1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024:10.1113/JP284739. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Hussaini S, Mamyraiym Kyzy A, Schröder-Schetelig J, Lädke SL, Venkatesan V, Diaz-Maue L, Quiñonez Uribe RA, Richter C, Biktashev VN, Majumder R, Krinski V, Luther S. Efficient termination of cardiac arrhythmias using optogenetic resonant feedback pacing. CHAOS (WOODBURY, N.Y.) 2024; 34:031103. [PMID: 38526981 DOI: 10.1063/5.0191519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Malignant cardiac tachyarrhythmias are associated with complex spatiotemporal excitation of the heart. The termination of these life-threatening arrhythmias requires high-energy electrical shocks that have significant side effects, including tissue damage, excruciating pain, and worsening prognosis. This significant medical need has motivated the search for alternative approaches that mitigate the side effects, based on a comprehensive understanding of the nonlinear dynamics of the heart. Cardiac optogenetics enables the manipulation of cellular function using light, enhancing our understanding of nonlinear cardiac function and control. Here, we investigate the efficacy of optically resonant feedback pacing (ORFP) to terminate ventricular tachyarrhythmias using numerical simulations and experiments in transgenic Langendorff-perfused mouse hearts. We show that ORFP outperforms the termination efficacy of the optical single-pulse (OSP) approach. When using ORFP, the total energy required for arrhythmia termination, i.e., the energy summed over all pulses in the sequence, is 1 mJ. With a success rate of 50%, the energy per pulse is 40 times lower than with OSP with a pulse duration of 10 ms. We demonstrate that even at light intensities below the excitation threshold, ORFP enables the termination of arrhythmias by spatiotemporal modulation of excitability inducing spiral wave drift.
Collapse
Affiliation(s)
- S Hussaini
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - A Mamyraiym Kyzy
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - J Schröder-Schetelig
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - S L Lädke
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - V Venkatesan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - L Diaz-Maue
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
- Research Electronics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - R A Quiñonez Uribe
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - C Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
- WG Cardiovascular Optogenetics, Lab Animal Science Unit, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - V N Biktashev
- Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - R Majumder
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - V Krinski
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - S Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| |
Collapse
|
3
|
Scardigli M, Pásek M, Santini L, Palandri C, Conti E, Crocini C, Campione M, Loew LM, de Vries AAF, Pijnappels DA, Pavone FS, Poggesi C, Cerbai E, Coppini R, Kohl P, Ferrantini C, Sacconi L. Optogenetic confirmation of transverse-tubular membrane excitability in intact cardiac myocytes. J Physiol 2024; 602:791-808. [PMID: 38348881 DOI: 10.1113/jp285202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.
Collapse
Affiliation(s)
- Marina Scardigli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michal Pásek
- Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lorenzo Santini
- Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Claudia Crocini
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Campione
- Institute of Neuroscience (IN-CNR) and Department of Biomedical Science, University of Padua, Padua, Italy
| | - Leslie M Loew
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
| | - Raffaele Coppini
- Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| |
Collapse
|
4
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Schwarzová B, Stüdemann T, Sönmez M, Rössinger J, Pan B, Eschenhagen T, Stenzig J, Wiegert JS, Christ T, Weinberger F. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES. Pflugers Arch 2023; 475:1463-1477. [PMID: 37863976 PMCID: PMC10730631 DOI: 10.1007/s00424-023-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.
Collapse
Affiliation(s)
- Barbora Schwarzová
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Muhammed Sönmez
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Bangfen Pan
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
6
|
Sun T, Grassam-Rowe A, Pu Z, Li Y, Ren H, An Y, Guo X, Hu W, Liu Y, Zheng Y, Liu Z, Kou K, Ou X, Chen T, Fan X, Liu Y, Tu S, He Y, Ren Y, Chen A, Shang Z, Xia Z, Miquerol L, Smart N, Zhang H, Tan X, Shou W, Lei M. Dbh + catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart. Nat Commun 2023; 14:7801. [PMID: 38016975 PMCID: PMC10684617 DOI: 10.1038/s41467-023-42658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function.
Collapse
Affiliation(s)
- Tianyi Sun
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | - Zhaoli Pu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huiying Ren
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yanru An
- BGI Research, Shenzhen, 518103, China
| | - Xinyu Guo
- BGI Research, Qingdao, 266555, China
| | - Wei Hu
- Department of Physics & Astronomy, The University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
| | - Ying Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Yuqing Zheng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yangyang Liu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shu Tu
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yu He
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yue Ren
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ao Chen
- BGI Research, Shenzhen, 518103, China
| | | | - Zhidao Xia
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lucile Miquerol
- Aix Marseille University, CNRS Institut de Biologie du Développement de Marseille UMR 7288, 13288, Marseille, France
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, Sherrington Building, Oxford, University of, Oxford, OX1 3PT, UK
| | - Henggui Zhang
- Department of Physics & Astronomy, The University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
- Beijing Academy of Artificial Intelligence, 100084, Beijing, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Weinian Shou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA.
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
7
|
Marchal GA, Biasci V, Yan P, Palandri C, Campione M, Cerbai E, Loew LM, Sacconi L. Recent advances and current limitations of available technology to optically manipulate and observe cardiac electrophysiology. Pflugers Arch 2023; 475:1357-1366. [PMID: 37770585 PMCID: PMC10567935 DOI: 10.1007/s00424-023-02858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Optogenetics, utilising light-reactive proteins to manipulate tissue activity, are a relatively novel approach in the field of cardiac electrophysiology. We here provide an overview of light-activated transmembrane channels (optogenetic actuators) currently applied in strategies to modulate cardiac activity, as well as newly developed variants yet to be implemented in the heart. In addition, we touch upon genetically encoded indicators (optogenetic sensors) and fluorescent dyes to monitor tissue activity, including cardiac transmembrane potential and ion homeostasis. The combination of the two allows for all-optical approaches to monitor and manipulate the heart without any physical contact. However, spectral congestion poses a major obstacle, arising due to the overlap of excitation/activation and emission spectra of various optogenetic proteins and/or fluorescent dyes, resulting in optical crosstalk. Therefore, optogenetic proteins and fluorescent dyes should be carefully selected to avoid optical crosstalk and consequent disruptions in readouts and/or cellular activity. We here present a novel approach to simultaneously monitor transmembrane potential and cytosolic calcium, while also performing optogenetic manipulation. For this, we used the novel voltage-sensitive dye ElectroFluor 730p and the cytosolic calcium indicator X-Rhod-1 in mouse hearts expressing channelrhodopsin-2 (ChR2). By exploiting the isosbestic point of ElectroFluor 730p and avoiding the ChR2 activation spectrum, we here introduce a novel optical imaging and manipulation approach with minimal crosstalk. Future developments in both optogenetic proteins and fluorescent dyes will allow for additional and more optimised strategies, promising a bright future for all-optical approaches in the field of cardiac electrophysiology.
Collapse
Affiliation(s)
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy-LENS, Sesto Fiorentino, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Marina Campione
- Institute of Neuroscience (IN-CNR) and Department of Biomedical Science, University of Padua, Padua, Italy
| | - Elisabetta Cerbai
- European Laboratory for Non-Linear Spectroscopy-LENS, Sesto Fiorentino, Florence, Italy
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC-CNR), Florence, Italy.
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Kaminosono J, Kambe Y, Tanimoto A, Kuwaki T, Yamashita A. The physiological response during optogenetic-based cardiac pacing in awake freely moving mice. Front Physiol 2023; 14:1130956. [PMID: 37736488 PMCID: PMC10509767 DOI: 10.3389/fphys.2023.1130956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/10/2023] [Indexed: 09/23/2023] Open
Abstract
There are several methods to control a heart rate, such as electrical stimulation and drug administration. However, these methods may be invasive or affect other organs. Recently, an optogenetic-based cardiac pacing method has enabled us to stimulate the cardiac muscle in non-contact. In many previous studies, the pacing was applied ex vivo or in anesthetized animals. Therefore, the physiologic response of animals during optogenetic pacing remains unclear. Here, we established a method of optogenetic-based cardiac pacing in awake, freely moving mice and simultaneously measured electrocardiogram, blood pressure, and respiration. As a result, light-induced myocardial contraction produces blood flow and indirectly affects the respiration rhythm. Additionally, light illumination enabled heart rate recovery in bradycardic mice. These findings may be employed for further research that relates a heartbeat state to animal behavior. Together, this method may drive the development of less invasive pacemakers without pacing leads.
Collapse
Affiliation(s)
- Jun Kaminosono
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Medical Neuropharmacology, Wakayama Medical University School of Pharmaceutical Sciences, Wakayama, Japan
| |
Collapse
|
9
|
Marchal GA, Biasci V, Loew LM, Biggeri A, Campione M, Sacconi L. Optogenetic manipulation of cardiac repolarization gradients using sub-threshold illumination. Front Physiol 2023; 14:1167524. [PMID: 37215182 PMCID: PMC10196067 DOI: 10.3389/fphys.2023.1167524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Mechanisms underlying cardiac arrhythmias are typically driven by abnormalities in cardiac conduction and/or heterogeneities in repolarization time (RT) across the heart. While conduction slowing can be caused by either electrophysiological defects or physical blockade in cardiac tissue, RT heterogeneities are mainly related to action potential (AP) prolongation or abbreviation in specific areas of the heart. Importantly, the size of the area with altered RT and the difference between the short RT and long RT (RT gradient) have been identified as critical determinators of arrhythmogenicity. However, current experimental methods for manipulating RT gradient rely on the use of ion channel inhibitors, which lack spatial and temporal specificity and are commonly only partially reversible. Therefore, the conditions facilitating sustained arrhythmia upon the presence of RT heterogeneities and/or defects in cardiac conduction remain to be elucidated. Methods: We here employ an approach based on optogenetic stimulation in a low-intensity fashion (sub-threshold illumination), to selectively manipulate cardiac electrical activity in defined areas of the heart. Results: As previously described, subthreshold illumination is a robust tool able to prolong action potentials (AP), decrease upstroke velocity as well as slow cardiac conduction, in a fully reversible manner. By applying a patterned sub-threshold illumination in intact mouse hearts constitutively expressing the light-gated ion channel channelrhodopsin-2 (ChR2), we optically manipulate RT gradients and cardiac conduction across the heart in a spatially selective manner. Moreover, in a proof-of-concept assessment we found that in the presence of patterned sub-threshold illumination, mouse hearts were more susceptible to arrhythmias. Hence, this optogenetic-based approach may be able to mimic conduction slowing and RT heterogeneities present in pathophysiological conditions.
Collapse
Affiliation(s)
- Gerard A. Marchal
- European Laboratory for Non-Linear Spectroscopy—LENS, Florence, Italy
- National Institute of Optics (INO-CNR), Florence, Italy
- Institute of Clinical Physiology (IFC-CNR), Pisa, Italy
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy—LENS, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leslie M. Loew
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, United States
| | - Annibale Biggeri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marina Campione
- Institute of Neuroscience (IN-CNR) and Department of Biomedical Science University of Padua, Padua, Italy
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC-CNR), Pisa, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Ho A, Orton R, Tayler R, Asamaphan P, Herder V, Davis C, Tong L, Smollett K, Manali M, Allan J, Rawlik K, McDonald SE, Vink E, Pollock L, Gannon L, Evans C, McMenamin J, Roy K, Marsh K, Divala T, Holden MTG, Lockhart M, Yirrell D, Currie S, O'Leary M, Henderson D, Shepherd SJ, Jackson C, Gunson R, MacLean A, McInnes N, Bradley-Stewart A, Battle R, Hollenbach JA, Henderson P, Odam M, Chikowore P, Oosthuyzen W, Chand M, Hamilton MS, Estrada-Rivadeneyra D, Levin M, Avramidis N, Pairo-Castineira E, Vitart V, Wilkie C, Palmarini M, Ray S, Robertson DL, da Silva Filipe A, Willett BJ, Breuer J, Semple MG, Turner D, Baillie JK, Thomson EC. Adeno-associated virus 2 infection in children with non-A-E hepatitis. Nature 2023; 617:555-563. [PMID: 36996873 DOI: 10.1038/s41586-023-05948-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.
Collapse
Affiliation(s)
- Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard Orton
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Rachel Tayler
- Department of Paediatrics, Royal Hospital for Children, Glasgow, UK
| | - Patawee Asamaphan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chris Davis
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lily Tong
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Katherine Smollett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Maria Manali
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jay Allan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Konrad Rawlik
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah E McDonald
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Elen Vink
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Louisa Pollock
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Paediatrics, Royal Hospital for Children, Glasgow, UK
| | | | - Clair Evans
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | - Celia Jackson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Neil McInnes
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Richard Battle
- Histocompatibility and Immunogenetics (H&I) Laboratory, Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Jill A Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Miranda Odam
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Primrose Chikowore
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Wilna Oosthuyzen
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Melissa Shea Hamilton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Diego Estrada-Rivadeneyra
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Nikos Avramidis
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Erola Pairo-Castineira
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Veronique Vitart
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Craig Wilkie
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Surajit Ray
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ana da Silva Filipe
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Brian J Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - David Turner
- Histocompatibility and Immunogenetics (H&I) Laboratory, Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, Edinburgh, UK
| | - J Kenneth Baillie
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emma C Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK.
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
11
|
Choquet C, Sicard P, Vahdat J, Nguyen THM, Kober F, Varlet I, Bernard M, Richard S, Kelly RG, Lalevée N, Miquerol L. Nkx2-5 Loss of Function in the His-Purkinje System Hampers Its Maturation and Leads to Mechanical Dysfunction. J Cardiovasc Dev Dis 2023; 10:jcdd10050194. [PMID: 37233161 DOI: 10.3390/jcdd10050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The ventricular conduction or His-Purkinje system (VCS) mediates the rapid propagation and precise delivery of electrical activity essential for the synchronization of heartbeats. Mutations in the transcription factor Nkx2-5 have been implicated in a high prevalence of developing ventricular conduction defects or arrhythmias with age. Nkx2-5 heterozygous mutant mice reproduce human phenotypes associated with a hypoplastic His-Purkinje system resulting from defective patterning of the Purkinje fiber network during development. Here, we investigated the role of Nkx2-5 in the mature VCS and the consequences of its loss on cardiac function. Neonatal deletion of Nkx2-5 in the VCS using a Cx40-CreERT2 mouse line provoked apical hypoplasia and maturation defects of the Purkinje fiber network. Genetic tracing analysis demonstrated that neonatal Cx40-positive cells fail to maintain a conductive phenotype after Nkx2-5 deletion. Moreover, we observed a progressive loss of expression of fast-conduction markers in persistent Purkinje fibers. Consequently, Nkx2-5-deleted mice developed conduction defects with progressively reduced QRS amplitude and RSR' complex associated with higher duration. Cardiac function recorded by MRI revealed a reduction in the ejection fraction in the absence of morphological changes. With age, these mice develop a ventricular diastolic dysfunction associated with dyssynchrony and wall-motion abnormalities without indication of fibrosis. These results highlight the requirement of postnatal expression of Nkx2-5 in the maturation and maintenance of a functional Purkinje fiber network to preserve contraction synchrony and cardiac function.
Collapse
Affiliation(s)
- Caroline Choquet
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, MMG, Aix-Marseille Université, 13385 Marseille, France
| | - Pierre Sicard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Juliette Vahdat
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Thi Hong Minh Nguyen
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Frank Kober
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Isabelle Varlet
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Monique Bernard
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Sylvain Richard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Robert G Kelly
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Nathalie Lalevée
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- INSERM, C2VN, UMR1263, Aix-Marseille Université, 13005 Marseille, France
| | - Lucile Miquerol
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
12
|
Nakao M, Watanabe M, Miquerol L, Natsui H, Koizumi T, Kadosaka T, Koya T, Hagiwara H, Kamada R, Temma T, de Vries AAF, Anzai T. Optogenetic termination of atrial tachyarrhythmias by brief pulsed light stimulation. J Mol Cell Cardiol 2023; 178:9-21. [PMID: 36965700 DOI: 10.1016/j.yjmcc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS The most efficient way to acutely restore sinus rhythm from atrial fibrillation (AF) is electrical cardioversion, which is painful without adequate sedation. Recent studies in various experimental models have indicated that optogenetic termination of AF using light-gated ion channels may provide a myocardium-specific and potentially painless alternative future therapy. However, its underlying mechanism(s) remain(s) incompletely understood. As brief pulsed light stimulation, even without global illumination, can achieve optogenetic AF termination, besides direct conduction block also modulation of action potential (AP) properties may be involved in the termination mechanism. We studied the relationship between optogenetic AP duration (APD) and effective refractory period (ERP) prolongation by brief pulsed light stimulation and termination of atrial tachyarrhythmia (AT). METHODS AND RESULTS Hearts from transgenic mice expressing the H134R variant of channelrhodopsin-2 in atrial myocytes were explanted and perfused retrogradely. AT induced by electrical stimulation was terminated by brief pulsed blue light stimulation (470 nm, 10 ms, 16 mW/mm2) with 68% efficacy. The termination rate was dependent on pulse duration and light intensity. Optogenetically imposed APD and ERP changes were systematically examined and optically monitored. Brief pulsed light stimulation (10 ms, 6 mW/mm2) consistently prolonged APD and ERP when light was applied at different phases of the cardiac action potential. Optical tracing showed light-induced APD prolongation during the termination of AT. CONCLUSION Our results directly demonstrate that cationic channelrhodopsin activation by brief pulsed light stimulation prolongs the atrial refractory period suggesting that this is one of the key mechanisms of optogenetic termination of AT.
Collapse
Affiliation(s)
- Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Lucile Miquerol
- Developmental Biology Institute of Marseille, Aix-Marseille Université, CNRS UMR 7288, Campus de Luminy Case 907, CEDEX 9, Marseille 13288, France
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology Department of Cardiology, Leiden University Medical Center Leiden, Netherlands
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Hsueh B, Chen R, Jo Y, Tang D, Raffiee M, Kim YS, Inoue M, Randles S, Ramakrishnan C, Patel S, Kim DK, Liu TX, Kim SH, Tan L, Mortazavi L, Cordero A, Shi J, Zhao M, Ho TT, Crow A, Yoo ACW, Raja C, Evans K, Bernstein D, Zeineh M, Goubran M, Deisseroth K. Cardiogenic control of affective behavioural state. Nature 2023; 615:292-299. [PMID: 36859543 PMCID: PMC9995271 DOI: 10.1038/s41586-023-05748-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/20/2023] [Indexed: 03/03/2023]
Abstract
Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.
Collapse
Affiliation(s)
- Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - YoungJu Jo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Tang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Misha Raffiee
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sawyer Randles
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Sneha Patel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony X Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Soo Hyun Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Leili Mortazavi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Arjay Cordero
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jenny Shi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Theodore T Ho
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ai-Chi Wang Yoo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Cephra Raja
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kathryn Evans
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
15
|
Bruegmann T, Smith GL, Lehnart SE. Editorial: Cardiac optogenetics: Using light to observe and excite the heart. Front Physiol 2022; 13:1031062. [PMID: 36304575 PMCID: PMC9593031 DOI: 10.3389/fphys.2022.1031062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells“ (MBExC), University of Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- *Correspondence: Tobias Bruegmann,
| | - Godfrey L. Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Stephan E. Lehnart
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells“ (MBExC), University of Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
- Collaborative Research Center SFB1190 “Compartmental Gates and Contact Sites in Cells“, University of Goettingen, Goettingen, Germany
| |
Collapse
|
16
|
Moro N, Dokshokova L, Perumal Vanaja I, Prando V, Cnudde SJA, Di Bona A, Bariani R, Schirone L, Bauce B, Angelini A, Sciarretta S, Ghigo A, Mongillo M, Zaglia T. Neurotoxic Effect of Doxorubicin Treatment on Cardiac Sympathetic Neurons. Int J Mol Sci 2022; 23:ijms231911098. [PMID: 36232393 PMCID: PMC9569551 DOI: 10.3390/ijms231911098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin (DOXO) remains amongst the most commonly used anti-cancer agents for the treatment of solid tumors, lymphomas, and leukemias. However, its clinical use is hampered by cardiotoxicity, characterized by heart failure and arrhythmias, which may require chemotherapy interruption, with devastating consequences on patient survival and quality of life. Although the adverse cardiac effects of DOXO are consolidated, the underlying mechanisms are still incompletely understood. It was previously shown that DOXO leads to proteotoxic cardiomyocyte (CM) death and myocardial fibrosis, both mechanisms leading to mechanical and electrical dysfunction. While several works focused on CMs as the culprits of DOXO-induced arrhythmias and heart failure, recent studies suggest that DOXO may also affect cardiac sympathetic neurons (cSNs), which would thus represent additional cells targeted in DOXO-cardiotoxicity. Confocal immunofluorescence and morphometric analyses revealed alterations in SN innervation density and topology in hearts from DOXO-treated mice, which was consistent with the reduced cardiotropic effect of adrenergic neurons in vivo. Ex vivo analyses suggested that DOXO-induced denervation may be linked to reduced neurotrophic input, which we have shown to rely on nerve growth factor, released from innervated CMs. Notably, similar alterations were observed in explanted hearts from DOXO-treated patients. Our data demonstrate that chemotherapy cardiotoxicity includes alterations in cardiac innervation, unveiling a previously unrecognized effect of DOXO on cardiac autonomic regulation, which is involved in both cardiac physiology and pathology, including heart failure and arrhythmias.
Collapse
Affiliation(s)
- Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sophie Julie A Cnudde
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| |
Collapse
|
17
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
18
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Junge S, Schmieder F, Sasse P, Czarske J, Torres-Mapa ML, Heisterkamp A. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology. JOURNAL OF BIOPHOTONICS 2022; 15:e202100352. [PMID: 35397155 DOI: 10.1002/jbio.202100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
All optical approaches to control and read out the electrical activity in a cardiac syncytium can improve our understanding of cardiac electrophysiology. Here, we demonstrate optogenetic stimulation of cardiomyocytes with high spatial precision using light foci generated with a ferroelectric spatial light modulator. Computer generated holograms binarized by bidirectional error diffusion create multiple foci with more even intensity distribution compared with thresholding approach. We evoke the electrical activity of cardiac HL1 cells expressing the channelrhodopsin-2 variant, ChR2(H134R) using single and multiple light foci and at the same time visualize the action potential using a calcium sensitive indicator called Cal-630. We show that localized regions in the cardiac monolayer can be stimulated enabling us to initiate signal propagation from a precise location. Furthermore, we demonstrate that probing the cardiac cells with multiple light foci enhances the excitability of the cardiac network. This approach opens new applications in manipulating and visualizing the electrical activity in a cardiac syncytium.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Felix Schmieder
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Jürgen Czarske
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Faculty of Physics, School of Science and Excellence Cluster Physics of Life, TU Dresden, Dresden, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
20
|
Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: methodology and future applications. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOptogenetics is an emerging biological approach with the unique capability of specific targeting due to the precise light control with high spatial and temporal resolution. It uses selected light wavelengths to control and modulate the biological functions of cells, tissues, and organ levels. Optogenetics has been instrumental in different biomedical applications, including neuroscience, diabetes, and mitochondria, based on distinctive optical biomedical effects with light modulation. Nowadays, optogenetics in cardiology is rapidly evolving for the understanding and treatment of cardiovascular diseases. Several in vitro and in vivo research for cardiac optogenetics demonstrated visible progress. The optogenetics technique can be applied to address critical cardiovascular problems such as heart failure and arrhythmia. To this end, this paper reviews cardiac electrophysiology and the technical progress about experimental and clinical cardiac optogenetics and provides the background and evolution of cardiac optogenetics. We reviewed the literature to demonstrate the servo type, transfection efficiency, signal recording, and heart disease targets in optogenetic applications. Such literature review would hopefully expedite the progress of optogenetics in cardiology and further expect to translate into the clinical terminal in the future.
Collapse
|
21
|
Diaz-Maue L, Steinebach J, Richter C. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts. Front Physiol 2022; 12:750535. [PMID: 35087413 PMCID: PMC8787046 DOI: 10.3389/fphys.2021.750535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.
Collapse
Affiliation(s)
- Laura Diaz-Maue
- Department of Research Electronics, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany
| | - Janna Steinebach
- Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany.,Laboratory Animal Science Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
22
|
Dokshokova L, Pianca N, Zaglia T, Mongillo M. Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace. Methods Mol Biol 2022; 2483:205-229. [PMID: 35286678 DOI: 10.1007/978-1-0716-2245-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well appreciated that, differently from skeletal muscles, the heart contracts independently from neurogenic inputs. However, the speed and force of heartbeats are finely modulated during stresses, emotions, and daily activities, by the autonomic neurons (both parasympathetic and sympathetic) which highly innervate the myocardium. Despite this aspect of cardiac physiology has been known for long, research has only recently shed light on the biophysical mechanisms underlying the meticulous adaptation of heart activity to the needs of the organism. A conceptual advancement in this regard has come from the use of optogenetics, a revolutionary methodology which allows to control the activity of a given excitable cell type, with high specificity, temporal and spatial resolution, within intact tissues and organisms. The method, widely affirmed in the field of neuroscience, has more recently been exploited also in research on heart physiology and pathology, including the study of the mechanisms regulating heart rhythm. The last point is the object of this book chapter which, starting from the description of the physiology of heart rhythm automaticity and the neurogenic modulation of heart rate, makes an excursus on the theoretical basis of such biotechnology (with its advantages and limitations), and presents a series of examples in cardiac and neuro-cardiac optogenetics.
Collapse
Affiliation(s)
- Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Pianca
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
23
|
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms. Basic Res Cardiol 2022; 117:25. [PMID: 35488105 PMCID: PMC9054908 DOI: 10.1007/s00395-022-00933-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.
Collapse
|
24
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Ochs AR, Karathanos TV, Trayanova NA, Boyle PM. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study. Front Physiol 2021; 12:718622. [PMID: 34526912 PMCID: PMC8435849 DOI: 10.3389/fphys.2021.718622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy. Past modeling work has shown that ChR2 stimulation can depolarize enough myocardium to interrupt arrhythmia, but its efficacy is limited by light attenuation and high energy needs. These shortcomings may be mitigated by using new optogenetic proteins like Guillardia theta Anion Channelrhodopsin (GtACR1), which produces a repolarizing outward current upon illumination. Accordingly, we designed a study to assess the feasibility of GtACR1-based optogenetic arrhythmia termination in human hearts. We conducted electrophysiological simulations in MRI-based atrial or ventricular models (n = 3 each), with pathological remodeling from atrial fibrillation or ischemic cardiomyopathy, respectively. We simulated light sensitization via viral gene delivery of three different opsins (ChR2, red-shifted ChR2, GtACR1) and uniform endocardial illumination at the appropriate wavelengths (blue, red, or green light, respectively). To analyze consistency of arrhythmia termination, we varied pulse timing (three evenly spaced intervals spanning the reentrant cycle) and intensity (atrial: 0.001–1 mW/mm2; ventricular: 0.001–10 mW/mm2). In atrial models, GtACR1 stimulation with 0.005 mW/mm2 green light consistently terminated reentry; this was 10–100x weaker than the threshold levels for ChR2-mediated defibrillation. In ventricular models, defibrillation was observed in 2/3 models for GtACR1 stimulation at 0.005 mW/mm2 (100–200x weaker than ChR2 cases). In the third ventricular model, defibrillation failed in nearly all cases, suggesting that attenuation issues and patient-specific organ/scar geometry may thwart termination in some cases. Across all models, the mechanism of GtACR1-mediated defibrillation was voltage forcing of illuminated tissue toward the modeled channel reversal potential of −40 mV, which made propagation through affected regions impossible. Thus, our findings suggest GtACR1-based optogenetic defibrillation of the human heart may be feasible with ≈2–3 orders of magnitude less energy than ChR2.
Collapse
Affiliation(s)
- Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Thomas V Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Keshmiri Neghab H, Soheilifar MH, Saboury AA, Goliaei B, Hong J, Esmaeeli Djavid G. Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2. J Lasers Med Sci 2021; 12:e32. [PMID: 34733755 PMCID: PMC8558726 DOI: 10.34172/jlms.2021.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Non-clinical cardiovascular drug safety assessment is the main step in the progress of new pharmaceutical products. Cardiac drug safety testing focuses on a delayed rectifier potassium channel block and QT interval prolongation, whereas optogenetics is a powerful technology for modulating the electrophysiological properties of excitable cells. Methods: For this purpose, the blue light-gated ion channel, channelrhodopsin-2 (ChR2), has been introduced into isolated primary neonatal cardiomyocytes via a lentiviral vector. After being subjected to optical stimulation, transmembrane potential and intracellular calcium were assessed. Results: Here, we generated cardiomyocytes expressing ChR2 (light-sensitive protein), that upon optical stimulation, the cardiomyocytes depolarized result from alterations of membrane voltage and intracellular calcium. Conclusion: This cell model was easily adapted to a cell culture system in a laboratory, making this method very attractive for therapeutic research on cardiac optogenetics.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Institutes of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Akbar Saboury
- Institutes of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Institutes of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, China
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Borile G, Zaglia T, E. Lehnart S, Mongillo M. Multiphoton Imaging of Ca 2+ Instability in Acute Myocardial Slices from a RyR2R2474S Murine Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Clin Med 2021; 10:jcm10132821. [PMID: 34206855 PMCID: PMC8269190 DOI: 10.3390/jcm10132821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a familial stress-induced arrhythmia syndrome, mostly caused by mutations in Ryanodine receptor 2 (RyR2), the sarcoplasmic reticulum (SR) Ca2+ release channel in cardiomyocytes. Pathogenetic mutations lead to gain of function in the channel, causing arrhythmias by promoting diastolic spontaneous Ca2+ release (SCR) from the SR and delayed afterdepolarizations. While the study of Ca2+ dynamics in single cells from murine CPVT models has increased our understanding of the disease pathogenesis, questions remain on the mechanisms triggering the lethal arrhythmias at tissue level. Here, we combined subcellular analysis of Ca2+ signals in isolated cardiomyocytes and in acute thick ventricular slices of RyR2R2474S knock-in mice, electrically paced at different rates (1–5 Hz), to identify arrhythmogenic Ca2+ dynamics, from the sub- to the multicellular perspective. In both models, RyR2R2474S cardiomyocytes had increased propensity to develop SCR upon adrenergic stimulation, which manifested, in the slices, with Ca2+ alternans and synchronous Ca2+ release events in neighboring cardiomyocytes. Analysis of Ca2+ dynamics in multiple cells in the tissue suggests that SCRs beget SCRs in contiguous cells, overcoming the protective electrotonic myocardial coupling, and potentially generating arrhythmia triggering foci. We suggest that intercellular interactions may underscore arrhythmic propensity in CPVT hearts with ‘leaky’ RyR2.
Collapse
Affiliation(s)
- Giulia Borile
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Stephan E. Lehnart
- Heart Research Heart Research Center Göttingen, Cellular Biophysics and Translational Cardi-Ology Section, Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37073 Göttingen, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37073 Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-7923229; Fax: +39-049-7923250
| |
Collapse
|
29
|
Chua CJ, Han JL, Li W, Liu W, Entcheva E. Integration of Engineered "Spark-Cell" Spheroids for Optical Pacing of Cardiac Tissue. Front Bioeng Biotechnol 2021; 9:658594. [PMID: 34222210 PMCID: PMC8249938 DOI: 10.3389/fbioe.2021.658594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
Optogenetic methods for pacing of cardiac tissue can be realized by direct genetic modification of the cardiomyocytes to express light-sensitive actuators, such as channelrhodopsin-2, ChR2, or by introduction of light-sensitized non-myocytes that couple to the cardiac cells and yield responsiveness to optical pacing. In this study, we engineer three-dimensional “spark cells” spheroids, composed of ChR2-expressing human embryonic kidney cells (from 100 to 100,000 cells per spheroid), and characterize their morphology as function of cell density and time. These “spark-cell” spheroids are then deployed to demonstrate site-specific optical pacing of human stem-cell-derived cardiomyocytes (hiPSC-CMs) in 96-well format using non-localized light application and all-optical electrophysiology with voltage and calcium small-molecule dyes or genetically encoded sensors. We show that the spheroids can be handled using liquid pipetting and can confer optical responsiveness of cardiac tissue earlier than direct viral or liposomal genetic modification of the cardiomyocytes, with 24% providing reliable stimulation of the iPSC-CMs within 6 h and >80% within 24 h. Moreover, our data show that the spheroids can be frozen in liquid nitrogen for long-term storage and transportation, after which they can be deployed as a reagent on site for optical cardiac pacing. In all cases, optical stimulation was achieved at relatively low light levels (<0.15 mW/mm2) when 5 ms or longer pulses were used. Our results demonstrate a scalable, cost-effective method with a cryopreservable reagent to achieve contactless optical stimulation of cardiac cell constructs without genetically modifying the myocytes, that can be integrated in a robotics-amenable workflow for high-throughput drug testing.
Collapse
Affiliation(s)
- Christianne J Chua
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Julie L Han
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Weizhen Li
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Wei Liu
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Emilia Entcheva
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| |
Collapse
|
30
|
Li J, Li H, Rao P, Luo J, Wang X, Wang L. Shining light on cardiac electrophysiology: From detection to intervention, from basic research to translational applications. Life Sci 2021; 274:119357. [PMID: 33737082 DOI: 10.1016/j.lfs.2021.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cardiac arrhythmias are an important group of cardiovascular diseases, which can occur alone or in association with other cardiovascular diseases. The development of cardiac arrhythmias cannot be separated from changes in cardiac electrophysiology, and the investigation and clarification of cardiac electrophysiological changes are beneficial for the treatment of cardiac arrhythmias. However, electrical energy-based pacemakers and defibrillators, which are widely used to treat arrhythmias, still have certain disadvantages. Thereby, optics promises to be used for optical manipulation and its use in biomedicine is increasing. Since visible light is readily absorbed and scattered in living tissues and tissue penetration is shallow, optical modulation for cells and tissues requires conversion media that convert light energy into bioelectrical activity. In this regard, fluorescent dyes, light-sensitive ion channels, and optical nanomaterials can assume this role, the corresponding optical mapping technology, optogenetics technology, and optical systems based on luminescent nanomaterials have been introduced into the research in cardiovascular field and are expected to be new tools for the study and treatment of cardiac arrhythmias. In addition, infrared and near-infrared light has strong tissue penetration, which is one of the excellent options of external trigger for achieving optical modulation, and is also widely used in the study of optical modulation of biological activities. Here, the advantages of optical applications are summarized, the research progresses and emerging applications of optical-based technologies as detection and intervention tools for cardiac electrophysiological are highlighted. Moreover, the prospects for future applications of optics in clinical diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
31
|
Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol Med 2021; 27:248-262. [PMID: 33139169 DOI: 10.1016/j.molmed.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The maintenance of tissue, organ, and organism homeostasis relies on an intricate network of players and mechanisms that assist in the different forms of cell-cell communication. Myocardial infarction, following heart ischemia and reperfusion, is associated with profound changes in key processes of intercellular communication, involving gap junctions, extracellular vesicles, and tunneling nanotubes, some of which have been implicated in communication defects associated with cardiac injury, namely arrhythmogenesis and progression into heart failure. Therefore, intercellular communication players have emerged as attractive powerful therapeutic targets aimed at preserving a fine-tuned crosstalk between the different cardiac cells in order to prevent or repair some of harmful consequences of heart ischemia and reperfusion, re-establishing myocardial function.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
32
|
Observing and Manipulating Cell-Specific Cardiac Function with Light. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398827 DOI: 10.1007/978-981-15-8763-4_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The heart is a complex multicellular organ comprising both cardiomyocytes (CM), which make up the majority of the cardiac volume, and non-myocytes (NM), which represent the majority of cardiac cells. CM drive the pumping action of the heart, triggered via rhythmic electrical activity. NM, on the other hand, have many essential functions including generating extracellular matrix, regulating CM activity, and aiding in repair following injury. NM include neurons and interstitial, immune, and endothelial cells. Understanding the role of specific cell types and their interactions with one another may be key to developing new therapies with minimal side effects to treat cardiac disease. However, assessing cell-type-specific behavior in situ using standard techniques is challenging. Optogenetics enables population-specific observation and control, facilitating studies into the role of specific cell types and subtypes. Optogenetic models targeting the most important cardiac cell types have been generated and used to investigate non-canonical roles of those cell populations, e.g., to better understand how cardiac pacing occurs and to assess potential translational possibilities of optogenetics. So far, cardiac optogenetic studies have primarily focused on validating models and tools in the healthy heart. The field is now in a position where animal models and tools should be utilized to improve our understanding of the complex heterocellular nature of the heart, how this changes in disease, and from there to enable the development of cell-specific therapies and improved treatments.
Collapse
|
33
|
Moreno A, Kowalik G, Mendelowitz D, Kay MW. Optogenetic Control of Cardiac Autonomic Neurons in Transgenic Mice. Methods Mol Biol 2021; 2191:309-321. [PMID: 32865752 DOI: 10.1007/978-1-0716-0830-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described. An approach for perfusing hearts excised from those animals, recording the ECG to measure heart rate changes, and an illumination technique using a custom micro-LED light source to activate channelrhodopsin is explained. We have used these methods in ongoing studies of the kinetics of autonomic control of cardiac electrophysiology and contractility, demonstrating the proven utility of optogenetic technology to enable unparalleled spatiotemporal anatomic-functional probing of the intrinsic cardiac nervous system.
Collapse
Affiliation(s)
- Angel Moreno
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
34
|
Fernández MC, Kopton RA, Simon-Chica A, Madl J, Hilgendorf I, Zgierski-Johnston CM, Schneider-Warme F. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology. Methods Mol Biol 2021; 2191:287-307. [PMID: 32865751 DOI: 10.1007/978-1-0716-0830-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetic approaches have evolved as potent means to investigate cardiac electrophysiology, with research ranging from the study of arrhythmia mechanisms to effects of cardiac innervation and heterocellular structural and functional interactions, both in healthy and diseased myocardium. Most commonly, these studies use channelrhodopsin-2 (ChR2)-expressing murine models that enable light-activated depolarization of the target cell population. However, each newly generated mouse line requires thorough characterization, as cell-type specific ChR2 expression cannot be taken for granted, and the electrophysiological response of its activation in the target cell should be evaluated. In this chapter, we describe detailed protocols for assessing ChR2 specificity using immunohistochemistry, isolation of specific cell populations to analyze electrophysiological effects of ChR2 activation with the patch-clamp technique, and whole-heart experiments to assess in situ effects of optical stimulation.
Collapse
Affiliation(s)
- Marbely C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ramona A Kopton
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ana Simon-Chica
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
36
|
Burton RAB, Tomek J, Ambrosi CM, Larsen HE, Sharkey AR, Capel RA, Corbett AD, Bilton S, Klimas A, Stephens G, Cremer M, Bose SJ, Li D, Gallone G, Herring N, Mann EO, Kumar A, Kramer H, Entcheva E, Paterson DJ, Bub G. Optical Interrogation of Sympathetic Neuronal Effects on Macroscopic Cardiomyocyte Network Dynamics. iScience 2020; 23:101334. [PMID: 32674058 PMCID: PMC7363704 DOI: 10.1016/j.isci.2020.101334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac stimulation via sympathetic neurons can potentially trigger arrhythmias. We present approaches to study neuron-cardiomyocyte interactions involving optogenetic selective probing and all-optical electrophysiology to measure activity in an automated fashion. Here we demonstrate the utility of optical interrogation of sympathetic neurons and their effects on macroscopic cardiomyocyte network dynamics to address research targets such as the effects of adrenergic stimulation via the release of neurotransmitters, the effect of neuronal numbers on cardiac behavior, and the applicability of optogenetics in mechanistic in vitro studies. As arrhythmias are emergent behaviors that involve the coordinated activity of millions of cells, we image at macroscopic scales to capture complex dynamics. We show that neurons can both decrease and increase wave stability and re-entrant activity in culture depending on their induced activity-a finding that may help us understand the often conflicting results seen in experimental and clinical studies.
Collapse
Affiliation(s)
- Rebecca-Ann B Burton
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK; University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK.
| | - Jakub Tomek
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Christina M Ambrosi
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - Hege E Larsen
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Amy R Sharkey
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Rebecca A Capel
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Samuel Bilton
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Aleksandra Klimas
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - Guy Stephens
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Maegan Cremer
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | - Samuel J Bose
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | - Dan Li
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Giuseppe Gallone
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Neil Herring
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Edward O Mann
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Abhinav Kumar
- University of Oxford, Department of Biochemistry, Glycobiology Institute, Oxford, UK
| | - Holger Kramer
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Emilia Entcheva
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - David J Paterson
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Gil Bub
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK; McGill University, Department of Physiology, McIntyre Medical Sciences Building, Room 1128, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
37
|
Cheng Y, Li H, Wang L, Li J, Kang W, Rao P, Zhou F, Wang X, Huang C. Optogenetic approaches for termination of ventricular tachyarrhythmias after myocardial infarction in rats in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e202000003. [PMID: 32246523 DOI: 10.1002/jbio.202000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Cardiac optogenetics facilitates the painless manipulation of the heart with optical energy and was recently shown to terminate ventricular tachycardia (VT) in explanted mice heart. This study aimed to evaluate the optogenetic-based termination of induced VT under ischemia in an open-chest rat model and to develop an optimal, optical-manipulation procedure. VT was induced by burst stimulation after ligation of the left anterior descending coronary artery, and the termination effects of the optical manipulation, including electrical anti-tachycardia pacing (ATP) and spontaneous recovery, were tested. Among different multisegment optical modes, four repeated illuminations of 1000 ms in duration with 1-second interval at a 20-times intensity threshold on the right ventricle achieved the highest termination rate of 86.14% ± 4.145%, higher than that achieved by ATP and spontaneous termination. We demonstrated that optogenetic-based cardioversion is feasible and effective in vivo, with the underlying mechanism involving the light-triggered, ChR2-induced depolarization of the illuminated myocardium, in turn generating an excitation that disrupts the preexisting reentrant wave front.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Wen Kang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Fang Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
38
|
Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1401-1416. [PMID: 32206418 PMCID: PMC7075614 DOI: 10.1364/boe.381480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- These authors contributed equally to this work
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- These authors contributed equally to this work
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Co-corresponding authors
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, 570311, Haikou, China
| | - Guoxing Zheng
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
- Co-corresponding authors
| | - Zile Li
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
| | - Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Qing Zhou
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| |
Collapse
|
39
|
Nyns ECA, Poelma RH, Volkers L, Plomp JJ, Bart CI, Kip AM, van Brakel TJ, Zeppenfeld K, Schalij MJ, Zhang GQ, de Vries AAF, Pijnappels DA. An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci Transl Med 2020; 11:11/481/eaau6447. [PMID: 30814339 DOI: 10.1126/scitranslmed.aau6447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 01/17/2019] [Indexed: 11/02/2022]
Abstract
Because of suboptimal therapeutic strategies, restoration of sinus rhythm in symptomatic atrial fibrillation (AF) often requires in-hospital delivery of high-voltage shocks, thereby precluding ambulatory AF termination. Continuous, rapid restoration of sinus rhythm is desired given the recurring and progressive nature of AF. Here, we present an automated hybrid bioelectronic system for shock-free termination of AF that enables the heart to act as an electric current generator for autogenous restoration of sinus rhythm. We show that local, right atrial delivery of adenoassociated virus vectors encoding a light-gated depolarizing ion channel results in efficient and spatially confined transgene expression. Activation of an implanted intrathoracic light-emitting diode device allows for termination of AF by illuminating part of the atria. Combining this newly obtained antiarrhythmic effector function of the heart with the arrhythmia detector function of a machine-based cardiac rhythm monitor in the closed chest of adult rats allowed automated and rapid arrhythmia detection and termination in a safe, effective, repetitive, yet shock-free manner. These findings hold translational potential for the development of shock-free antiarrhythmic device therapy for ambulatory treatment of AF.
Collapse
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, 2628 CD, Delft, Netherlands
| | - Linda Volkers
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Jaap J Plomp
- Department of Neurology and Neurophysiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Annemarie M Kip
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Thomas J van Brakel
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD, Delft, Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands.
| |
Collapse
|
40
|
Joshi J, Rubart M, Zhu W. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine. Front Bioeng Biotechnol 2020; 7:466. [PMID: 32064254 PMCID: PMC7000355 DOI: 10.3389/fbioe.2019.00466] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, United States
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
41
|
Bub G, Daniels MJ. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart. Curr Pharm Biotechnol 2020; 21:752-764. [PMID: 30961485 PMCID: PMC7527548 DOI: 10.2174/1389201020666190405182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
In 1791, Galvani established that electricity activated excitable cells. In the two centuries that followed, electrode stimulation of neuronal, skeletal and cardiac muscle became the adjunctive method of choice in experimental, electrophysiological, and clinical arenas. This approach underpins breakthrough technologies like implantable cardiac pacemakers that we currently take for granted. However, the contact dependence, and field stimulation that electrical depolarization delivers brings inherent limitations to the scope and experimental scale that can be achieved. Many of these were not exposed until reliable in vitro stem-cell derived experimental materials, with genotypes of interest, were produced in the numbers needed for multi-well screening platforms (for toxicity or efficacy studies) or the 2D or 3D tissue surrogates required to study propagation of depolarization within multicellular constructs that mimic clinically relevant arrhythmia in the heart or brain. Here the limitations of classical electrode stimulation are discussed. We describe how these are overcome by optogenetic tools which put electrically excitable cells under the control of light. We discuss how this enables studies in cardiac material from the single cell to the whole heart scale. We review the current commercial platforms that incorporate optogenetic stimulation strategies, and summarize the global literature to date on cardiac applications of optogenetics. We show that the advantages of optogenetic stimulation relevant to iPS-CM based screening include independence from contact, elimination of electrical stimulation artefacts in field potential measuring approaches such as the multi-electrode array, and the ability to print re-entrant patterns of depolarization at will on 2D cardiomyocyte monolayers.
Collapse
Affiliation(s)
| | - Matthew J. Daniels
- Address correspondence to this author at the Institute of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK; Tel: +441865234913; E-mails: ;
| |
Collapse
|
42
|
Zgierski-Johnston CM, Ayub S, Fernández MC, Rog-Zielinska EA, Barz F, Paul O, Kohl P, Ruther P. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:51-61. [PMID: 31738979 PMCID: PMC7322525 DOI: 10.1016/j.pbiomolbio.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 02/03/2023]
Abstract
Optogenetics enables cell-type specific monitoring and actuation via light-activated proteins. In cardiac research, expressing light-activated depolarising ion channels in cardiomyocytes allows optical pacing and defibrillation. Previous studies largely relied on epicardial illumination. Light penetration through the myocardium is however problematic when moving to larger animals and humans. To overcome this limitation, we assessed the utility of an implantable multi light-emitting diode (LED) optical probe (IMLOP) for intramural pacing of mouse hearts expressing cardiac-specific channelrhodopsin-2 (ChR2). Here we demonstrated that IMLOP insertion needs approximately 20 mN of force, limiting possible damage from excessive loads applied during implantation. Histological sections confirmed the confined nature of tissue damage during acute use. The temperature change of the surrounding tissue was below 1 K during LED operation, rendering the probe safe for use in situ. This was confirmed in control experiments where no effect on cardiac action potential conduction was observed even when using stimulation parameters twenty-fold greater than required for pacing. In situ experiments on ChR2-expressing mouse hearts demonstrated that optical stimulation is possible with light intensities as low as 700 μW/mm2; although stable pacing requires higher intensities. When pacing with a single LED, rheobase and chronaxie values were 13.3 mW/mm2 ± 0.9 mW/mm2 and 3 ms ± 0.6 ms, respectively. When doubling the stimulated volume the rheobase decreased significantly (6.5 mW/mm2 ± 0.9 mW/mm2). We have demonstrated IMLOP-based intramural optical pacing of the heart. Probes cause locally constrained tissue damage in the acute setting and require low light intensities for pacing. Further development is necessary to assess effects of chronic implantation.
Collapse
Affiliation(s)
- C M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - S Ayub
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - M C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Barz
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - O Paul
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Ruther
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Gruber A, Edri O, Gepstein L. Cardiac optogenetics: the next frontier. Europace 2019; 20:1910-1918. [PMID: 29315402 DOI: 10.1093/europace/eux371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
The emerging technology of optogenetics uses optical and genetic means to monitor and modulate the electrophysiological properties of excitable tissues. While transforming the field of neuroscience, the technology has recently gained popularity also in the cardiac arena. Here, we describe the basic principles of optogenetics, the available and evolving optogenetic tools, and the unique potential of this technology for basic and translational cardiac electrophysiology. Specifically, we discuss the ability to control (augment or suppress) the cardiac tissue's excitable properties using optogenetic actuators (microbial opsins), which are light-gated ion channels and pumps that can cause light-triggered membrane depolarization or hyperpolarization. We then focus on the potential clinical implications of this technology for the treatment of cardiac arrhythmias by describing recent efforts for developing optogenetic-based cardiac pacing, resynchronization, and defibrillation experimental strategies. Finally, the significant obstacles and challenges that need to be overcome before any future clinical translation can be expected are discussed.
Collapse
Affiliation(s)
- Amit Gruber
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Oded Edri
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel.,Cardiology Department of Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, Israel
| |
Collapse
|
44
|
Ferenczi EA, Tan X, Huang CLH. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front Physiol 2019; 10:1096. [PMID: 31572204 PMCID: PMC6749684 DOI: 10.3389/fphys.2019.01096] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling "spark cells" to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Collapse
Affiliation(s)
- Emily A. Ferenczi
- Department of Neurology, Massachusetts General Hospital and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Richter C, Bruegmann T. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:39-50. [PMID: 31515056 DOI: 10.1016/j.pbiomolbio.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Over the last decade, optogenetic stimulation of the heart and its translational potential for rhythm control attracted more and more interest. Optogenetics allows to stimulate cardiomyocytes expressing the light-gated cation channel Channelrhodopsin 2 (ChR2) with light and thus high spatio-temporal precision. Therefore this new approach can overcome the technical limitations of electrical stimulation. In regard of translational approaches, the prospect of pain-free stimulation, if ChR2 expression is restricted to cardiomyocytes, is especially intriguing and could be highly beneficial for cardioversion and defibrillation. However, there is no light without shadow and cardiac optogenetics has to surmount critical hurdles, namely "how" to inscribe light-sensitivity by expressing ChR2 in a native heart and how to avoid side effects such as possible immune responses against the gene transfer. Furthermore, implantable light devices have to be developed which ensure sufficient illumination in a highly contractile environment. Therefore this article reviews recent advantages in the field of cardiac optogenetics with a special focus on the hindrances for the potential translation of this new approach into clinics and provides an outlook how these have to be carefully investigated and could be solved step by step.
Collapse
Affiliation(s)
- Claudia Richter
- RG Biomedical Physics, Max Planck Institute for Dynamics & Self-Organization, Am Fassberg 17, 37077, Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center, Robert-Koch-Str. 42a, 37075, Goettingen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany.
| | - Tobias Bruegmann
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany; Institute for Cardiovascular Physiology, University Medical Center Goettingen, Humboldtallee 23, 37073, Goettingen, Germany.
| |
Collapse
|
46
|
Park SJ, Zhang D, Qi Y, Li Y, Lee KY, Bezzerides VJ, Yang P, Xia S, Kim SL, Liu X, Lu F, Pasqualini FS, Campbell PH, Geva J, Roberts AE, Kleber AG, Abrams DJ, Pu WT, Parker KK. Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From Engineered Human Heart Tissue. Circulation 2019; 140:390-404. [PMID: 31311300 PMCID: PMC6750809 DOI: 10.1161/circulationaha.119.039711] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.).,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu (Y.L.)
| | - Keel Yong Lee
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Sean L Kim
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Fujian Lu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Judith Geva
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (A.G.K.)
| | - Dominic J Abrams
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - William T Pu
- Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA.,Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul, South Korea (K.K.P.). Dr Park is currently at the Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University School of Medicine, Atlanta
| |
Collapse
|
47
|
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 2019; 20:1741-1749. [PMID: 29253159 DOI: 10.1093/europace/eux345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Optogenetics is a cell-type specific and high spatial-temporal resolution method that combines genetic encoding of light-sensitive proteins and optical manipulation techniques. Optogenetics technology provides a novel approach for research on cardiac arrhythmia treatment, including pacing, recovering the conduction system, and achieving cardiac resynchronization with precise and low-energy optical control. Photosensitive proteins, which usually act as ion channels, pumps, or receptors, are delivered to target cells, where they respond to light pulses of specific wavelengths, evoke transient flows of transmembrane ion currents, and induce signal transmission. With the development of gene technology, the in vivo efficiency of optogenetics in cardiology has been trialed, and in vitro experiments have been performed to test its potential in cardiac electrophysiology. Challenges for applying optogenetics in large animals and humans include the effectiveness, safety, and long-term expression of photosensitive proteins, unscattered and unattenuated exogenous light stimulation, and the need for implantable miniature light stimulators. Photosensitive proteins, genetic engineering technology, and light equipment are essential for experiments in cardiac optogenetics. Optogenetics may provide an alternative method for evaluating the mechanism of cardiac arrhythmias, testing hypotheses, and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, PR China
| | - Yong Ming Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
48
|
Pianca N, Di Bona A, Lazzeri E, Costantini I, Franzoso M, Prando V, Armani A, Rizzo S, Fedrigo M, Angelini A, Basso C, Pavone FS, Rubart M, Sacconi L, Zaglia T, Mongillo M. Cardiac sympathetic innervation network shapes the myocardium by locally controlling cardiomyocyte size through the cellular proteolytic machinery. J Physiol 2019; 597:3639-3656. [DOI: 10.1113/jp276200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nicola Pianca
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Anna Di Bona
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Erica Lazzeri
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
| | - Irene Costantini
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
| | - Mauro Franzoso
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Valentina Prando
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Francesco S. Pavone
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
- Department of Physics and AstronomyUniversity of Florence Florence Italy
| | - Michael Rubart
- Indiana University School of Medicine Indianapolis IN USA
| | - Leonardo Sacconi
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- CNR Institute of Neuroscience Padova Italy
| |
Collapse
|
49
|
Sasse P, Funken M, Beiert T, Bruegmann T. Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application? Front Physiol 2019; 10:675. [PMID: 31244670 PMCID: PMC6563676 DOI: 10.3389/fphys.2019.00675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Optogenetic methods enable selective de- and hyperpolarization of cardiomyocytes expressing light-sensitive proteins within the myocardium. By using light, this technology provides very high spatial and temporal precision, which is in clear contrast to electrical stimulation. In addition, cardiomyocyte-specific expression would allow pain-free stimulation. In light of these intrinsic technical advantages, optogenetic methods provide an intriguing opportunity to understand and improve current strategies to terminate cardiac arrhythmia as well as for possible pain-free arrhythmia termination in patients in the future. In this review, we give a concise introduction to optogenetic stimulation of cardiomyocytes and the whole heart and summarize the recent progress on optogenetic defibrillation and cardioversion to terminate cardiac arrhythmia. Toward this aim, we specifically focus on the different mechanisms of optogenetic arrhythmia termination and how these might influence the prerequisites for success. Furthermore, we critically discuss the clinical perspectives and potential patient populations, which might benefit from optogenetic defibrillation devices.
Collapse
Affiliation(s)
- Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maximilian Funken
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany.,Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany.,Institute of Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
Flexible and precise control of cardiac rhythm with blue light. Biochem Biophys Res Commun 2019; 514:759-764. [DOI: 10.1016/j.bbrc.2019.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022]
|