (shade intolerant), to understand the mechanisms behind the shade tolerance response. The results indicated that 'HongYunDieYing' had a faster light signal response than that in 'YingYing'. Furthermore, 214 proteins in 'HongYunDieYing' and 171 proteins in 'YingYing' were differentially expressed at both the transcriptional and protein levels. These correlated members were mainly involved in photosynthesis, metabolism, secondary metabolites, ribosome, and protein biosynthesis. However, glycolysis/gluconeogenesis, carbon metabolism, fatty acid metabolism, glutathione metabolism, and hormone signaling, were unique to 'HongYunDieYing'. The molecular model of light signal regulation of shade tolerance was constructed: the upstream light signal transduction related gene (cryptochrome 1, phytohormone B, phytochrome-interacting factor 3/5, ELONGATED HYPOCOTYL 5, and SUPPRESSOR OF PHYA-1) played a decisive role in regulating shade tolerance traits. Some transcription factors (MYBs, bHLHs and WRKYs) and hormone signaling (auxin, gibberellin and ethylene) were involved in mediating light signaling to regulate downstream biological events. These regulators and biological processes synergistically regulated the shade tolerance of lotus. SIGNIFICANCE: Lotus requires sufficient sunlight for growth and development, and shaded environments will severely retard lotus growth and blossoming. At present, there are few reports on the systematic identification and characterization of light signal response-related regulators in lotus. This study focuses on the comparative analysis two bowl lotus cultivars with the different shade tolerance traits at transcriptome and proteome levels to uncover the novel insight of the light signal-related biological network and potential candidates involved in the mechanism. The results provide a theoretical basis for the bowl lotus breeding and the expansion of its applications.
Collapse
|
33
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
34
|
Park YJ, Kim JY, Lee JH, Han SH, Park CM. External and Internal Reshaping of Plant Thermomorphogenesis. TRENDS IN PLANT SCIENCE 2021; 26:810-821. [PMID: 33583729 DOI: 10.1016/j.tplants.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants dynamically adapt to changing temperatures to ensure propagation and reproductive success, among which morphogenic responses to warm temperatures have been extensively studied in recent years. As readily inferred from the cyclic co-oscillations of environmental cues in nature, plant thermomorphogenesis is coordinately reshaped by various external conditions. Accumulating evidence supports that internal and developmental cues also contribute to harmonizing thermomorphogenic responses. The external and internal reshaping of thermomorphogenesis is facilitated by versatile temperature sensing and interorgan communication processes, circadian and photoperiodic gating of thermomorphogenic behaviors, and their metabolic coordination. Here, we discuss recent advances in plant thermal responses with focus on the diel and seasonal reshaping of thermomorphogenesis and briefly explore its application to developing climate-smart crops.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
35
|
Phytochrome A elevates plant circadian-clock components to suppress shade avoidance in deep-canopy shade. Proc Natl Acad Sci U S A 2021; 118:2108176118. [PMID: 34187900 DOI: 10.1073/pnas.2108176118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shade-avoiding plants can detect the presence of neighboring vegetation and evoke escape responses before canopy cover limits photosynthesis. Rapid stem elongation facilitates light foraging and enables plants to overtop competitors. A major regulator of this response is the phytochrome B photoreceptor, which becomes inactivated in light environments with a low ratio of red to far-red light (low R:FR), characteristic of vegetational shade. Although shade avoidance can provide plants with a competitive advantage in fast-growing stands, excessive stem elongation can be detrimental to plant survival. As such, plants have evolved multiple feedback mechanisms to attenuate shade-avoidance signaling. The very low R:FR and reduced levels of photosynthetically active radiation (PAR) present in deep canopy shade can, together, trigger phytochrome A (phyA) signaling, inhibiting shade avoidance and promoting plant survival when resources are severely limited. The molecular mechanisms underlying this response have not been fully elucidated. Here, we show that Arabidopsis thaliana phyA elevates early-evening expression of the central circadian-clock components TIMING OF CAB EXPRESSION 1 (TOC1), PSEUDO RESPONSE REGULATOR 7 (PRR7), EARLY FLOWERING 3 (ELF3), and ELF4 in photocycles of low R:FR and low PAR. These collectively suppress stem elongation, antagonizing shade avoidance in deep canopy shade.
Collapse
|
36
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
37
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
38
|
Duan L, Pérez-Ruiz JM, Cejudo FJ, Dinneny JR. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. PLANT PHYSIOLOGY 2021; 185:503-518. [PMID: 33721893 PMCID: PMC8133581 DOI: 10.1093/plphys/kiaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 05/10/2023]
Abstract
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.
Collapse
Affiliation(s)
- Lina Duan
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - José R Dinneny
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Author for communication:
| |
Collapse
|
39
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Paulišić S, Qin W, Arora Verasztó H, Then C, Alary B, Nogue F, Tsiantis M, Hothorn M, Martínez‐García JF. Adjustment of the PIF7-HFR1 transcriptional module activity controls plant shade adaptation. EMBO J 2021; 40:e104273. [PMID: 33264441 PMCID: PMC7780144 DOI: 10.15252/embj.2019104273] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 01/29/2023] Open
Abstract
Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.
Collapse
Affiliation(s)
- Sandi Paulišić
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Cerdanyola del Vallès, Campus UABBarcelonaSpain
| | - Wenting Qin
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Cerdanyola del Vallès, Campus UABBarcelonaSpain
| | - Harshul Arora Verasztó
- Structural Plant Biology LaboratorySection of BiologyDepartment of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Christiane Then
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Cerdanyola del Vallès, Campus UABBarcelonaSpain
- Present address:
Department for Epidemiology and Pathogen DiagnosticsJulius Kühn‐InstitutFederal Research Institute for Cultivated PlantsBraunschweigGermany
| | - Benjamin Alary
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Cerdanyola del Vallès, Campus UABBarcelonaSpain
| | - Fabien Nogue
- Institut Jean‐Pierre BourginINRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersaillesFrance
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute from Plant Breeding ResearchCologneGermany
| | - Michael Hothorn
- Structural Plant Biology LaboratorySection of BiologyDepartment of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Jaime F Martínez‐García
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Cerdanyola del Vallès, Campus UABBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Institute for Plant Molecular and Cellular Biology (IBMCP)CSIC‐UPVValènciaSpain
| |
Collapse
|
41
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
42
|
Yang Y, Guang Y, Wang F, Chen Y, Yang W, Xiao X, Luo S, Zhou Y. Characterization of Phytochrome-Interacting Factor Genes in Pepper and Functional Analysis of CaPIF8 in Cold and Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:746517. [PMID: 34759940 PMCID: PMC8572859 DOI: 10.3389/fpls.2021.746517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
As a subfamily of basic helix-loop-helix (bHLH) transcription factors, phytochrome-interacting factors (PIFs) participate in regulating light-dependent growth and development of plants. However, limited information is available about PIFs in pepper. In the present study, we identified six pepper PIF genes using bioinformatics-based methods. Phylogenetic analysis revealed that the PIFs from pepper and some other plants could be divided into three distinct groups. Motif analysis revealed the presence of many conserved motifs, which is consistent with the classification of PIF proteins. Gene structure analysis suggested that the CaPIF genes have five to seven introns, exhibiting a relatively more stable intron number than other plants such as rice, maize, and tomato. Expression analysis showed that CaPIF8 was up-regulated by cold and salt treatments. CaPIF8-silenced pepper plants obtained by virus-induced gene silencing (VIGS) exhibited higher sensitivity to cold and salt stress, with an obvious increase in relative electrolyte leakage (REL) and variations in the expression of stress-related genes. Further stress tolerance assays revealed that CaPIF8 plays different regulatory roles in cold and salt stress response by promoting the expression of the CBF1 gene and ABA biosynthesis genes, respectively. Our results reveal the key roles of CaPIF8 in cold and salt tolerance of pepper, and lay a solid foundation for clarifying the biological roles of PIFs in pepper and other plants.
Collapse
Affiliation(s)
- Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yelan Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Wenting Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Xufeng Xiao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Sha Luo
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Yong Zhou,
| |
Collapse
|
43
|
Jenness MK, Tayengwa R, Murphy AS. An ATP-Binding Cassette Transporter, ABCB19, Regulates Leaf Position and Morphology during Phototropin1-Mediated Blue Light Responses. PLANT PHYSIOLOGY 2020; 184:1601-1612. [PMID: 32855213 PMCID: PMC7608178 DOI: 10.1104/pp.20.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| |
Collapse
|
44
|
Jia Y, Kong X, Hu K, Cao M, Liu J, Ma C, Guo S, Yuan X, Zhao S, Robert HS, Li C, Tian H, Ding Z. PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS. THE NEW PHYTOLOGIST 2020; 228:609-621. [PMID: 32521046 DOI: 10.1111/nph.16732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/20/2020] [Indexed: 05/29/2023]
Abstract
Shade avoidance syndrome (SAS) arises in densely growing plants that compete for light. In Arabidopsis thaliana, phytochrome interacting factor (PIF) proteins link the perception of shade to stem elongation via auxin production. Here, we report that PIFs inhibit the shade-induced expression of AUXIN RESPONSE FACTOR 18 (ARF18), and ARF18 represses auxin signaling. Therefore, PIF-mediated inhibition of ARF18 enhances auxin-dependent hypocotyl elongation in simulated shade. Furthermore, we show that both PIFs and ARF18 directly repress qua-quine starch (QQS), which controls the allocation of carbon and nitrogen. Shade-repressed QQS attenuates the conversion of starch to protein and thus reduced leaf area. Our results suggest that PIF-dependent gene regulation coordinates multiple SAS responses, including altered stem growth via ARF18, as well as altered leaf growth and metabolism via QQS.
Collapse
Affiliation(s)
- Yuebin Jia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Kongqin Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Mengqiang Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Siyi Guo
- The key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, 004205, Czech Republic
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
45
|
Variable Light Condition Improves Root Distribution Shallowness and P Uptake of Soybean in Maize/Soybean Relay Strip Intercropping System. PLANTS 2020; 9:plants9091204. [PMID: 32942525 PMCID: PMC7570427 DOI: 10.3390/plants9091204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P (phosphorus) treatments of 0 and 20 kg P ha yr−1 (P0 and P20, respectively) in field experiment over 4 years. In 2019, a pot experiment was conducted as the supplement to the field experiment. Shade from sowing to V5 (Five trifoliolates unroll) and light (SL) was used to imitate the light condition of soybeans in a relay trip inter-cropping system, while light then shade from V5 to maturity (LS) was used to imitate the light condition of soybeans when monocropped. Compared to monocropping, P uptake and root distribution in the upper 0–15 cm soil layer increased when inter-cropped. Inter-cropped soybeans suffered serious shade by maize during a common-growth period, which resulted in the inhibition of primary root growth and a modified auxin synthesis center and response. During the solo-existing period, plant photosynthetic capacity and sucrose accumulation increased under ameliorated light in SL (shade-light). Increased light during the reproductive stage significantly decreased leaf P concentration in SL under both P-sufficient and P-deficient conditions. Transcripts of a P starvation response gene (GmPHR25) in leaves and genes (GmEXPB2) involved in root growth were upregulated by ameliorated light during the reproductive stage. Furthermore, during the reproductive stage, more light interception increased the auxin concentration and expression of GmYUCCA14 (encoding the auxin synthesis) and GmTIR1C (auxin receptor) in roots. Across the field and pot experiments, increased lateral root growth and shallower root distribution were associated with inhibited primary root growth during the seedling stage and ameliorated light conditions in the reproductive stage. Consequently, this improved topsoil foraging and P uptake of inter-cropped soybeans. It is suggested that the various light conditions (shade-light) mediating leaf P status and sucrose transport can regulate auxin synthesis and respond to root formation and distribution.
Collapse
|
46
|
Kathare PK, Xu X, Nguyen A, Huq E. A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:113-123. [PMID: 32652745 PMCID: PMC7959245 DOI: 10.1111/tpj.14908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 05/23/2023]
Abstract
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix-loop-helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME-INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1-mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA-mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants.
Collapse
Affiliation(s)
| | | | | | - Enamul Huq
- Corresponding author: Enamul Huq, University of Texas at Austin, NHB 2.616, Stop A5000, 100 E. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-471-1218,
| |
Collapse
|
47
|
Johnston CR, Malladi A, Vencill WK, Grey TL, Culpepper AS, Henry G, Czarnota MA, Randell TM. Investigation of physiological and molecular mechanisms conferring diurnal variation in auxinic herbicide efficacy. PLoS One 2020; 15:e0238144. [PMID: 32857790 PMCID: PMC7454982 DOI: 10.1371/journal.pone.0238144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.
Collapse
Affiliation(s)
- Christopher R. Johnston
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - William K. Vencill
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Timothy L. Grey
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - A. Stanley Culpepper
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - Gerald Henry
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Mark A. Czarnota
- Department of Horticulture, University of Georgia, Griffin, GA, United States of America
| | - Taylor M. Randell
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| |
Collapse
|
48
|
Buti S, Hayes S, Pierik R. The bHLH network underlying plant shade-avoidance. PHYSIOLOGIA PLANTARUM 2020; 169:312-324. [PMID: 32053251 PMCID: PMC7383782 DOI: 10.1111/ppl.13074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Shade is a potential threat to many plant species. When shade-intolerant plants detect neighbours, they elongate their stems and leaves in an effort to maximise their light capture. This developmental programme, known as 'shade-avoidance' is tightly controlled by specialised photoreceptors and a suite of transcriptional regulators. The basic helix-loop-helix (bHLH) family of transcription factors are particularly important for shade-induced elongation. In recent years, it has become apparent that many members of this family heterodimerise and that together they form a complex regulatory network. This review summarises recent work into the structure of the bHLH network and how it regulates elongation growth. In addition to this, we highlight how photoreceptors modulate the function of the network via direct interaction with transcription factors. It is hoped that the information integrated in this review will provide a useful theoretical framework for future studies on the molecular basis of shade-avoidance in plants.
Collapse
Affiliation(s)
- Sara Buti
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Scott Hayes
- Centro Nacional de Biotecnología, CSICMadrid28049Spain
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| |
Collapse
|
49
|
Wang H, Shang Q. The combined effects of light intensity, temperature, and water potential on wall deposition in regulating hypocotyl elongation of Brassica rapa. PeerJ 2020; 8:e9106. [PMID: 32518720 PMCID: PMC7258941 DOI: 10.7717/peerj.9106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hypocotyl elongation is a critical sign of seed germination and seedling growth, and it is regulated by multi-environmental factors. Light, temperature, and water potential are the major environmental stimuli, and their regulatory mechanism on hypocotyl growth has been extensively studied at molecular level. However, the converged point in signaling process of light, temperature, and water potential on modulating hypocotyl elongation is still unclear. In the present study, we found cell wall was the co-target of the three environmental factors in regulating hypocotyl elongation by analyzing the extension kinetics of hypocotyl and the changes in hypocotyl cell wall of Brassica rapa under the combined effects of light intensity, temperature, and water potential. The three environmental factors regulated hypocotyl cell elongation both in isolation and in combination. Cell walls thickened, maintained, or thinned depending on growth conditions and developmental stages during hypocotyl elongation. Further analysis revealed that the imbalance in wall deposition and hypocotyl elongation led to dynamic changes in wall thickness. Low light repressed wall deposition by influencing the accumulation of cellulose, hemicellulose, and pectin; high temperature and high water potential had significant effects on pectin accumulation overall. It was concluded that wall deposition was tightly controlled during hypocotyl elongation, and low light, high temperature, and high water potential promoted hypocotyl elongation by repressing wall deposition, especially the deposition of pectin.
Collapse
Affiliation(s)
- Hongfei Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Fiorucci AS, Galvão VC, Ince YÇ, Boccaccini A, Goyal A, Allenbach Petrolati L, Trevisan M, Fankhauser C. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. THE NEW PHYTOLOGIST 2020; 226:50-58. [PMID: 31705802 PMCID: PMC7064998 DOI: 10.1111/nph.16316] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 05/06/2023]
Abstract
In response to elevated ambient temperature Arabidopsis thaliana seedlings display a thermomorphogenic response that includes elongation of hypocotyls and petioles. Phytochrome B and cryptochrome 1 are two photoreceptors also playing a role in thermomorphogenesis. Downstream of both environmental sensors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is essential to trigger this response at least in part through the production of the growth promoting hormone auxin. Using a genetic approach, we identified PHYTOCHROME INTERACTING FACTOR 7 (PIF7) as a novel player for thermomorphogenesis and compared the phenotypes of pif7 and pif4 mutants. We investigated the role of PIF7 during temperature-regulated gene expression and the regulation of PIF7 transcript and protein by temperature. Furthermore, pif7 and pif4 loss-of-function mutants were similarly unresponsive to increased temperature. This included hypocotyl elongation and induction of genes encoding auxin biosynthetic or signalling proteins. PIF7 bound to the promoters of auxin biosynthesis and signalling genes. In response to temperature elevation PIF7 transcripts decreased while PIF7 protein levels increased rapidly. Our results reveal the importance of PIF7 for thermomorphogenesis and indicate that PIF7 and PIF4 likely depend on each other possibly by forming heterodimers. Elevated temperature rapidly enhances PIF7 protein accumulation, which may contribute to the thermomorphogenic response.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Vinicius Costa Galvão
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Alessandra Boccaccini
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Anupama Goyal
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Martine Trevisan
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Christian Fankhauser
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| |
Collapse
|