1
|
Peyret H, Shah SN, Meshcheriakova Y, Saunders K, Lomonossoff GP. How do RNA viruses select which RNA to package? The plant virus experience. Virology 2025; 604:110435. [PMID: 39893746 DOI: 10.1016/j.virol.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The process whereby viral RNA is specifically selected for packaging within viral particles has been extensively studied over many years. As a result, two broad hypotheses have emerged to explain this specificity, though these are not mutually exclusive. The first proposes that the viral RNA contains specific sequences or "packaging signals" that enable it to be recognised from a mixture of RNAs within an infected cell. The second suggests that there is a functional coupling between RNA replication and packaging that leads to only replicating, viral RNA being packaged. This review is aimed at analysing the evidence for the two hypotheses from both in vitro and in vivo studies on positive-strand RNA plant viruses. Overall, it seems probable that the selectivity of packaging results from replication of the viral RNAs rather than the presence of any specific RNA sequence. However, it is also likely that the presence of packaging signals with high affinity for the viral coat protein is involved in the efficient incorporation of RNA into particles, thereby favouring the correct assembly of fully formed and infectious particles.
Collapse
Affiliation(s)
- Hadrien Peyret
- University of Nottingham, School of Biosciences, Division of Crop and Plant Sciences. Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
Ershova N, Kamarova K, Sheshukova E, Antimonova A, Komarova T. A novel cellular factor of Nicotiana benthamiana susceptibility to tobamovirus infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1224958. [PMID: 37534286 PMCID: PMC10390835 DOI: 10.3389/fpls.2023.1224958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Viral infection, which entails synthesis of viral proteins and active reproduction of the viral genome, effects significant changes in the functions of many intracellular systems in plants. Along with these processes, a virus has to suppress cellular defense to create favorable conditions for its successful systemic spread in a plant. The virus exploits various cellular factors of a permissive host modulating its metabolism as well as local and systemic transport of macromolecules and photoassimilates. The Nicotiana benthamiana stress-induced gene encoding Kunitz peptidase inhibitor-like protein (KPILP) has recently been shown to be involved in chloroplast retrograde signaling regulation and stimulation of intercellular transport of macromolecules. In this paper we demonstrate the key role of KPILP in the development of tobamovius infection. Systemic infection of N. benthamiana plants with tobacco mosaic virus (TMV) or the closely related crucifer-infecting tobamovirus (crTMV) induces a drastic increase in KPILP mRNA accumulation. KPILP knockdown significantly reduces the efficiency of TMV and crTMV intercellular transport and reproduction. Plants with KPILP silencing become partially resistant to tobamovirus infection. Therefore, KPILP could be regarded as a novel proviral factor in the development of TMV and crTMV infection in N. benthamiana plants.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Antimonova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Sheshukova EV, Ershova NM, Kamarova KA, Dorokhov YL, Komarova TV. The Tobamoviral Movement Protein: A "Conditioner" to Create a Favorable Environment for Intercellular Spread of Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:959. [PMID: 32670343 PMCID: PMC7328123 DOI: 10.3389/fpls.2020.00959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.
Collapse
Affiliation(s)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Abstract
The discovery of a new class of pathogen, viruses, in the late 19th century, ushered in a period of study of the biochemical and structural properties of these entities in which plant viruses played a prominent role. This was, in large part, due to the relative ease with which sufficient quantities of material could be produced for such analyses. As analytical techniques became increasingly sensitive, similar studies could be performed on the viruses from other organisms. However, plant viruses continued to play an important role in the development of molecular biology, including the demonstration that RNA can be infectious, the determination of the genetic code, the mechanism by which viral RNAs are translated, and some of the early studies on gene silencing. Thus, the study of plant viruses should not be considered a "niche" subject but rather part of the mainstream of virology and molecular biology.
Collapse
|
5
|
Saxena P, Lomonossoff GP. Virus infection cycle events coupled to RNA replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:197-212. [PMID: 24906127 DOI: 10.1146/annurev-phyto-102313-050205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; ,
| | | |
Collapse
|
6
|
Kraft DJ, Kegel WK, van der Schoot P. A kinetic Zipper model and the assembly of tobacco mosaic virus. Biophys J 2012; 102:2845-55. [PMID: 22735535 DOI: 10.1016/j.bpj.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
We put forward a modified Zipper model inspired by the statics and dynamics of the spontaneous reconstitution of rodlike tobacco mosaic virus particles in solutions containing the coat protein and the single-stranded RNA of the virus. An important ingredient of our model is an allosteric switch associated with the binding of the first protein unit to the origin-of-assembly domain of the viral RNA. The subsequent addition and conformational switching of coat proteins to the growing capsid we believe is catalyzed by the presence of the helical arrangement of bound proteins to the RNA. The model explains why the formation of complete viruses is favored over incomplete ones, even though the process is quasi-one-dimensional in character. We numerically solve the relevant kinetic equations and show that time evolution is different for the assembly and disassembly of the virus, the former exhibiting a time lag even if all forward rate constants are equal. We find the late-stage assembly kinetics in the presence of excess protein to be governed by a single-exponential relaxation, which agrees with available experimental data on TMV reconstruction.
Collapse
Affiliation(s)
- Daniela J Kraft
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for NanoMaterials Science, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
7
|
Santos JLR, Bispo JAC, Landini GF, Bonafe CFS. Proton dependence of tobacco mosaic virus dissociation by pressure. Biophys Chem 2004; 111:53-61. [PMID: 15450375 DOI: 10.1016/j.bpc.2004.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH.
Collapse
Affiliation(s)
- Jose L R Santos
- Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | |
Collapse
|
8
|
Culver JN. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:287-308. [PMID: 12147762 DOI: 10.1146/annurev.phyto.40.120301.102400] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structural proteins of plant viruses have evolved to self-associate into complex macromolecules that are centrally involved in virus biology. In this review, the structural and biophysical properties of the Tobacco mosaic virus (TMV) coat protein (CP) are addressed in relation to its role in host resistance and disease development. TMV CP affects the display of several specific virus and host responses, including cross-protection, systemic virus movement, hypersensitive disease resistance, and symptom development. Studies indicate that the three-dimensional structure of CP is critical to the control of these responses, either directly through specific structural motifs or indirectly via alterations in CP assembly. Thus, both the structure and assembly of the TMV CP function as determinants in the induction of disease and resistance responses.
Collapse
Affiliation(s)
- James N Culver
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park 20742, USA.
| |
Collapse
|
9
|
Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV. Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 2000; 268:192-200. [PMID: 10683341 DOI: 10.1006/viro.1999.0155] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A beet yellows closterovirus (BYV) variant expressing green fluorescent protein and leaves of BYV local lesion host Claytonia perfoliata were used to reveal genetic requirements for BYV cell-to-cell movement in leaf epidermis and mesophyll. A series of mutations targeting genes that are not involved in amplification of the viral positive-strand RNA was analyzed. The products of genes coding for a 6-kDa hydrophobic protein (p6) and a 64-kDa protein (p64), as well as for minor and major capsid proteins, were found to be essential for intercellular translocation of BYV. In a previous work, we have demonstrated that the BYV HSP70-homolog (HSP70h) also plays a critical role in viral movement (V. V. Peremyslov, Y. Hagiwara, and V. V. Dolja, 1999, Proc. Natl. Acad. Sci. USA, 96, 14771-14776). Altogether, a unique protein quintet including three dedicated movement proteins (p6, p64, and HSP70h) and two structural proteins is required to potentiate the cell-to-cell movement of a closterovirus. The corresponding BYV genes are clustered in a block that is conserved among diverse representatives of the family Closteroviridae.
Collapse
Affiliation(s)
- D V Alzhanova
- Department of Botany, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M Bendahmane
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
11
|
Shaw JG. Tobacco mosaic virus and the study of early events in virus infections. Philos Trans R Soc Lond B Biol Sci 1999; 354:603-11. [PMID: 10212940 PMCID: PMC1692548 DOI: 10.1098/rstb.1999.0412] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to establish infections, viruses must be delivered to the cells of potential hosts and must then engage in activities that enable their genomes to be expressed and replicated. With most viruses, the events that precede the onset of production of progeny virus particles are referred to as the early events and, in the case of positive-strand RNA viruses, they include the initial interaction with and entry of host cells and the release (uncoating) of the genome from the virus particles. Though the early events remain one of the more poorly understood areas of plant virology, the virus with which most of the relevant research has been performed is tobacco mosaic virus (TMV). In spite of this effort, there remains much uncertainty about the form or constituent of the virus that actually enters the initially invaded cell in a plant and about the mechanism(s) that trigger the subsequent uncoating (virion disassembly) reactions. A variety of approaches have been used in attempts to determine the fate of TMV particles that are involved in the establishment of an infection and these are briefly described in this review. In some recent work, it has been proposed that the uncoating process involves the bidirectional release of coat protein subunits from the viral RNA and that these activities may be mediated by cotranslational and coreplicational disassembly mechanisms.
Collapse
Affiliation(s)
- J G Shaw
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA
| |
Collapse
|
12
|
Abstract
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
13
|
Harrison BD, Wilson TM. Milestones in the research on tobacco mosaic virus. Philos Trans R Soc Lond B Biol Sci 1999; 354:521-9. [PMID: 10212931 PMCID: PMC1692547 DOI: 10.1098/rstb.1999.0403] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beijerinck's (1898) recognition that the cause of tobacco mosaic disease was a novel kind of pathogen became the breakthrough which eventually led to the establishment of virology as a science. Research on this agent, tobacco mosaic virus (TMV), has continued to be at the forefront of virology for the past century. After an initial phase, in which numerous biological properties of TMV were discovered, its particles were the first shown to consist of RNA and protein, and X-ray diffraction analysis of their structure was the first of a helical nucleoprotein. In the molecular biological phase of research, TMV RNA was the first plant virus genome to be sequenced completely, its genes were found to be expressed by cotranslational particle disassembly and the use of subgenomic mRNA, and the mechanism of assembly of progeny particles from their separate parts was discovered. Molecular genetical and cell biological techniques were then used to clarify the roles and modes of action of the TMV non-structural proteins: the 126 kDa and 183 kDa replicase components and the 30 kDa cell-to-cell movement protein. Three different TMV genes were found to act as avirulence genes, eliciting hypersensitive responses controlled by specific, but different, plant genes. One of these (the N gene) was the first plant gene controlling virus resistance to be isolated and sequenced. In the biotechnological sphere, TMV has found several applications: as the first source of transgene sequences conferring virus resistance, in vaccines consisting of TMV particles genetically engineered to carry foreign epitopes, and in systems for expressing foreign genes. TMV owes much of its popularity as a research mode to the great stability and high yield of its particles. Although modern methods have much decreased the need for such properties, and TMV may have a less dominant role in the future, it continues to occupy a prominent position in both fundamental and applied research.
Collapse
Affiliation(s)
- B D Harrison
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | |
Collapse
|
14
|
Creager AN, Scholthof KB, Citovsky V, Scholthof HB. Tobacco mosaic virus. Pioneering research for a century. THE PLANT CELL 1999; 11:301-8. [PMID: 10072391 PMCID: PMC1464663 DOI: 10.1105/tpc.11.3.301] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- A N Creager
- Program in History of Science Princeton University Princeton, NJ 08544-1017
| | | | | | | |
Collapse
|
15
|
Nelson RS, van Bel AJE. The Mystery of Virus Trafficking Into, Through and Out of Vascular Tissue. PROGRESS IN BOTANY 1998. [DOI: 10.1007/978-3-642-80446-5_17] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Wu X, Shaw JG. Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology 1997; 239:426-34. [PMID: 9434732 DOI: 10.1006/viro.1997.8870] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tobacco mosaic virus (TMV) particles have been shown to undergo bidirectional disassembly when they are introduced into host cells. Approximately three-quarters of the genomic RNA (i.e., the 126-kDa and 183-kDa protein ORFs) is first uncoated in the 5'-to-3' direction and the process is then completed by removal of coat protein molecules in the 3'-to-5' direction. An effort was made to determine whether the 126-kDa protein or the 183-kDa protein, both of which are involved in replication of the viral RNA, is required for the second part of the disassembly reaction. It was shown that progeny negative-strand viral RNA begins to be produced in inoculated cells at about the same time that 3'-to-5' disassembly is initiated thus suggesting that the two processes may be coupled. Particles containing mutant forms of the viral RNA in which large sections of the 126-kDa and 183-kDa protein ORFs were missing were not disassembled in the 3'-to-5' direction when they were introduced into cells. However, they were disassembled when the inoculum contained purified TMV RNA from which, presumably, the two functional proteins could be translated Particles containing mutants of the RNA from which a few codons had been deleted in or near conserved regions in the 126-kDa protein ORF also did not undergo 3'-to-5' disassembly unless mixed with wild type viral RNA prior to inoculation. These results suggest that the 126-kDa and/or 183-kDa protein plays a role in the completion of disassembly of TMV particles at the onset of the infection process.
Collapse
Affiliation(s)
- X Wu
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|