1
|
Kim HR, Jeong JK, Young CN. Cellular Profile of Subfornical Organ Insulin Receptors in Mice. Biomolecules 2024; 14:1256. [PMID: 39456189 PMCID: PMC11506324 DOI: 10.3390/biom14101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Brain insulin receptor signaling is strongly implicated in cardiovascular and metabolic physiological regulation. In particular, we recently demonstrated that insulin receptors within the subfornical organ (SFO) play a tonic role in cardiovascular and metabolic regulation in mice. The SFO is a forebrain sensory circumventricular organ that regulates cardiometabolic homeostasis due to its direct exposure to the circulation and thus its ability to sense circulating factors, such as insulin. Previous work has demonstrated broad distribution of insulin receptor-expressing cells throughout the entire SFO, indirectly indicating insulin receptor expression in multiple cell types. Based on this, we sought to determine the cellular phenotypes that express insulin receptors within the SFO by combining immunohistochemistry with genetically modified reporter mouse models. Interestingly, SFO neurons, including both excitatory and inhibitory types, were the dominant cell site for insulin receptor expression, although a weak degree of insulin receptor expression was also detected in astrocytes. Moreover, SFO angiotensin type 1a receptor neurons also expressed insulin receptors. Collectively, these anatomical findings indicate the existence of potentially complex cellular networks within the SFO through which insulin signaling can influence physiology and further point to the SFO as a possible brain site for crosstalk between angiotensin-II and insulin.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.-R.K.); (J.-K.J.)
| |
Collapse
|
2
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain 2023; 146:75-90. [PMID: 36280236 PMCID: PMC9897197 DOI: 10.1093/brain/awac309] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-β plaques and β-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRβ that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with β-amyloid pathology.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Camille Sugère
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Kim SH, Park SS, Kim CJ, Kim TW. Exercise with 40-Hz light flicker improves hippocampal insulin signaling in Alzheimer disease mice. J Exerc Rehabil 2022; 18:20-27. [PMID: 35356135 PMCID: PMC8934612 DOI: 10.12965/jer.2244042.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
We examined whether exercise is associated with hippocampus-mediated improvement in insulin signaling and cell differentiation in the triple transgenic mouse model of Alzheimer disease (3xTg AD) murine model following exposure to 40-Hz light flickering and exercise. We subjected 12-month-old 3xTg AD mice to exercise and 40-Hz light flickering for 3 months. The exercise session was proceeded for 12 consecutive weeks with gradual increase of intensity. To investigate insulin signaling proteins, western blot was conducted to detect the ratio of phosphorylated insulin receptor β (p-IRβ)/total IRβ (t-IRβ), phosphorylated insulin receptor substrate 1 (p-IRS-1)/total IRS-1 (t-IRS-1), phosphorylated phosphatidylinositide-3-kinase (p-PI3K)/total PI3K (t-PI3K), phosphorylated 3-phosphoinositide dependent protein kinase-1 (p-PDK1)/total PDK-1 (t-PDK1), phosphorylated protein kinase B (p-Akt)/total-Akt (t-Akt), and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β)/total GSK3β (t-GSK3β). Doublecortin immunohistochemistry was performed for assessing cell differentiation in the hippocampus. Treatments exerted a positive effect. The combination of exercise and 40-Hz light flickering exposure was the most effective treatment enhancing insulin signaling. Increased ratio of p-IRβ/t-IRβ, p-IRS-1/t-IRS-1, p-PI3K/t-PI3K, p-PDK1/t-PDK1, p-Akt/t-Akt, and p-GSK3β/t-GSK3β and enhanced cell differentiation were observed in the 3xTg AD with exercise under 40-Hz light flickering group. Our results indicate that exercise under 40-Hz light flickering most potently improved insulin signaling, thereby promoted cell differentiation.
Collapse
Affiliation(s)
- Seong-Hyun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
- Division of Global Sport Studies, College of Culture and Sports, Korea University, Sejong,
Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE,
USA
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
- Corresponding author: Tae-Woon Kim, Department of Human Health Care, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Korea,
| |
Collapse
|
5
|
Jeong JK, Horwath JA, Simonyan H, Blackmore KA, Butler SD, Young CN. Subfornical organ insulin receptors tonically modulate cardiovascular and metabolic function. Physiol Genomics 2019; 51:333-341. [PMID: 31172876 DOI: 10.1152/physiolgenomics.00021.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Insulin acts within the central nervous system through the insulin receptor to influence both metabolic and cardiovascular physiology. While a major focus has been placed on hypothalamic regions, participation of extrahypothalamic insulin receptors in cardiometabolic regulation remains largely unknown. We hypothesized that insulin receptors in the subfornical organ (SFO), a forebrain circumventricular region devoid of a blood-brain barrier, are involved in metabolic and cardiovascular regulation. Immunohistochemistry in mice revealed widespread insulin receptor-positive cells throughout the rostral to caudal extent of the SFO. SFO-targeted adenoviral delivery of Cre-recombinase in insulin receptorlox/lox mice resulted in sufficient ablation of insulin receptors in the SFO. Interestingly, when mice were maintained on a normal chow diet, deletion of SFO insulin receptors resulted in greater weight gain and adiposity, relative to controls, independently of changes in food intake. In line with this, ablation of insulin receptors in the SFO was associated with marked hepatic steatosis and hypertriglyceridemia. Selective removal of SFO insulin receptors also resulted in a lower mean arterial blood pressure, which was primarily due to a reduction in diastolic blood pressure, whereas systolic blood pressure remained unchanged. Cre-mediated targeting of SFO insulin receptors did not influence heart rate. These data demonstrate multidirectional roles for insulin receptor signaling in the SFO, with ablation of SFO insulin receptors resulting in an overall deleterious metabolic state while at the same time maintaining blood pressure at low levels. These novel findings further suggest that alterations in insulin receptor signaling in the SFO could contribute to metabolic syndrome phenotypes.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Julie A Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Katherine A Blackmore
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Scott D Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
6
|
Molecular Connection Between Diabetes and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:103-131. [DOI: 10.1007/978-981-13-3540-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
7
|
Muta K, Morgan DA, Rahmouni K. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology 2015; 156:1398-407. [PMID: 25574706 PMCID: PMC4399321 DOI: 10.1210/en.2014-1660] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Insulin action in the brain particularly the hypothalamus is critically involved in the regulation of several physiological processes, including energy homeostasis and sympathetic nerve activity, but the underlying mechanisms are poorly understood. The mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the control of diverse cellular functions, including sensing nutrients and energy status. Here, we examined the role of hypothalamic mTORC1 in mediating the anorectic, weight-reducing, and sympathetic effects of central insulin action. In a mouse hypothalamic cell line (GT1-7), insulin treatment increased mTORC1 activity in a time-dependent manner. In addition, intracerebroventricular (ICV) administration of insulin to mice activated mTORC1 pathway in the hypothalamic arcuate nucleus, a key site of central action of insulin. Interestingly, inhibition of hypothalamic mTORC1 with rapamycin reversed the food intake- and body weight-lowering effects of ICV insulin. Rapamycin also abolished the ability of ICV insulin to cause lumbar sympathetic nerve activation. In GT1-7 cells, we found that insulin activation of mTORC1 pathway requires phosphatidylinositol 3-kinase (PI3K). Consistent with this, genetic disruption of PI3K in mice abolished insulin stimulation of hypothalamic mTORC1 signaling as well as the lumbar sympathetic nerve activation evoked by insulin. These results demonstrate the importance of mTORC1 pathway in the hypothalamus in mediating the action of insulin to regulate energy homeostasis and sympathetic nerve traffic. Our data also highlight the key role of PI3K as a link between insulin receptor and mTORC1 signaling in the hypothalamus.
Collapse
Affiliation(s)
- Kenjiro Muta
- Departments of Pharmacology (K.M., D.A.M., K.R.) and Internal Medicine (K.R.) and Fraternal Order of Eagles Diabetes Research Center (K.R.), University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | | | | |
Collapse
|
8
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
9
|
|
10
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
11
|
Mielke JG, Wang YT. Insulin, synaptic function, and opportunities for neuroprotection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:133-86. [PMID: 21199772 DOI: 10.1016/b978-0-12-385506-0.00004-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
A steadily growing number of studies have begun to establish that the brain and insulin, while traditionally viewed as separate, do indeed have a relationship. The uptake of pancreatic insulin, along with neuronal biosynthesis, provides neural tissue with the hormone. As well, insulin acts upon a neuronal receptor that, although a close reflection of its peripheral counterpart, is characterized by unique structural and functional properties. One distinction is that the neural variant plays only a limited part in neuronal glucose transport. However, a number of other roles for neural insulin are gradually emerging; most significant among these is the modulation of ligand-gated ion channel (LGIC) trafficking. Notably, insulin has been shown to affect the tone of synaptic transmission by regulating cell-surface expression of inhibitory and excitatory receptors. The manner in which insulin regulates receptor movement may provide a cellular mechanism for insulin-mediated neuroprotection in the absence of hypoglycemia and stimulate the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- John G Mielke
- Faculty of Applied Health Sciences, Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
12
|
Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 2007; 101:757-70. [PMID: 17448147 DOI: 10.1111/j.1471-4159.2006.04368.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The intracerebroventricular (icv) application of streptozotocin (STZ) in low dosage was used in 3-month-old rats to explore brain insulin system dysfunction. Three months following STZ icv treatment, the expression of insulin-1 and -2 mRNA was significantly reduced to 11% in hippocampus and to 28% in frontoparietal cerebral cortex, respectively. Insulin receptor (IR) mRNA expression decreased significantly in frontoparietal cerebral cortex and hippocampus (16% and 33% of control). At the protein/activity level, different abnormalities of protein tyrosine kinase activity (increase in hippocampus), total IR beta-subunit (decrease in hypothalamus) and phosphorylated IR tyrosine residues (increase) became apparent. The STZ-induced disturbance in learning and memory capacities was not abolished by icv application of glucose transport inhibitors known to prevent STZ-induced diabetes mellitus. The discrepancy between reduced IR gene expression and increase in both phosphorylated IR tyrosine residues/protein tyrosine kinase activity may indicate imbalance between phosphorylation/dephosphorylation of the IR beta-subunit causing its dysfunction. These abnormalities may point to a complex brain insulin system dysfunction after STZ icv application, which may lead to an increase in hyperphosphorylated tau-protein concentration. Brain insulin system dysfunction is discussed as possible pathological core in the generation of hyperphosphorylated tau protein as a morphological marker of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Edna Grünblatt
- Clinical Neurochemistry and National Parkinson Foundation Centre of Excellence Laboratory, Clinic for Psychiatry and Psychotherapy, Bayrische Julius-Maximilian University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Salkovic-Petrisic M, Hoyer S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:217-33. [PMID: 17982898 DOI: 10.1007/978-3-211-73574-9_28] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
A growing body of evidence implicates impairments in brain insulin signaling in early sporadic Alzheimer disease (sAD) pathology. However, the most widely accepted hypothesis for AD aetiology stipulates that pathological aggregations of the amyloid beta (Abeta) peptide are the cause of all forms of Alzheimer's disease. Streptozotocin-intracerebroventricularly (STZ-icv) treated rats are proposed as a probable experimental model of sAD. The current work reviews evidence obtained from this model indicating that central STZ administration induces brain pathology and behavioural alterations resembling those in sAD patients. Recently, alterations of the brain insulin system resembling those in sAD have been found in the STZ-icv rat model and are associated with tau protein hyperphosphorylation and Abeta-like aggregations in meningeal vessels. In line with these findings the hypothesis has been proposed that insulin resistance in the brain might be the primary event which precedes the Abeta pathology in sAD.
Collapse
Affiliation(s)
- M Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
14
|
Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 2004; 490:115-25. [PMID: 15094078 DOI: 10.1016/j.ejphar.2004.02.049] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2003] [Revised: 12/10/2003] [Accepted: 02/27/2004] [Indexed: 12/29/2022]
Abstract
Nosologically, Alzheimer disease is not a single disorder in spite of a common clinical phenotype. Etiologically, two different types or even more exist. (1) In a minority of about 5% or less of all cases, Alzheimer disease is due to mutations of three genes, resulting in the permanent generation of betaA4. (2) The great majority (95% or more) of cases of Alzheimer disease are sporadic in origin, with old age as main risk factor, supporting the view that susceptibility genes and aging contribute to age-related sporadic Alzheimer disease. However, disturbances in the neuronal insulin signal transduction pathway may be of central pathophysiological significance. In early-onset familial Alzheimer disease, the inhibition of neuronal insulin receptor function may be due to competitive binding of amyloid beta (Abeta) to the insulin receptor. In late-onset sporadic Alzheimer disease, the neuronal insulin receptor may be desensitized by inhibition of receptor function at different sites by noradrenaline and/or cortisol, the levels of which both increase with increasing age. The consequences of the inhibition of neuronal insulin signal transduction may be largely identical to those of disturbances of oxidative energy metabolism and related metabolism, and of hyperphosphorylation of tau-protein. As far as the metabolism of amyloid precursor protein (APP) in late-onset sporadic Alzheimer disease is concerned, neuronal insulin receptor dysfunction may result in the intracellular accumulation of Abeta and in subsequent cellular damage. In this context, the desensitization of the neuronal insulin receptor in late-onset sporadic Alzheimer disease is different from that occurring in normal aging and early-onset familial Alzheimer disease. In late-onset sporadic Alzheimer disease changes in the brain are similar to those caused by non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathology, University of Heidelberg, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127:481-96. [PMID: 15262337 DOI: 10.1016/j.neuroscience.2004.05.029] [Citation(s) in RCA: 657] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/20/2004] [Indexed: 12/25/2022]
Abstract
We investigated the CNS delivery of insulin-like growth factor-I (IGF-I), a 7.65 kDa protein neurotrophic factor, following intranasal administration and the possible pathways and mechanisms underlying transport from the nasal passages to the CNS. Anesthetized adult male Sprague-Dawley rats were given [125I]-IGF-I intranasally or intravenously and then killed by perfusion-fixation within 30 min. Other animals were killed following cisternal puncture and withdrawal of cerebrospinal fluid (CSF) or intranasal administration of unlabeled IGF-I or vehicle. Both gamma counting of microdissected tissue and high resolution phosphor imaging of tissue sections showed that the tissue concentrations and distribution following intranasal administration were consistent with two routes of rapid entry into the CNS: one associated with the peripheral olfactory system connecting the nasal passages with the olfactory bulbs and rostral brain regions (e.g. anterior olfactory nucleus and frontal cortex) and the other associated with the peripheral trigeminal system connecting the nasal passages with brainstem and spinal cord regions. Intranasal administration of [125I]-IGF-I also targeted the deep cervical lymph nodes, consistent with their possible role in lymphatic drainage of both the nasal passages and the CNS. Cisternal CSF did not contain [125I]-IGF-I following intranasal administration. Intravenous [125I]-IGF-I resulted in blood and peripheral tissue exposure similar to that seen following intranasal administration but CNS concentrations were significantly lower. Finally, delivery of IGF-I into the CNS activated IGF-I signaling pathways, confirming some portion of the IGF-I that reached CNS target sites was functionally intact. The results suggest intranasally delivered IGF-I can bypass the blood-brain barrier via olfactory- and trigeminal-associated extracellular pathways to rapidly elicit biological effects at multiple sites within the brain and spinal cord.
Collapse
Affiliation(s)
- R G Thorne
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
16
|
Reiter CEN, Sandirasegarane L, Wolpert EB, Klinger M, Simpson IA, Barber AJ, Antonetti DA, Kester M, Gardner TW. Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol Endocrinol Metab 2003; 285:E763-74. [PMID: 12799319 DOI: 10.1152/ajpendo.00507.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Insulin receptor (IR) signaling cascades have been studied in many tissues, but retinal insulin action has received little attention. Retinal IR signaling and activity were investigated in vivo in rats that were freely fed, fasted, or injected with insulin by phosphotyrosine immunoblotting and by measuring kinase activity. A retina explant system was utilized to investigate the IR signaling cascade, and immunohistochemistry was used to determine which retinal cell layers respond to insulin. Basal IR activity in the retina was equivalent to that in brain and significantly greater than that of liver, and it remained constant between freely fed and fasted rats. Furthermore, IR signaling increased in the retina after portal vein administration of supraphysiological doses of insulin. Ex vivo retinas responded to 10 nM insulin with IR beta-subunit (IRbeta) and IR substrate-2 (IRS-2) tyrosine phosphorylation and AktSer473 phosphorylation. The retina expresses mRNA for all three Akt isoforms as determined by in situ hybridization, and insulin specifically increases Akt-1 kinase activity. Phospho-AktSer473 immunoreactivity increases in retinal nuclear cell layers with insulin treatment. These results demonstrate that the retinal IR signaling cascade to Akt-1 possesses constitutive activity, and that exogenous insulin further stimulates this prosurvival pathway. These findings may have implications in understanding normal and dysfunctional retinal physiology.
Collapse
Affiliation(s)
- Chad E N Reiter
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive H166, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Insulin resistance is known to play a pivotal role in type 2 diabetes. Senile individuals, besides being prone to insulin resistance and, consequently, to type 2 diabetes, manifest diseases of the central nervous system (CNS) that may be influenced by disturbances of insulin signaling in the brain, such as memory impairment, Parkinson disease, and Alzheimer disease. We investigated the expression and response to insulin of elements involved in the insulin-signaling pathway in the forebrain cortex and cerebellum of rats ages 1 d to 60 wk. The protein content of insulin receptors and SRC homology adaptor protein (SHC) did not change significantly along the time frame analyzed. However, insulin-induced tyrosine phosphorylation of the insulin receptor and SHC, and the association of SHC/growth factor receptor binding protein-2 (GRB2) decreased significantly from d 1 to wk 60 of life in both types of tissues. Moreover, the expression of SH protein tyrosine phosphatase-2 (SHP2), a tyrosine phosphatase involved in insulin signal transduction and regulation of the insulin signal, decreased significantly with age progression, in both the forebrain cortex and the cerebellum of rats. Thus, elements involved in the insulin-signaling pathway are regulated at the expression and/or functional level in the CNS, and this regulation may play a role in insulin resistance in the brain.
Collapse
Affiliation(s)
- M L Fernandes
- Department of Internal Medicine, State University of Campinas, SP, Brazil
| | | | | |
Collapse
|
18
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 598] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ohsawa M, Tanaka S, Kamei J. Possible mechanisms for insulin-induced attenuation of the antinociceptive effect of [D-Ala2, N-MePhe4, Gly-ol5]enkephalin. Eur J Pharmacol 1999; 373:181-6. [PMID: 10414437 DOI: 10.1016/s0014-2999(99)00273-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
The effects of pretreatment with protein kinase C and protein kinase A inhibitors on the intraventricular insulin-induced attenuation of the antinociceptive effect of [D-Ala2, N-MePhe4, Gly-ol5]enkephalin (DAMGO) were studied in mice. Intracerebroventricular (i.c.v.) pretreatment with insulin dose- and time-dependently attenuated the antinociceptive effect of i.c.v. DAMGO (5.6 ng) in mice. Intracerebroventricular pretreatment with a highly selective tyrosine kinase inhibitor, herbimycin A, at doses of 200 and 600 ng for 70 min, dose-dependently reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. Furthermore, i.c.v. pretreatment with serine/threonin kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H7), at doses of 3-30 nmol for 60 min, dose-dependently reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. Intracerebroventricular pretreatment with selective protein kinase C inhibitor, calphostin C, at doses of 1 and 3 pmol for 60 min, but not with a highly protein kinase A inhibitor, (8R, 9S, 11S)-(-)-9-hydroxy-9-n-hexyloxy-carbonyl-8-methyl-2, 3, 9, 20-tetrahydro-8, 11-epoxy-1H, 8H, 11H-2, 7b, 11a-triaqzadibenzo[a, g]cycloocta[c, d, e]-trinden-1-one (KT5720), at dose of 10 pmol for 60 min, reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. These results suggest that the reduction of DAMGO-induced antinociception by insulin in mice may be, in part, due to the activation of protein kinase C followed by the activation of tyrosine kinase.
Collapse
Affiliation(s)
- M Ohsawa
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Shin BC, Suzuki M, Inukai K, Anai M, Asano T, Takata K. Multiple isoforms of the regulatory subunit for phosphatidylinositol 3-kinase (PI3-kinase) are expressed in neurons in the rat brain. Biochem Biophys Res Commun 1998; 246:313-9. [PMID: 9610355 DOI: 10.1006/bbrc.1998.8606] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3-kinase) is a heterodimeric enzyme composed of a catalytic subunit of 110 kDa and an adaptor regulatory subunit. We investigated the presence and localization of five isoforms of the regulatory subunits, p55 alpha, p55 gamma, p85 alpha, p85 beta, and p50 alpha, in the rat brain. In situ hybridization histochemistry using isoform-specific cRNA probes revealed that all five isoforms were expressed in the neurons of the brain. Interestingly, most neuronal cells including Purkinje cells in the cerebellum and pyramidal cells in the cerebrum expressed all five isoforms. Immunohistochemical staining also showed the localization of p55 alpha, p55 gamma, p85 alpha, and p50 alpha in the neuronal cells in the brain. Expression of multiple isoforms in neurons suggests that they may play important roles in signal transduction in the brain.
Collapse
Affiliation(s)
- B C Shin
- Department of Cell Biology, Gunma University, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wang J, Leibowitz KL. Central insulin inhibits hypothalamic galanin and neuropeptide Y gene expression and peptide release in intact rats. Brain Res 1997; 777:231-6. [PMID: 9449434 DOI: 10.1016/s0006-8993(97)00963-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
The central actions of insulin, on galanin (GAL) and neuropeptide Y (NPY) in the brain, are examined in intact satiated rats. Ventricular injections of insulin reduce both GAL and NPY gene expression and immunoreactivity in different hypothalamic areas but have no effect in extra-hypothalamic sites. Insulin applied to medial hypothalamic fragments in vitro significantly reduces GAL and NPY release. This evidence suggests that insulin acts centrally and directly on hypothalamic peptide activity under normal feeding conditions.
Collapse
Affiliation(s)
- J Wang
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
22
|
Sartori C, Silvestroni L, Stefanini S, Tocco GA. Insulin binding and fluid-phase endocytosis stimulation in the mouse neuroblastoma cell line 41A3. Int J Dev Neurosci 1996; 14:721-9. [PMID: 8960979 DOI: 10.1016/s0736-5748(96)00062-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
As well as many other hormones and growth factors, insulin is known to influence several processes in the CNS; its specific effects, however, are still poorly understood. Neuroblastoma cell lines represent a useful experimental system for the analysis of the insulin-specific effect on neurons, in the absence of possible regulatory mechanisms elicited by other neuronal/glial cells and/or soluble factors. The expression and the binding properties of insulin receptors, as well as the insulin effects on both membrane fluidity and cell surface architecture, have been investigated in 41A3 mouse neuroblastoma cells, by radioligand-binding fluorescence spectroscopy and scanning electron microscopy, respectively the same cells, insulin-induced modifications on cytoskeletal organisation also have been studied. Binding studies were performed using 125I-insulin, while the cationic fluorescent probe trimethylammonium 1,6-diphenyl-1,3,5-hexatriene was used for biophysical investigations. The results presented in this paper provide evidence that insulin interacts with 41A3 neuroblastoma cells through a receptor-mediated mechanism and that, in these cells, insulin binding modifies the cell surface morphology and stimulates endocytosis.
Collapse
Affiliation(s)
- C Sartori
- Department of Cellular and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | | | |
Collapse
|
23
|
Yamada E, Kataoka H, Isozumi T, Hazama F. Increased expression of phosphotyrosine after axotomy in the dorsal motor nucleus of the vagus nerve and the hypoglossal nucleus. Acta Neuropathol 1994; 88:14-8. [PMID: 7524262 DOI: 10.1007/bf00294354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
To investigate the role of tyrosine kinase underlying glial cell proliferation after axotomy, the localization of phosphotyrosine was studied immunohistochemically in the dorsal motor nucleus of the vagus nerve and the hypoglossal nucleus after nerve transection in adult rats. An anti-phosphotyrosine antibody weakly stained the cytoplasm of the neurons and some glial cells on the control side of both nuclei, while preferentially staining the plasma membrane of perineuronal microglial cells and neurons weakly on the severed side 2 days after axotomy and intensely between 3 and 7 days. Some of the microglial cells reacted positively with both anti-bromodeoxyuridine and anti-phosphotyrosine antibodies, suggesting that tyrosine kinase is involved in microglial cell proliferation. Proliferation of numerous microglial cells was observed in the severed nuclei between 2 and 4 days after axotomy, while only a few were detected on days 5 and 7. These findings suggest that tyrosine kinase is involved in not only the proliferation of perineuronal microglial cells but also in some retrograde neuronal reactions such as differentiation and regeneration.
Collapse
Affiliation(s)
- E Yamada
- Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | |
Collapse
|
24
|
Adamo ML, Shemer J, Roberts CT, LeRoith D. Insulin and insulin-like growth factor-I induced phosphorylation in neurally derived cells. Ann N Y Acad Sci 1993; 692:113-25. [PMID: 7692785 DOI: 10.1111/j.1749-6632.1993.tb26210.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Affiliation(s)
- M L Adamo
- Diabetes Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
25
|
Unger JW, Moss AM, Livingston JN. The hypophyseal pars tuberalis is enriched with distinct phosphotyrosine-containing proteins not detected in other areas of the brain and pituitary. Cell Tissue Res 1993; 272:499-507. [PMID: 7687928 DOI: 10.1007/bf00318556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
The regulation of cell activity, growth and metabolism by a number of growth factor receptors and proto-oncogene products involves tyrosine kinase activity resulting in autophosphorylation of the receptors and production of phosphorylated tyrosine-containing protein substrates. The identification and precise localization of phosphotyrosine (PY)-containing proteins are first steps in elucidating the functional role of tyrosine kinases in the modulation of the central nervous system and related areas. In the present report, we describe PY-containing proteins in the median eminence and adjacent pars tuberalis of the rat adenohypophysis by immunocytochemistry using light and electron microscopy, and by Western blotting analysis. PY-immunoreactivity was found to be most intense throughout the cytoplasm of a population of epithelial pars tuberalis cells. Polyacrylamide gel electrophoresis and Western blotting of tissue extracts from various brain and pituitary regions demonstrated a general pattern of 4 major bands of PY-proteins, with an additional dense band representing a 44 kDa protein that was highly phosphorylated on tyrosines and that was exclusively found in the pars tuberalis. Additional investigation for the presence of insulin receptors, a tyrosine kinase previously correlated with the distribution of PY-proteins, demonstrated a receptor localization in axons and nerve terminals in the external and internal zone of the median eminence. However, the large amount of different PY-proteins present in the secretory cell population of the pars tuberalis could not be attributed to the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J W Unger
- Anatomische Anstalt, Universität München, Germany
| | | | | |
Collapse
|
26
|
Faúndez V, Krauss R, Holuigue L, Garrido J, González A. Epidermal growth factor receptor in synaptic fractions of the rat central nervous system. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88710-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
|
27
|
Sartori C, Stefanini S, Bernardo A, Augusti-Tocco G. Insulin receptor in mouse neuroblastoma cell line N18TG2: binding properties and visualization with colloidal gold. Int J Dev Neurosci 1992; 10:281-9. [PMID: 1414441 DOI: 10.1016/0736-5748(92)90017-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.
Collapse
Affiliation(s)
- C Sartori
- Department of Cellular and Developmental Biology, University of Rome, La Sapienza, Italy
| | | | | | | |
Collapse
|
28
|
Girault JA, Chamak B, Bertuzzi G, Tixier H, Wang JK, Pang DT, Greengard P. Protein phosphotyrosine in mouse brain: developmental changes and regulation by epidermal growth factor, type I insulin-like growth factor, and insulin. J Neurochem 1992; 58:518-28. [PMID: 1370320 DOI: 10.1111/j.1471-4159.1992.tb09751.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Using antiphosphotyrosine antibodies, we have investigated protein phosphorylation in mouse brain during development in intact animals and in reaggregated cerebral cultures. Under basal conditions, in vivo and in vitro, the levels of two main phosphoproteins, of Mr 120,000 and 180,000 (pp180), increased with development, reaching a maximum in the early postnatal period and decreasing thereafter. In adult forebrain, pp180 was still highly phosphorylated, but it was not detected in cerebellum or in peripheral tissues. In reaggregated cortical cultures, epidermal growth factor (EGF), type I insulin-like growth factor (IGF-I), and insulin enhanced protein tyrosine phosphorylation of several proteins, which were specific for EGF or IGF-I/insulin. In highly enriched neuronal or astrocytic monolayer cultures, some proteins phosphorylated in basal conditions, or in response to EGF and IGF-I, were found in both types of culture, whereas others appeared cell type specific. In addition, in each cell type, some proteins were phosphorylated under the action of both growth factors. These results indicate that tyrosine protein phosphorylation is maximal in mouse brain during development and is regulated by growth factors in neurons as well as in astrocytes.
Collapse
Affiliation(s)
- J A Girault
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
29
|
Devaskar SU. A review of insulin/insulin-like peptide in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 293:385-96. [PMID: 1767738 DOI: 10.1007/978-1-4684-5949-4_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Affiliation(s)
- S U Devaskar
- Department of Pediatrics, St. Louis University School of Medicine, Mo
| |
Collapse
|