1
|
Vostarek F, Sankova B, Sedmera D. Studying dynamic events in the developing myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:261-9. [PMID: 24954141 DOI: 10.1016/j.pbiomolbio.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/25/2023]
Abstract
Differentiation and conduction properties of the cardiomyocytes are critically dependent on physical conditioning both in vitro and in vivo. Historically, various techniques were introduced to study dynamic events such as electrical currents and changes in ionic concentrations in live cells, multicellular preparations, or entire hearts. Here we review this technological progress demonstrating how each improvement in spatial or temporal resolution provided answers to old and provoked new questions. We further demonstrate how high-speed optical mapping of voltage and calcium can uncover pacemaking potential within the outflow tract myocardium, providing a developmental explanation of ectopic beats originating from this region in the clinical settings.
Collapse
Affiliation(s)
- Frantisek Vostarek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic
| | - David Sedmera
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Brooker G. Laboratory of ion and second messenger imaging: a tribute to the memory of Erminio Costa. Pharmacol Res 2011; 64:319-20. [PMID: 21704165 DOI: 10.1016/j.phrs.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 11/16/2022]
Abstract
When we lost Ermino Costa last year, the end of an era was marked. "Mimo" as we affectionately called him, was looked upon by scores of students, post-doctoral scholars and colleagues with respect and admiration and he was a scientific father figure to many. In this article I reflect upon his time at Georgetown University including his recruitment, formation and leadership of the Fidia-Georgetown Institute for Neuroscience (FGIN). The founding of FGIN created a focus upon neurosciences at the university and fostered many new collaborations. My laboratory became associated with the Institute and was involved in common interests concerning ion and second messenger studies and single cell imaging. Mimo's critical support of work and people during his long and illustrious career has significantly impacted not only neuroscience but the people who were so fortunate to have traveled with him along the road to many important and exciting discoveries.
Collapse
Affiliation(s)
- Gary Brooker
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University Microscopy Center, Johns Hopkins University, 9605 Medical Center Drive Suite 240, Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Application of Bioimaging to Osteocyte Biology. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-010-9077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Sobczak K, Bangel-Ruland N, Leier G, Weber WM. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane. Methods 2009; 51:183-9. [PMID: 19963061 DOI: 10.1016/j.ymeth.2009.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 11/15/2022] Open
Abstract
Oocytes of the South African clawed frog Xenopus laevis are widely used as a heterologous expression system for the characterization of transport systems such as passive and active membrane transporters, receptors and a whole plethora of other membrane proteins originally derived from animal or plant tissues. The large size of the oocytes and the high degree of expression of exogenous mRNA or cDNA makes them an optimal tool, when compared with other expression systems such as yeast, Escherichia coli or eukaryotic cell lines, for the expression and functional characterization of membrane proteins. This easy to handle expression system is becoming increasingly attractive for pharmacological research. Commercially available automated systems that microinject mRNA into the oocytes and perform electrophysiological measurements fully automatically allow for a mass screening of new computer designed drugs to target membrane transport proteins. Yet, the oocytes possess a large variety of endogenous membrane transporters and it is absolutely mandatory to distinguish the endogenous transporters from the heterologous, expressed transport systems. Here, we review briefly the endogenous membrane transport systems of the oocytes.
Collapse
Affiliation(s)
- Katja Sobczak
- Institute of Animal Physiology, Westfalian Wilhelms-University, Hindenburgplatz 55, Muenster, Germany
| | | | | | | |
Collapse
|
5
|
Chen X, Gründer S. Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a. J Physiol 2007; 579:657-70. [PMID: 17204502 PMCID: PMC2151377 DOI: 10.1113/jphysiol.2006.120733] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The homomeric acid-sensing ion channel 1a (ASIC1a) is a H+-activated ion channel with important physiological functions and pathophysiological impact in the central nervous system. Here we show that homomeric ASIC1a is distinguished from other ASICs by a reduced response to successive acid stimulations. Such a reduced response is called tachyphylaxis. We show that tachyphylaxis depends on H+ permeating through ASIC1a, that tachyphylaxis is attenuated by extracellular Ca2+, and that tachyphylaxis is probably linked to Ca2+ permeability of ASIC1a. Moreover, we provide evidence that tachyphylaxis is probably due to a long-lived inactive state of ASIC1a. A deeper understanding of ASIC1a tachyphylaxis may lead to pharmacological control of ASIC1a activity that could be of potential benefit for the treatment of stroke.
Collapse
Affiliation(s)
- Xuanmao Chen
- Department of Physiology II, Röntgenring 9, 97070 Würzburg, Germany
| | | |
Collapse
|
6
|
Ji L, Li QS. Turing pattern formation in coupled reaction-diffusion systems: Effects of sub-environment and external influence. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
8
|
|
9
|
Affiliation(s)
- Michael Whitaker
- School of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, NE2 4HH, United Kingdom
| |
Collapse
|
10
|
Xu W, Longo FJ, Wintermantel MR, Jiang X, Clark RA, DeLisle S. Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca2+ store depletion. J Biol Chem 2000; 275:36676-82. [PMID: 10973951 DOI: 10.1074/jbc.m002041200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.
Collapse
Affiliation(s)
- W Xu
- Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
11
|
Weber W. Ion currents of Xenopus laevis oocytes: state of the art. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:213-33. [PMID: 10518693 DOI: 10.1016/s0005-2736(99)00135-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W Weber
- Laboratory of Physiology, K.U. Leuven, Campus Gasthuisberg, B-3000, Leuven, Belgium.
| |
Collapse
|
12
|
Lee CL, Linton J, Soughayer JS, Sims CE, Allbritton NL. Localized measurement of kinase activation in oocytes of Xenopus laevis. Nat Biotechnol 1999; 17:759-62. [PMID: 10429239 DOI: 10.1038/11691] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have combined a rapid cytoplasmic sampling technique with capillary electrophoresis to measure the activation of protein kinase C (PKC) in a small region (approximately 60 microm) of a Xenopus oocyte. The phosphorylation of a fluorescent PKC substrate was measured following addition of a pharmacological or physiological stimulus to an oocyte. When substrates for cdc2 kinase (cdc2K), PKC, and protein kinase A (PKA) were comicroinjected into an oocyte, all three substrates could be identified on the electropherogram after cytoplasmic sampling. With this new method, it should be possible to measure simultaneously the activation of multiple different kinases in a single cell, enabling the quantitative dissection of signal transduction pathways.
Collapse
Affiliation(s)
- C L Lee
- Institute of Aerospace Medicine, National Defense Medical Center, Taipei Taiwan R.O.C
| | | | | | | | | |
Collapse
|
13
|
Sheu SS, Sharma VK. Rapid report: a novel technique for quantitative measurement of free Ca2+ concentration in rat heart mitochondria. J Physiol 1999; 518 ( Pt 2):577-84. [PMID: 10381602 PMCID: PMC2269444 DOI: 10.1111/j.1469-7793.1999.0577p.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The free mitochondrial Ca2+ concentration ([Ca2+]m) in rat heart mitochondria was measured quantitatively by loading the mitochondria with fura-2 and then injecting them into Xenopus laevis oocytes. 2. When oocytes were incubated with a physiological solution, the free cytosolic Ca2+ concentration ([Ca2+]c) in the oocytes was 82 +/- 11 nM (n = 20, mean +/- s.e.m.) and the [Ca2+]m of the injected rat heart mitochondria was 116 +/- 10 nM (n = 18, mean +/- s.e.m.). 3. Inhibition of the oocyte endoplasmic reticular Ca2+-ATPase with thapsigargin produced a transient increase in averaged [Ca2+]c at sub-micromolar concentrations. 4. Injection of cardiac mitochondria blunted the peak and prolonged the duration of thapsigargin-induced [Ca2+]c transients as a result of Ca2+ sequestration by the cardiac mitochondria. 5. These results demonstrate that the present technique provides a new approach for studying [Ca2+]m regulation quantitatively under physiological environments. Furthermore, it clearly shows that cardiac mitochondria can modify the shape of thapsigargin-induced cytosolic Ca2+ pulses in Xenopus oocytes.
Collapse
Affiliation(s)
- S S Sheu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642-8711, USA.
| | | |
Collapse
|
14
|
Luzzi V, Sims CE, Soughayer JS, Allbritton NL. The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J Biol Chem 1998; 273:28657-62. [PMID: 9786859 DOI: 10.1074/jbc.273.44.28657] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To measure the concentration of inositol 1,4,5-trisphosphate ([IP3]) in small regions of single Xenopus oocytes, a biological detector cell was combined with capillary electrophoresis. This method is 10, 000 times more sensitive than all existing assays enabling subcellular measurement of [IP3] in Xenopus oocytes. Upon addition of lysophosphatidic acid to an oocyte, [IP3] increased from 40 to 650 nM within 2 min. IP3 concentrations as high as 1.8 microM were measured after activation with lysophosphatidic acid, suggesting that the physiologic concentration of IP3 ranges from the tens of nanomolar to a few micromolar in Xenopus oocytes. Since the IP3 receptor in Xenopus oocytes is nearly identical to the type I receptor of mammalian cells, the range of [IP3] in most mammalian cells is likely to be similar to that in the oocyte. By selecting or engineering the appropriate detector cell, this strategy should be applicable to cyclic adenosine diphosphate ribose and nicotinic acid adenine dinucleotide phosphate, and to the discovery of new Ca2+-releasing second messengers.
Collapse
Affiliation(s)
- V Luzzi
- Department of Physiology and Biophysics University of California, Irvine, California 92697-4560, USA
| | | | | | | |
Collapse
|
15
|
Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C, Alper SL. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem 1998; 273:21542-53. [PMID: 9705284 DOI: 10.1074/jbc.273.34.21542] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651-11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed in Xenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nM concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nM concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.
Collapse
Affiliation(s)
- D H Vandorpe
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DeBernardi MA, Brooker G. Simultaneous fluorescence ratio imaging of cyclic AMP and calcium kinetics in single living cells. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:195-213. [PMID: 9421592 DOI: 10.1016/s1040-7952(98)80012-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M A DeBernardi
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
17
|
Abstract
Retrograde signaling from the postsynaptic cell to the presynaptic neuron is essential for the development, maintenance, and activity-dependent modification of synaptic connections. This review covers various forms of retrograde interactions at developing and mature synapses. First, we discuss evidence for early retrograde inductive events during synaptogenesis and how maturation of presynaptic structure and function is affected by signals from the postsynaptic cell. Second, we review the evidence that retrograde interactions are involved in activity-dependent synapse competition and elimination in developing nervous systems and in long-term potentiation and depression at mature synapses. Third, we review evidence for various forms of retrograde signaling via membrane-permeant factors, secreted factors, and membrane-bound factors. Finally, we discuss the evidence and physiological implications of the long-range propagation of retrograde signals to the cell body and other parts of the presynaptic neuron.
Collapse
Affiliation(s)
- R M Fitzsimonds
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
18
|
Owman C, Mahan LC. Method for identifying ligands activating either excitatory or inhibitory G-protein-coupled receptors by functional coexpression in Xenopus oocytes. Biochem Biophys Res Commun 1997; 233:853-6. [PMID: 9168947 DOI: 10.1006/bbrc.1997.6565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Xenopus oocytes devoid of their follicular enclosure provide a frequently used expression system for investigating receptors that transduce through activation of adenylyl cyclase following injection of the appropriate mRNA. However, due to a low basal activity of the cyclase they cannot be utilized to investigate receptor-mediated reductions in endogenous cAMP levels. In order to overcome this limitation, a model was designed in which test clones for such inhibitory receptors were co-expressed with a beta 2-adrenoceptor, which elevated cAMP upon exposure to isoproterenol. Following injection of mRNA to express the alpha 2 test receptor in the oocytes, marked reduction in cAMP could be measured after exposure to clonidine. Attenuation of cAMP levels was also seen following co-expression of the dopamine D2 receptor along with dopamine administration. Thus, after inducing a receptor-mediated tone in adenylyl cyclase activity, Xenopus oocytes can be conveniently used to study also ligands that bind to inhibitory G-protein coupled receptors.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Cricetinae
- Cyclic AMP/metabolism
- Female
- GTP-Binding Proteins/metabolism
- Gene Expression
- In Vitro Techniques
- Isoproterenol/pharmacology
- Ligands
- Oocytes/drug effects
- Oocytes/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- C Owman
- Department of Physiology and Neuroscience, Wallenberg Neuroscience Center, University of Lund, Sweden.
| | | |
Collapse
|
19
|
DeLisle S, Marksberry EW, Bonnett C, Jenkins DJ, Potter BV, Takahashi M, Tanzawa K. Adenophostin A can stimulate Ca2+ influx without depleting the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in the Xenopus oocyte. J Biol Chem 1997; 272:9956-61. [PMID: 9092535 DOI: 10.1074/jbc.272.15.9956] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenophostin A possesses the highest known affinity for the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor (InsP3R). The compound shares with Ins(1,4,5)P3 those structural elements essential for binding to the InsP3R. However, its adenosine 2'-phosphate moiety has no counterpart in the Ins(1,4,5)P3 molecule. To determine whether its unique structure conferred a distinctive biological activity, we characterized the adenophostin-induced Ca2+ signal in Xenopus oocytes using the Ca2+-gated Cl- current assay. In high concentrations, adenophostin A released Ca2+ from Ins(1,4, 5)P3-sensitive stores and stimulated a Cl- current that depended upon the presence of extracellular Ca2+. We used this Cl- current as a marker of Ca2+ influx. In low concentrations, however, adenophostin A stimulated Ca2+ influx exclusively. In contrast, Ins(1,4,5)P3 and (2-hydroxyethyl)-alpha-D-glucopyranoside 2',3, 4-trisphosphate, an adenophostin A mimic lacking most of the adenosine moiety, always released intracellular Ca2+ before causing Ca2+ influx. Ins(1,4,5)P3 could still release Ca2+ during adenophostin A-induced Ca2+ influx, confirming that the Ins(1,4, 5)P3-sensitive intracellular Ca2+ stores had not been emptied. Adenophostin- and Ins(1,4,5)P3-induced Ca2+ influx were not additive, suggesting that both agonists stimulated a common Ca2+ entry pathway. Heparin, which blocks binding to the InsP3R, prevented adenophostin-induced Ca2+ influx. These data indicate that adenophostin A can stimulate the influx of Ca2+ across the plasma membrane without inevitably emptying the Ins(1,4,5)P3-sensitive intracellular Ca2+ stores.
Collapse
Affiliation(s)
- S DeLisle
- Veterans Administration Medical Center, Department of Internal Medicine, and Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa 52240, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Yule DI, Stuenkel E, Williams JA. Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1285-94. [PMID: 8897836 DOI: 10.1152/ajpcell.1996.271.4.c1285] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Digital-imaging microfluorimetry, together with microinjection of marker/messenger molecules, was utilized to investigate intercellular Ca2+ signaling in rat pancreatic acinar cells. Stimulation of acini with low concentrations of secretagogues [< 100 pM cholecystokinin (CCK), < 1 microM carbachol (CCh)] resulted in asynchronous but coordinated increases in Ca2+ that appeared to pass in a "wavelike" fashion between cells. In contrast, at higher supermaximal concentrations of agonists (> 300 pM CCK, > 1 microM CCh), which induce a large "peak-and-plateau" intracellular Ca2+ signal, all cells in the acinus appeared to increase Ca2+ concentration ([Ca2+]) in synchrony. Microinjection of lissarhodamine, a marker of gap-junctional permeability, into cells previously loaded with fura 2 allowed the simultaneous measurement of gap-junctional coupling and [Ca2+]. Stimulation with supermaximal concentrations of agonists resulted in the attenuation of junctional permeability, whereas, during stimulation with physiological concentrations of agonist, junctional communication remained operable. Injection of inositol 1,4,5-triphosphate [Ins(1,4,5)P3] into one cell of an acinar cluster resulted in the generation of a Ca2+ signal in the injected cell and adjacent cells. In contrast, injection of CaCl2 itself did not result in propagation of the signal. When CaCl2 was injected into cells that had been previously stimulated with a threshold concentration of CCK, propagation of a signal was observed between cells. On the basis of these data, a model is proposed in which Ca2+ acts as coagonist with Ins(1,4,5)P3 to potentiate the Ca(2+)-releasing action of Ins(1,4,5)P3 and, by diffusion of the two molecules through gap junctions, underlies intercellular signaling in acinar cells. Gap-junctional communication may be an important factor in amplifying a threshold signal produced in one cell throughout the acinus, resulting in enhanced stimulated secretion in acinar preparations compared with preparations of isolated cells.
Collapse
Affiliation(s)
- D I Yule
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48105, USA
| | | | | |
Collapse
|
21
|
Yano M, Marinelli RA, Roberts SK, Balan V, Pham L, Tarara JE, de Groen PC, LaRusso NF. Rat hepatocytes transport water mainly via a non-channel-mediated pathway. J Biol Chem 1996; 271:6702-7. [PMID: 8636089 DOI: 10.1074/jbc.271.12.6702] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During bile formation by the liver, large volumes of water are transported across two epithelial barriers consisting of hepatocytes and cholangiocytes (i.e. intrahepatic bile duct epithelial cells). We recently reported that a water channel, aquaporin-channel-forming integral protein of 28 kDa, is present in cholangiocytes and suggested that it plays a major role in water transport by these cells. Since the mechanisms of water transport across hepatocytes remain obscure, we performed physiological, molecular, and biochemical studies on hepatocytes to determine if they also contain water channels. Water permeability was studied by exposing isolated rat hepatocytes to buffers of different osmolarity and measuring cell volume by quantitative phase contrast, fluorescence and laser scanning confocal microscopy. Using this method, hepatocytes exposed to hypotonic buffers at 23 degrees C increased their cell volume in a time and osmolarity-dependent manner with an osmotic water permeability coefficient of 66.4 x 10(-4) cm/s. In studies done at 10 degrees C, the osmotic water permeability coefficient decreased by 55% (p < 0.001, at 23 degrees C; t test). The derived activation energy from these studies was 12.8 kcal/mol. After incubation of hepatocytes with amphotericin B at 10 degrees C, the osmotic water permeability coefficient increased by 198% (p < 0.001) and the activation energy value decreased to 3.6 kcal/mol, consistent with the insertion of artificial water channels into the hepatocyte plasma membrane. Reverse transcriptase polymerase chain reaction with hepatocyte RNA as template did not produce cDNAs for three of the known water channels. Both the cholesterol content and the cholesterol/phospholipid ratio of hepatocyte plasma membranes were significantly (p < 0.005) less than those of cholangiocytes; membrane fluidity of hepatocytes estimated by measuring steady-state anisotropy was higher than that of cholangiocytes. Our data suggests that the osmotic flow of water across hepatocyte membranes occurs mainly by diffusion via the lipid bilayer (not by permeation through water channels as in cholangiocytes).
Collapse
Affiliation(s)
- M Yano
- Department of Internal Medicine, Center for Basic Research in Digestive Diseases, Mayo Medical School, Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47045-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Abstract
Astrocytes respond to the excitatory neurotransmitter glutamate with dynamic spatio-temporal changes in intracellular calcium [Ca2+]i. Although they share a common wave-like appearance, the different [Ca2+]i changes--an initial spike, sustained elevation, oscillatory intracellular waves, and regenerative intercellular waves--are actually separate and distinct phenomena. These separate components of the astrocytic Ca2+ response appear to be generated by two different signal transduction pathways. The metabotropic response evokes an initial spatial Ca2+ spike that can propagate rapidly from cell to cell and appears to involve IP3. The metabotropic response can also produce oscillatory intracellular waves of various amplitudes and frequencies that propagate within cells and are sustained only in the presence of external Ca2+. The ionotropic response, however, evokes a sustained elevation in [Ca2+]i associated with receptor-mediated Na+ and Ca2+ influx, depolarization, and voltage-dependent Ca2+ influx. In addition, the ionotropic response can lead to regenerative intercellular waves that propagate smoothly and nondecrementally from cell to cell, possibly involving Na+/Ca2+ exchange. All these astrocytic [Ca2+]i changes tend to appear wave-like, traveling from region to region as a transient rise in [Ca2+]i. Nevertheless, as our understanding of the cellular events that underlie these [Ca2+]i changes grows, it becomes increasingly clear that glutamate-induced Ca2+ signaling is a composite of separate and distinct phenomena, which may be distinguished not based on appearance alone, but rather on their underlying mechanisms.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/physiology
- Calcium/physiology
- Cell Communication
- Cell Compartmentation
- Cells, Cultured
- Cycloleucine/analogs & derivatives
- Cycloleucine/pharmacology
- Glutamic Acid/pharmacology
- Glutamic Acid/physiology
- Hippocampus/cytology
- Humans
- Inositol 1,4,5-Trisphosphate/physiology
- Models, Neurological
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Rats
- Receptors, Glutamate/classification
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/physiology
- Second Messenger Systems/drug effects
- Videodisc Recording
Collapse
Affiliation(s)
- W T Kim
- Yale University School of Medicine, Department of Cell Biology, New Haven, Connecticut 06510
| | | | | |
Collapse
|
24
|
Eidne KA, Zabavnik J, Allan WT, Trewavas AJ, Read ND, Anderson L. Calcium waves and dynamics visualized by confocal microscopy in Xenopus oocytes expressing cloned TRH receptors. J Neuroendocrinol 1994; 6:173-8. [PMID: 8049715 DOI: 10.1111/j.1365-2826.1994.tb00569.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Laser scanning confocal microscopy was used to analyse changes in free cytosolic calcium ([Ca2+]i) in Xenopus laevis oocytes expressing the cloned rat TRH receptor in response to TRH. In oocytes expressing TRH receptors, TRH invariably evoked a dose-dependent, biphasic calcium response. This response consisted of an initial transient planar wave of calcium propagating just below the surface of the membrane followed by a slower, secondary calcium phase. The TRH antagonist, chlordiazepoxide, markedly inhibited this calcium wave. The origins of calcium involved in this biphasic response were investigated using a variety of intra- and extra-cellular calcium antagonists. The intracellular calcium antagonists thapsigargin and TMB-8 reduced the initial and to a lesser extent the secondary phase of the planar calcium wave. In contrast, EGTA and the calcium channel blocker nifedipine produced a profound inhibition of the secondary phase while the initial phase was only slightly reduced. These results indicate that the release of intracellular calcium is predominantly responsible for the initial phase of the calcium wave while the influx of extracellular calcium is mainly involved in the secondary phase. Qualitative changes in the patterns of calcium release induced by TRH were observed following pretreatment with intracellular calcium antagonists. Following pretreatment with these compounds, TRH induced spiral or regenerative calcium waves. Addition of EGTA to the extracellular medium did not alter these responses confirming the importance of intracellular calcium in the generation of these spiral calcium waves. This study demonstrates the nature and multiplicity of regulating mechanisms of [Ca2+]i following activation of TRH receptors expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- K A Eidne
- MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
25
|
Girard S, Clapham D. Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science 1993; 260:229-32. [PMID: 8385801 DOI: 10.1126/science.8385801] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many cell membrane receptors stimulate the phosphoinositide (PI) cycle, which produces complex intracellular calcium signals that regulate diverse processes such as secretion and transcription. A major messenger of this cycle, inositol 1,4,5-triphosphate (IP3), stimulates its receptor channel on the endoplasmic reticulum to release calcium into the cytosol. Activation of the PI cycle also induces calcium influx, which refills the intracellular calcium stores. Confocal microscopy was used to show that receptor-activated calcium influx, enhanced by hyperpolarization, modulates the frequency and velocity of IP3-dependent calcium waves in Xenopus laevis oocytes. These results demonstrate that transmembrane voltage and calcium influx pathways may regulate spatial and temporal patterns of IP3-dependent calcium release.
Collapse
Affiliation(s)
- S Girard
- Department of Pharmacology, Mayo Foundation, Rochester, MN 55905
| | | |
Collapse
|
26
|
Boddeke HW, Hoffman BJ, Palacios JM, Knot H, Hoyer D. Characterization of functional responses in A9 cells transfected with cloned rat 5-HT1C receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 347:119-24. [PMID: 8474532 DOI: 10.1007/bf00169255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional responses to stimulation of rat 5-HT1C receptors expressed in A9 cells were studied using whole cell voltage clamp and calcium recording techniques. Stimulation of 5-HT1C receptors evoked outward currents clamped at -50 mV. The outward currents were reduced when GTP was excluded from the intracellular recording solution or when GDP-beta-S was added. 8-Bromo cyclic AMP (5 mmol/l) neither produced an effect per se nor affected the 5-HT-induced outward current in A9 cells, thus excluding cAMP as a second messenger involved in 5-HT1C receptor activation. Phorbol myristic acetate (PMA; 10 mumol/l) did not affect the electrical activity of the transfected A9 cells but reduced the 5-HT-induced current amplitude to 71 +/- 9% of the control value (n = 12). This indicates that activation of protein kinase C does not play a direct role in the 5-HT-induced response in these cells. The 5-HT induced currents mainly involved potassium ions, although a small contribution of chloride ions was also observed. The 5-HT-induced current was inhibited by the K+ channel blocking agents tetraethylammonium (1 mmol/l), apamin (0,5 mumol/l) and 4-aminopyridine (5 mmol/l). The 5-HT-induced currents recorded at -50 mV were unaffected by removal of extracellular calcium, but inclusion of the calcium chelator BAPTA (5 mmol/l) in the intracellular solutions abolished the current. Measurement with the calcium indicator Fluo-3 revealed a 5-HT-induced increase in intracellular calcium which was not affected by removal of extracellular calcium but declined after repeated stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H W Boddeke
- Sandoz Pharma Ltd, Preclinical Research, Basle, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Yao Y, Parker I. Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+. J Physiol 1992; 458:319-38. [PMID: 1284567 PMCID: PMC1175158 DOI: 10.1113/jphysiol.1992.sp019420] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The ability of cytosolic Ca2+ ions to modulate inositol 1,4,5-trisphosphate (Insp3)-induced Ca2+ liberation from intracellular stores was studied in Xenopus oocytes using light flash photolysis of caged InsP3. Changes in cytosolic free Ca2+ level were effected by inducing Ca2+ entry through ionophore and voltage-gated plasma membrane channels and by injection of Ca2+ through a micropipette. Their effects on Ca2+ liberation were monitored by video imaging of Fluo-3 fluorescence and by voltage clamp recording of Ca(2+)-activated membrane Cl- currents. 2. Treatment of oocytes with the Ca2+ ionophores A23187 and ionomycin caused a transient elevation of cytosolic Ca2+ level when cells were bathed in Ca(2+)-free solution, which probably arose because of release of Ca2+ from intracellular stores. 3. Membrane current and Fluo-3 Ca2+ signals evoked by photoreleased InsP3 in ionophore-treated oocytes were potentiated when the intracellular Ca2+ level was elevated by raising the Ca2+ level in the bathing solution. 4. Responses to photoreleased InsP3 were similarly potentiated following activation of Ca2+ entry through voltage-gated Ca2+ channels expressed in the plasma membrane. 5. Ca(2+)-activated membrane currents evoked by depolarization developed a delayed 'hump' component during sustained photorelease of InsP3, probably because Ca2+ ions entering through the membrane channels triggered liberation of Ca2+ from intracellular stores. 6. Ba2+ and Sr2+ ions were able to substitute for Ca2+ in potentiating InsP3-mediated Ca2+ liberation. 7. Gradual photorelease of InsP3 by weak photolysis light evoked Ca2+ liberation that began at particular foci and then propagated throughout, but not beyond that area of the oocyte exposed to the light. Local elevations of intracellular Ca2+ produced by microinjection of Ca2+ acted as new foci for the initiation of Ca2+ liberation by InsP3. 8. In resting oocytes, intracellular injections of Ca2+ resulted only in localized elevation of intracellular Ca2+, and did not evoke propagating waves. 9. The results show that cytosolic Ca2+ ions potentiate the ability of InsP3 to liberate Ca2+ from intracellular stores. This process may be important for the positive feedback mechanism underlying the generation of Ca2+ spikes and waves, and for interactions between the InsP3 pathway and Ca2+ ions entering cells through voltage- and ligand-gated channels.
Collapse
Affiliation(s)
- Y Yao
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
28
|
Parys J, Sernett S, DeLisle S, Snyder P, Welsh M, Campbell K. Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37028-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Dupont G, Goldbeter A. Oscillations and waves of cytosolic calcium: insights from theoretical models. Bioessays 1992; 14:485-93. [PMID: 1445288 DOI: 10.1002/bies.950140711] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oscillations in cytosolic Ca2+ occur in a wide variety of cells, either spontaneously or as a result of external stimulation. This process is often accompanied by intracellular Ca2+ waves. A number of theoretical models have been proposed to account for the periodic generation and spatial propagation of Ca2+ signals. These models are reviewed and their predictions compared with experimental observations. Models for Ca2+ oscillations can be distinguished according to whether or not they rely on the concomitant, periodic variation in inositol 1,4,5-trisphosphate. Such a variation, however, is not required in models based on Ca(2+)-induced Ca2+ release. When Ca2+ diffusion is incorporated into these models, propagating waves of cytosolic Ca2+ arise, with profiles and rates comparable to those seen in the experiments.
Collapse
Affiliation(s)
- G Dupont
- Faculté des Sciences, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
30
|
DeLisle S, Pittet D, Potter BV, Lew PD, Welsh MJ. InsP3 and Ins(1,3,4,5)P4 act in synergy to stimulate influx of extracellular Ca2+ in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1456-63. [PMID: 1377444 DOI: 10.1152/ajpcell.1992.262.6.c1456] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To investigate the role of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] in the regulation of Ca2+ influx, we injected inositol phosphates into Xenopus oocytes and measured Ca(2+)-gated Cl- current to assay intracellular free Ca2+ concentration ([Ca2+]i). To assess Ca2+ influx, we removed extracellular Ca2+ or added the inorganic Ca2+ channel blocker Mn2+ to the extracellular bath and measured the resulting change in Cl- current. Ins(1,3,4,5)P4 did not cause Ca2+ influx when injected alone or when preceded by an injection of Ca2+. In contrast, Ins(1,3,4,5)P4 stimulated Ca2+ influx when injected after the poorly metabolized inositol trisphosphate (InsP3) analogues D-myo-inositol 1,4,5-trisphosphorothioate [Ins(1,4,5)P3S3] or D-myo-inositol 2,4,5-trisphosphate [Ins(2,4,5)P3]. These results indicate that Ins(1,3,4,5)P4 is not sufficient to stimulate Ca2+ influx but acts in synergy with InsP3s to cause Ca2+ influx. We also studied the effect of Ca2+ influx on the immediate metabolism of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in single oocytes. Ca2+ influx shunted the metabolism of Ins(1,4,5)P3 toward the formation of Ins(1,3,4,5)P4 and away from D-myo-inositol 1,4-bisphosphate [Ins(1,4)P2]. These results suggest that there is a positive feedback regulatory mechanism in which Ca2+ influx stimulates Ins(1,3,4,5)P4 production and Ins(1,3,4,5)P4 stimulates further Ca2+ influx.
Collapse
Affiliation(s)
- S DeLisle
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | |
Collapse
|
31
|
Sandberg K, Ji H, Iida T, Catt KJ. Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism. J Cell Biol 1992; 117:157-67. [PMID: 1556150 PMCID: PMC2289393 DOI: 10.1083/jcb.117.1.157] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3-dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.
Collapse
Affiliation(s)
- K Sandberg
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
32
|
Sundelin JB, Provvedini DM, Wahlestedt CR, Laurell H, Pohl JS, Peterson PA. Molecular cloning of the murine substance K and substance P receptor genes. ACTA ACUST UNITED AC 1992; 203:625-31. [PMID: 1370937 DOI: 10.1111/j.1432-1033.1992.tb16592.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The peptides substance K and substance P evoke a variety of biological responses via distinct, guanosine-nucleotide-binding-regulatory-protein-coupled receptors. We have screened a murine genomic cosmid library using oligonucleotide probes and have isolated, cloned and characterized the substance K receptor and the substance P receptor genes. The coding portion of the substance K receptor gene consists of five exons distributed over 13 kbp. The substance P receptor gene is considerably larger than that of substance K (more than 30 kbp), however, the boundaries of the four exons that have been characterized in the substance P receptor gene correspond exactly to the homologous exons in the substance K receptor gene. To verify the identity of the isolated genes, we have cloned the corresponding cDNA by means of the polymerase chain reaction and we have expressed these cDNA species in Xenopus laevis oocytes. The ligand binding characteristics determined in this system pharmacologically confirm the identity of the two receptors. The deduced amino acid sequence of the mouse substance K receptor is 94% identical to the rat sequence and 85% identical to the bovine and human sequences. The mouse substance P receptor amino acid sequence is 99% identical to the rat sequence. The cloning of the murine substance K and substance P receptor genes should contribute substantially to the generation of in vivo models for the detailed analysis of the functional significance of these receptors.
Collapse
Affiliation(s)
- J B Sundelin
- Department of Medical and Physiological Chemistry, University of Lund, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Phillips E, Conder MJ, Bevan S, McIntyre P, Webb M. Expression of functional bradykinin receptors in Xenopus oocytes. J Neurochem 1992; 58:243-9. [PMID: 1309236 DOI: 10.1111/j.1471-4159.1992.tb09302.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
mRNA prepared from various tissues and cultured cells was injected into Xenopus laevis oocytes. Three to five days after injection, the response of the oocytes to the peptide bradykinin was monitored. The oocytes were voltage clamped and the membrane currents generated on application of agonist were recorded. mRNA from NG108-15, rat uterus, and human fibroblast cell line WI38 gave similar responses to bradykinin (1 microM), with an initial inward current (10-20 nA) followed by a prolonged period of membrane current oscillations. The same pattern of response was given by total RNA from rat dorsal root ganglia. No response to bradykinin (10 microM) was recorded from oocytes injected with rat brain mRNA, although these oocytes gave peak inward currents of about 75 nA in response to serotonin (10 microM). mRNA from both NG108-15 cells and rat uterus was fractionated on sucrose gradients. This resulted in an approximately five-fold increase in the size of the response compared to that given by unfractionated mRNA. The largest responses were given by mRNA fractions with a size of approximately 4.5 kb. Data were obtained consistent with the expression of both B1 and B2 receptors by WI38 human fibroblasts and with the expression of only the B2 type of receptor by NG108-15 cells.
Collapse
Affiliation(s)
- E Phillips
- Sandoz Institute for Medical Research, London, England, U.K
| | | | | | | | | |
Collapse
|
34
|
Parker I, Yao Y. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc Biol Sci 1991; 246:269-74. [PMID: 1686093 DOI: 10.1098/rspb.1991.0154] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fluorescence imaging was used to determine the spatial and temporal patterns of subcellular calcium (Ca2+) liberation induced in Xenopus oocytes by photorelease of inositol 1,4,5-trisphosphate (InsP3) from a caged precursor. Increasing levels of InsP3 evoked Ca2+ release that began in a graded manner but, at varying threshold levels of InsP3, localized sites then showed transient and asynchronous 'puffs' of Ca2+ release. With higher levels of InsP3, Ca2+ from adjacent sites formed a focus for initiation of a propagating Ca2+ wave. The results show that InsP3-sensitive Ca2+ stores are arranged as distinct and functionally independent units, and that Ca2+ is released in both graded and regenerative fashions.
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
35
|
DeBernardi MA, Seki T, Brooker G. Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. Proc Natl Acad Sci U S A 1991; 88:9257-61. [PMID: 1718001 PMCID: PMC52693 DOI: 10.1073/pnas.88.20.9257] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
C6-2B rat glioma cells were stably transfected with substance K receptor cDNA and used to study interactions between cAMP and Ca2+ signaling pathways. Activation of the newly expressed receptors by substance K increased the intracellular free Ca2+ concentration, as monitored by single-cell fura-2 imaging, and markedly inhibited agonist-stimulated cAMP accumulation. Blockade of intracellular Ca2+ mobilization abolished the substance K receptor-mediated inhibition of isoproterenol-induced cAMP production. Phosphodiesterase inhibitors, down-regulation or inhibition of protein kinase C, and pertussis toxin failed to prevent substance K-induced inhibition of agonist-stimulated cAMP accumulation. An increased intracellular Ca2+ concentration caused by either calcium ionophores or activation of endogenous bradykinin receptors was found to markedly reduce cAMP production in wild-type cells. These results demonstrate that elevated intracellular Ca2+ concentration can negatively modulate agonist-stimulated adenylate cyclase activity in C6-2B glioma cells.
Collapse
Affiliation(s)
- M A DeBernardi
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007
| | | | | |
Collapse
|
36
|
Wahlestedt C. Strategies to detect heterologously expressed tachykinin receptors in Xenopus Oocytes. Ann N Y Acad Sci 1991; 632:116-22. [PMID: 1719860 DOI: 10.1111/j.1749-6632.1991.tb33100.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C Wahlestedt
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
37
|
Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Biophys Biochem Cytol 1991; 114:155-67. [PMID: 2050740 PMCID: PMC2289065 DOI: 10.1083/jcb.114.1.155] [Citation(s) in RCA: 507] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sphingosine, a metabolite of membrane sphingolipids, regulates proliferation of quiescent Swiss 3T3 fibroblasts (Zhang, H., N. E. Buckley, K. Gibson. and S. Spiegel. 1990. J. Biol. Chem. 265:76-81). The present study provides new insights into the formation and function of a unique phospholipid, a metabolite of sphingosine, which was unequivocally identified as sphingosine-1-phosphate. The rapid increase in 32P-labeled sphingosine-1-phosphate levels induced by sphingosine was concentration dependent and correlated with its effect on DNA synthesis. Similar to the mitogenic effects of sphingosine, low concentrations of sphingosine-1-phosphate stimulated DNA synthesis and induced pronounced morphological alterations. Both sphingosine and sphingosine-1-phosphate stimulated DNA synthesis in cells made protein kinase C deficient by prolonged treatment with phorbol ester and sphingosine still elicited similar increases in sphingosine-1-phosphate levels in these cells. Although both sphingosine and sphingosine-1-phosphate acted synergistically with a wide variety of growth factors, there was no additive or synergistic effect in response to a combination of sphingosine and sphingosine-1-phosphate. Using a digital imaging system for measurement of calcium changes, we observed that both sphingosine and sphingosine-1-phosphate are potent calcium-mobilizing agonists in viable 3T3 fibroblasts. The rapid rise in cytosolic free calcium was independent of the presence of calcium in the external medium, indicating that the response is due to the mobilization of calcium from internal store. Our results suggest that sphingosine-1-phosphate may be a component of the intracellular second messenger system that is involved in calcium release and the regulation of cell growth induced by sphingosine.
Collapse
Affiliation(s)
- H Zhang
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Electrical recordings were used to study the sensitivity of native Xenopus oocytes to the octapeptide angiotensin II (AII). AII elicited oscillatory currents associated with an increase in membrane conductance to Cl-. Responsiveness to AII varied greatly between oocytes taken from different frogs, and to a lesser extent between oocytes from the same ovary. Oocytes from frogs showing high sensitivity had response thresholds between 0.5-1.0 nM AII, and at a holding potential of -60 mV, responded to 1 microM AII with currents greater than 3 microA. In contrast, oocytes from some frogs gave no response, even to 10 microM AII. A total of 618 oocytes from 79 frogs were tested for sensitivity to AII, and oocytes from 85% of frogs gave detectable electrical responses. Oscillatory Cl- currents elicited by AII were largely independent of extracellular Ca2+, were abolished by chelation of intracellular Ca2+ using EGTA and were mimicked by intraoocyte injection of inositol 1,4,5-trisphosphate (IP3). In addition to oscillatory Cl- currents, AII also evoked an influx of extracellular Ca2+, giving rise to a transient inward Cl- current on membrane hyperpolarizing steps. These experiments all suggested that AII responses were elicited through activation of an intracellular messenger pathway triggered by hydrolysis of inositolphospholipids, mobilization of intracellular Ca2+ by inositol polyphosphates, and activation of Ca(2+)-gated Cl- channels. The effect of manual or enzymic defolliculation on AII responses was studied in nine separate experiments recording from 70 defolliculated oocytes. Efficacy of defolliculation procedures was assayed using scanning electron microscopy, which confirmed removal of 90 to greater than 98% of follicular cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Woodward
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
39
|
Lechleiter J, Girard S, Clapham D, Peralta E. Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature 1991; 350:505-8. [PMID: 1849616 DOI: 10.1038/350505a0] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium release from intracellular stores is a point of convergence for a variety of receptors involved in cell signaling. Consequently, the mechanism(s) by which cells differentiate between individual receptor signals is central to transmembrane communication. There are significant differences in timing and magnitude of Ca2+ release stimulated by the m2 and m3 muscarinic acetylcholine receptors. The m2 receptors couple to a pertussis toxin-sensitive G protein to activate phosphatidyl inositol hydrolysis weakly and to stimulate small, delayed and oscillatory chloride currents. In contrast, m3 receptors potently activate phosphatidyl inositol hydrolysis and stimulate large, rapid and transient chloride currents by a pertussis toxin-insensitive G protein pathway. Using confocal microscopy, we now show that the m2- and m3-coupled Ca2+ release pathways can also be spatially distinguished. At submaximal acetylcholine concentrations, both receptors stimulated pulses of Ca2+ release from discrete foci in random, periodic and frequently bursting patterns of activity. But maximal stimulation of m2 receptors increased the number of focal release sites, whereas m3 receptors invariably evoked a Ca2+ wave propagating rapidly just beneath the plasma membrane surface. Analysis of pertussis toxin sensitivity and hybrid m2-m3 muscarinic acetylcholine receptors confirmed that these Ca2+ release patterns represent distinct cell signalling pathways.
Collapse
Affiliation(s)
- J Lechleiter
- Department of Pharmacology, Mayo Foundation, Rochester, Minnesota 55905
| | | | | | | |
Collapse
|
40
|
Lechleiter J, Girard S, Peralta E, Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 1991; 252:123-6. [PMID: 2011747 DOI: 10.1126/science.2011747] [Citation(s) in RCA: 466] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10(-6) square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.
Collapse
Affiliation(s)
- J Lechleiter
- Department of Pharmacology, Mayo Foundation, Rochester, MN 55905
| | | | | | | |
Collapse
|
41
|
Horiuchi T, Champigny C, Rabbani SA, Hendy GN, Goltzman D. Expression of adenylate cyclase-coupled osseous parathyroid hormone and parathyroid hormone-like peptide receptors in Xenopus oocytes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67705-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Wahlestedt C, Grundemar L, Håkanson R, Heilig M, Shen GH, Zukowska-Grojec Z, Reis DJ. Neuropeptide Y receptor subtypes, Y1 and Y2. Ann N Y Acad Sci 1990; 611:7-26. [PMID: 2174225 DOI: 10.1111/j.1749-6632.1990.tb48918.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterogeneity among NPY (and PYY) receptors was first proposed on the basis of studies on sympathetic neuroeffector junctions, where NPY (and PYY) can exert three types of action: 1) a direct (e.g., vasoconstrictor) response; 2) a postjunctional potentiating effect on NE-evoked vasoconstriction; and 3) a prejunctional suppression of stimulated NE release; the two latter phenomena are probably reciprocal, since NE affect NPY mechanisms similarly. It was found that amidated C-terminal NPY (or PYY) fragments, e.g., NPY 13-36, could stimulate selectively prejunctional NPY/PYY receptors, which were termed Y2-receptors. Consequently, the postjunctional receptors which were activated poorly by NPY/PYY fragments, were termed Y1-receptors. Later work has indicated that the Y2-receptor may occur postjunctionally in selected sympathetic effector systems. The central nervous system appears to contain a mixture of Y1- and Y2-receptors as indicated by functional as well as binding studies. For instance, NPY and NPY 13-36 produced diametrically opposite effects on behavioral activity, indicating the action of the parent peptide on two distinct receptors. Cell lines, most importantly neuroblastomas, with exclusive populations of Y1- or Y2-receptors, have been characterized by binding and second messenger studies. In this work, selective agonists for the two receptor subtypes were used. Work of many investigators has formed the basis for subclassifying NPY/PYY effects being mediated by either Y1- or Y2-receptors. A preliminary subclassification based on effects of NPY, PYY, fragments and/or analogs is provided in Table 6. It is, however, to be expected that further receptor heterogeneity will be revealed in the future. It is argued that mast cells possess atypical NPY/PYY receptors. The histamine release associated with stimulation of the latter receptors may, at least in part, underlie the capacity of NPY as well as of short C-terminal fragments to reduce blood pressure. Fragments, such as NPY 22-36, appear to be relatively selective vasodepressor agents because of their weak vasopressor properties.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Wahlestedt
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | | | | | | | | | | | |
Collapse
|
43
|
de Erausquin GA, Manev H, Guidotti A, Costa E, Brooker G. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci U S A 1990; 87:8017-21. [PMID: 2236016 PMCID: PMC54883 DOI: 10.1073/pnas.87.20.8017] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamate-induced delayed neurotoxicity after abusive and paroxismal activation of its receptors has been proposed to depend upon a sustained increase in intracellular free Ca2+ [( Ca2+]i). To elucidate the temporal and causal relationship between glutamate-induced changes in [Ca2+]i and neuronal death, we simultaneously studied the dynamics of [Ca2+]i changes in single neurons with the acetoxymethyl ester of fura-2 and the cell viability by imaging the nuclear penetration of propidium iodide. The main difference between toxic (50 microM) and nontoxic (5 microM) doses of glutamate is the lack of regulation in [Ca2+]i 20 min after glutamate is removed. This protracted rise in [Ca2+]i in a single cell is correlated with (r = 0.87, P less than 0.01, Spearman's test), and consequently predictive of, the time of appearance of neuronal death, as measured by propidium iodide fluorescence. In addition, the glutamate receptor antagonists dibenzocyclohepteneimine (MK-801) and 3,3-(2-carboxypiperazine-4-yl)propyl 1-phosphate reduce the acute increase of [Ca2+]i induced by glutamate but fail to revert the protracted increase of [Ca2+]i, elicited by toxic doses of glutamate. In contrast, the ganglioside GM1 and the semisynthetic lysoGM1 with N-acetylsphingosine (LIGA-4) and lysoGM1 with N-dichloroacetylsphingosine (LIGA-20) failed to change the immediate rise of [Ca2+]i elicited by glutamate but prevented the protracted increase in [Ca2+]i after toxic doses of glutamate. Voltage-dependent Ca2+ channel blockers (nifedipine, etc.) did not change the initial or protracted responses to glutamate.
Collapse
Affiliation(s)
- G A de Erausquin
- Fidia-Georgetown Institute for the Neurosciences, Georgetown University, Washington, DC 20007
| | | | | | | | | |
Collapse
|