1
|
Lian H, Xu K, Chang A, Wang Y, Ma S, Cheng L, Zhao W, Xia C, Wang L, Yu G. Loss of PTPN21 disrupted mitochondrial metabolic homeostasis and aggravated experimental pulmonary fibrosis. Respir Res 2024; 25:426. [PMID: 39633451 PMCID: PMC11619687 DOI: 10.1186/s12931-024-03041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a high-mortality lung disease with unclear pathogenesis. Convincing evidence suggests that an imbalance in mitochondrial homeostasis resulting from repeated injury to alveolar epithelial type 2 cells (AEC2) underlies IPF. Non-receptor protein tyrosine phosphatase 21 (PTPN21) performs various functions in cancer; however, its role in IPF has not been studied. This study aimed to investigate the role of PTPN21 in lung fibrosis. The experimental results showed that loss of PTPN21 exacerbated lung fibrosis by increasing cell numbers in bronchoalveolar lavage fluid, lung hydroxyproline content, and extracellular matrix protein expression of fibronectin and α-smooth muscle actin (α-SMA) in bleomycin-challenged mouse lungs. In A549 cells (AEC2), knockdown of PTPN21 suppressed focal adhesion and migration, reduced mitochondrial fission and increased fusion, increased the level of mitochondrial superoxide, decreased mitochondrial membrane potential and ATP levels. Simultaneously, knockdown of PTPN21 impaired autophagy, and increased intracellular reactive oxygen species levels. Treatment of fibroblasts (MRC-5) and primary human lung fibroblasts (PHLF)) with the supernatant from PTPN21-knockdown A549 cells increased the expression of fibronectin, collagen 1 and α-SMA. Conversely, overexpression of PTPN21 in A549 cells produced opposite effects. However, treatment of MRC-5 and PHLF with the supernatant from PTPN21-overexpressing A549 cells only slightly reduced the expression of fibronectin, collagen 1 in MRC-5 cells, but did not change the expression of α-SMA. In summary, this study revealed that the loss of PTPN21 in epithelial cells disrupted mitochondrial metabolic homeostasis, leading to epithelial cell inactivation and increased the deposition of extracellular matrix proteins in fibroblasts, thereby exacerbating experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Airu Chang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Cong Xia
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
3
|
Inhibition of PTPN21 has antitumor effects in glioma by restraining the EGFR/PI3K/AKT pathway. Toxicol Appl Pharmacol 2022; 451:116180. [PMID: 35907586 DOI: 10.1016/j.taap.2022.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) has been recognised as a new tumour-associated protein that is implicated in diverse tumours. However, the correlation between PTPN21 and glioma remains unaddressed. This investigation focused on the relevance of PTPN21 in glioma. The Cancer Genome Atlas (TCGA) analysis identified PTPN21 as being up-regulated in glioma tissue. The elevation of PTP21 in glioma was validated by evaluating clinical specimen. Kaplan-Meier plot analysis revealed that a high PTPN21 level predicted poor survival rate in glioma patient. Silencing of PTPN21 produced remarkable anticancer effects in glioma cells including proliferation inhibition, cell cycle arrest, metastasis suppression and enhanced chemosensitivity. Mechanistic studies uncovered that PTPN21 contributes to mediation of the phosphatidyl-inositole-3 kinase (PI3K)/AKT pathway via the regulation of epidermal growth factor receptor (EGFR). Restraint of EGFR diminished PTPN21 overexpression-induced promoting effect on PI3K/AKT pathway. Reactivation of AKT reversed PTPN21 silencing-evoked antitumor effect. The tumorigenic potential of PTPN21-silenced glioma cells in vivo was markedly compromised. In summary, this study demonstrates that silencing of PTPN21 produces remarkable anticancer effects in glioma by restraining the EGFR/PI3K/AKT pathway.
Collapse
|
4
|
Wang H, Zhu N, Ye X, Wang L, Wang B, Shan W, Lai X, Tan Y, Fu S, Xiao H, Huang H. PTPN21-CDS long isoform inhibits the response of acute lymphoblastic leukemia cells to NK-mediated lysis via the KIR/HLA-I axis. J Cell Biochem 2020; 121:3298-3312. [PMID: 31898344 DOI: 10.1002/jcb.29601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a member of the non-receptor tyrosine phosphatase family. We have found that PTPN21 is mutated in relapsed Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation. PTPN21 consists of three types of isoforms according to the length of the protein encoded. However, the roles of different isoforms in leukemic cells have not been elucidated. In the study, PTPN21 isoform constitution in five ALL cell lines were identified by transcriptome polymerase chain reaction combined with Sanger sequencing, and the relationship between PTPN21 isoforms and sensitivity to natural killer (NK) cells mediated killing in ALL cell lines were further assessed by knock-out of different isoforms of PTPN21 using CRISPR-Cas9 technique. Subsequently, we explored the functional mechanisms through RNA sequencing and confirmatory testing. The results showed that there was no significant change when all PTPN21 isoforms were knocked out in ALL cells, but the sensitivity of NALM6 cells with PTPN21-CDSlong knock-out (NALM6-PTPN21lk ) to NK-mediated killing was significantly increased. Whole transcriptome sequencing and further validation testing showed that human leukocyte antigen class I (HLA-I) molecules were significantly decreased, accompanied by a significantly downregulated expression of antigen presenting-related chaperones in NALM6-PTPN21lk cells. Our results uncovered a previously unknown mechanism that PTPN21-CDSlong and CDSshort isoforms may play opposite roles in NK-mediated killing in ALL cells, and showed that the endogenous PTPN21-CDSlong isoform inhibited ALL cells to NK cell-mediated lysis by regulating the KIR-HLA-I axis.
Collapse
Affiliation(s)
- Huafang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Laboratory for Stem cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Ni Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaohang Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Laboratory for Stem cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Laboratory for Stem cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Laboratory for Stem cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haowen Xiao
- Department of Hematology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Laboratory for Stem cell and Immunotherapy, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Cho YC, Kim BR, Cho S. Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes. BMB Rep 2018; 50:584-589. [PMID: 29065968 PMCID: PMC5720473 DOI: 10.5483/bmbrep.2017.50.11.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2017] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-α, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-α. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-κB (NF-κB), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of κB (IκB)-kinase β (IKKβ) at Ser177/181. This dephosphorylation led to the stabilization of IκBα and inhibition of NF-κB activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-IKKβ and inhibiting NF-κB signaling. [BMB Reports 2017; 50(11): 584-589].
Collapse
Affiliation(s)
- Young-Chang Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ba Reum Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
6
|
|
7
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2025]
|
8
|
Liao X, Li S, Settlage RE, Sun S, Ren J, Reihl AM, Zhang H, Karyala SV, Reilly CM, Ahmed SA, Luo XM. Cutting Edge: Plasmacytoid Dendritic Cells in Late-Stage Lupus Mice Defective in Producing IFN-α. THE JOURNAL OF IMMUNOLOGY 2015; 195:4578-82. [PMID: 26447229 DOI: 10.4049/jimmunol.1501157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/22/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are professional type I IFN producers believed to promote lupus. However, questions exist about whether they function at the same level throughout the course of lupus disease. We analyzed high-purity pDCs sorted from lupus mice. Although pDCs produced a large amount of IFN-α during disease initiation, those sorted from late-stage lupus mice were found to be defective in producing IFN-α. These pDCs expressed an increased level of MHC, suggesting a functional drift to Ag presentation. We examined the potential mechanism behind the defect and identified a novel transcriptional factor, Foxj2, which repressed the expression of several genes in pDCs, but not IFN-α. Dysregulation in pDCs appears to be predisposed, because they exhibited an altered transcriptional profile before the onset of clinical signs. Our results suggest that pDCs do not function the same throughout the disease course and lose the ability to produce IFN-α in late-stage lupus mice.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Song Li
- Department of Crop and Soil Environmental Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | - Sha Sun
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Jingjing Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Alec M Reihl
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Husen Zhang
- Department of Civil and Environmental Engineering, College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; and
| | | | | | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
| |
Collapse
|
9
|
Plani-Lam JHC, Chow TC, Siu KL, Chau WH, Ng MHJ, Bao S, Ng CT, Sham P, Shum DKY, Ingley E, Jin DY, Song YQ. PTPN21 exerts pro-neuronal survival and neuritic elongation via ErbB4/NRG3 signaling. Int J Biochem Cell Biol 2015; 61:53-62. [PMID: 25681686 DOI: 10.1016/j.biocel.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Although expression quantitative trait locus, eQTL, serves as an explicit indicator of gene-gene associations, challenges remain to disentangle the mechanisms by which genetic variations alter gene expression. Here we combined eQTL and molecular analyses to identify an association between two seemingly non-associated genes in brain expression data from BXD inbred mice, namely Ptpn21 and Nrg3. Using biotinylated receptor tracking and immunoprecipitation analyses, we determined that PTPN21 de-phosphorylates the upstream receptor tyrosine kinase ErbB4 leading to the up-regulation of its downstream signaling. Conversely, kinase-dead ErbB4 (K751R) or phosphatase-dead PTPN21 (C1108S) mutants impede PTPN21-dependent signaling. Furthermore, PTPN21 also induced Elk-1 activation in embryonic cortical neurons and a novel Elk-1 binding motif was identified in a region located 1919bp upstream of the NRG3 initiation codon. This enables PTPN21 to promote NRG3 expression through Elk-1, which provides a biochemical mechanism for the PTPN21-NRG3 association identified by eQTL. Biologically, PTPN21 positively influences cortical neuronal survival and, similar to Elk-1, it also enhances neuritic length. Our combined approaches show for the first time, a link between NRG3 and PTPN21 within a signaling cascade. This may explain why these two seemingly unrelated genes have previously been identified as risk genes for schizophrenia.
Collapse
Affiliation(s)
| | - Tai-Cheong Chow
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kam-Leung Siu
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Wing Hin Chau
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Ming-Him James Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Poison Treatment Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Suying Bao
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Cheung Toa Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Centre for Genomic Sciences, University of Hong Kong, 5 Sassoon Road, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
10
|
Fox JL, Storey A. BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs. Cancer Res 2015; 75:1345-55. [PMID: 25649765 DOI: 10.1158/0008-5472.can-14-1340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The ability of chemotherapeutic agents to induce apoptosis, predominantly via the mitochondrial (intrinsic) apoptotic pathway, is thought to be a major determinant of the sensitivity of a given cancer to treatment. Intrinsic apoptosis, regulated by the BCL2 family, integrates diverse apoptotic signals to determine cell death commitment and then activates the nodal effector protein BAK to initiate the apoptotic cascade. In this study, we identified the tyrosine kinase BMX as a direct negative regulator of BAK function. BMX associates with BAK in viable cells and is the first kinase to phosphorylate the key tyrosine residue needed to maintain BAK in an inactive conformation. Importantly, elevated BMX expression prevents BAK activation in tumor cells treated with chemotherapeutic agents and is associated with increased resistance to apoptosis and decreased patient survival. Accordingly, BMX expression was elevated in prostate, breast, and colon cancers compared with normal tissue, including in aggressive triple-negative breast cancers where BMX overexpression may be a novel biomarker. Furthermore, BMX silencing potentiated BAK activation, rendering tumor cells hypersensitive to otherwise sublethal doses of clinically relevant chemotherapeutic agents. Our finding that BMX directly inhibits a core component of the intrinsic apoptosis machinery opens opportunities to improve the efficacy of existing chemotherapy by potentiating BAK-driven cell death in cancer cells.
Collapse
Affiliation(s)
- Joanna L Fox
- Department of Oncology, WIMM, University of Oxford, Oxford, United Kingdom.
| | - Alan Storey
- Department of Oncology, WIMM, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Huang SY, Hsu JL, Chen SH. Two-step Immobilized Metal Affinity Chromatography (IMAC) for Phosphoproteomics Using Mass Spectrometry. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
12
|
Kharitidi D, Manteghi S, Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods 2013; 65:207-18. [PMID: 24064037 DOI: 10.1016/j.ymeth.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key enzymes in the regulation of cellular homeostasis and signaling pathways. Strikingly, not all PTPs bear enzymatic activity. A considerable fraction of PTPs are enzymatically inactive and are known as pseudophosphatases. Despite the lack of activity they execute pivotal roles in development, cell biology and human disease. The present review is focused on the methods used to identify pseudophosphatases, their targets, and physiological roles. We present a strategy for detailed enzymatic analysis of inactive PTPs, regulation of inactive PTP domains and identification of binding partners. Furthermore, we provide a detailed overview of human pseudophosphatases and discuss their regulation of cellular processes and functions in human pathologies.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Sanaz Manteghi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
13
|
Chen J, Lee G, Fanous AH, Zhao Z, Jia P, O'Neill A, Walsh D, Kendler KS, Chen X. Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophr Res 2011; 131:43-51. [PMID: 21752600 PMCID: PMC4117700 DOI: 10.1016/j.schres.2011.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/16/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 01/27/2023]
Abstract
We conducted data-mining analyses of genome wide association (GWA) studies of the CATIE and MGS-GAIN datasets, and found 13 markers in the two physically linked genes, PTPN21 and EML5, showing nominally significant association with schizophrenia. Linkage disequilibrium (LD) analysis indicated that all 7 markers from PTPN21 shared high LD (r(2)>0.8), including rs2274736 and rs2401751, the two non-synonymous markers with the most significant association signals (rs2401751, P=1.10 × 10(-3) and rs2274736, P=1.21 × 10(-3)). In a meta-analysis of all 13 replication datasets with a total of 13,940 subjects, we found that the two non-synonymous markers are significantly associated with schizophrenia (rs2274736, OR=0.92, 95% CI: 0.86-0.97, P=5.45 × 10(-3) and rs2401751, OR=0.92, 95% CI: 0.86-0.97, P=5.29 × 10(-3)). One SNP (rs7147796) in EML5 is also significantly associated with the disease (OR=1.08, 95% CI: 1.02-1.14, P=6.43 × 10(-3)). These 3 markers remain significant after Bonferroni correction. Furthermore, haplotype conditioned analyses indicated that the association signals observed between rs2274736/rs2401751 and rs7147796 are statistically independent. Given the results that 2 non-synonymous markers in PTPN21 are associated with schizophrenia, further investigation of this locus is warranted.
Collapse
Affiliation(s)
- Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Psychiatry, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Grace Lee
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Psychiatry, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Psychiatry, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA,Washington VA Medical Center, Washington, DC 20422, USA,Department of Psychiatry, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Zhongming Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Peilin Jia
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Anthony O'Neill
- The Department of Psychiatry, The Queens University, Belfast, Northern Ireland, UK
| | | | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Psychiatry, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Molecular and Human Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Xiangning Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Psychiatry, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA,Department of Molecular and Human Genetics, Virginia Commonwealth University, Suite 390, 800 E. Leigh Street, Richmond, VA 23298, USA,Corresponding author at: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Suite 390A, 800 E. Leigh Street, Richmond, VA 23298, USA. Tel.: +1 804 828 8124; fax: +1 804 628 1035
| | | |
Collapse
|
14
|
Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L, Gottesman ME, Insabato L, Feliciello A. PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem 2010; 285:39260-70. [PMID: 20923765 DOI: 10.1074/jbc.m110.174706] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
PTPD1, a cytosolic non-receptor protein-tyrosine phosphatase, stimulates the Src-EGF transduction pathway. Localization of PTPD1 at actin cytoskeleton and adhesion sites is required for cell scattering and migration. Here, we show that during EGF stimulation, PTPD1 is rapidly recruited to endocytic vesicles containing the EGF receptor. Endosomal localization of PTPD1 is mediated by interaction with KIF16B, an endosomal kinesin that modulates receptor recycling at the plasma membrane. Silencing of PTPD1 promotes degradation of EGF receptor and inhibits downstream ERK signaling. We also found that PTPD1 is markedly increased in bladder cancer tissue samples. PTPD1 levels positively correlated with the grading and invasiveness potential of these tumors. Transgenic expression of an inactive PTPD1 mutant or genetic knockdown of the endogenous PTPD1 severely inhibited both growth and motility of human bladder cancer cells. These findings identify PTPD1 as a novel component of the endocytic machinery that impacts on EGF receptor stability and on growth and motility of bladder cancer cells.
Collapse
Affiliation(s)
- Annalisa Carlucci
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Università Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/29/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59-76. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.x] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S, Knapp S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 2009; 136:352-63. [PMID: 19167335 PMCID: PMC2638020 DOI: 10.1016/j.cell.2008.11.038] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2008] [Revised: 09/15/2008] [Accepted: 11/20/2008] [Indexed: 02/05/2023]
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a “head-to-toe” dimerization model for RPTPγ/ζ that is distinct from the “inhibitory wedge” model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.
Collapse
Affiliation(s)
- Alastair J. Barr
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- Corresponding author
| | - Emilie Ugochukwu
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Wen Hwa Lee
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Oliver N.F. King
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Panagis Filippakopoulos
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Ivan Alfano
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Pavel Savitsky
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Nicola A. Burgess-Brown
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Susanne Müller
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Stefan Knapp
- University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- University of Oxford, Department of Clinical Pharmacology, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
- Corresponding author
| |
Collapse
|
18
|
Korff S, Woerner SM, Yuan YP, Bork P, von Knebel Doeberitz M, Gebert J. Frameshift mutations in coding repeats of protein tyrosine phosphatase genes in colorectal tumors with microsatellite instability. BMC Cancer 2008; 8:329. [PMID: 19000305 PMCID: PMC2586028 DOI: 10.1186/1471-2407-8-329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2007] [Accepted: 11/10/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatases (PTPs) like their antagonizing protein tyrosine kinases are key regulators of signal transduction thereby assuring normal control of cellular growth and differentiation. Increasing evidence suggests that mutations in PTP genes are associated with human malignancies. For example, mutational analysis of the tyrosine phosphatase (PTP) gene superfamily uncovered genetic alterations in about 26% of colorectal tumors. Since in these studies tumors have not been stratified according to genetic instability status we hypothesized that colorectal tumors characterized by high-level of microsatellite instability (MSI-H) might show an increased frequency of frameshift mutations in those PTP genes that harbor long mononucleotide repeats in their coding region (cMNR). RESULTS Using bioinformatic analysis we identified 16 PTP candidate genes with long cMNRs that were examined for genetic alterations in 19 MSI-H colon cell lines, 54 MSI-H colorectal cancers, and 17 MSI-H colorectal adenomas. Frameshift mutations were identified only in 6 PTP genes, of which PTPN21 show the highest mutation frequency at all in MSI-H tumors (17%). CONCLUSION Although about 32% of MSI-H tumors showed at least one affected PTP gene, and cMNR mutation rates in PTPN21, PTPRS, and PTPN5 are higher than the mean mutation frequency of MNRs of the same length, mutations within PTP genes do not seem to play a common role in MSI tumorigenesis, since no cMNR mutation frequency reached statistical significance and therefore, failed prediction as a Positive Selective Target Gene.
Collapse
Affiliation(s)
- Sebastian Korff
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of many cellular functions and a growing number of PTPs have been implicated in human disease conditions, such as developmental defects, neoplastic disorders, and immunodeficiency. Here, we review the involvement of PTPs in human autoimmunity. The leading examples include the allelic variant of the lymphoid tyrosine phosphatase (PTPN22), which is associated with multiple autoimmune diseases, and mutations that affect the exon-intron splicing of CD45 (PTPRC). We also find it likely that additional PTPs are involved in susceptibility to autoimmune and inflammatory diseases. Finally, we discuss the possibility that PTPs regulating the immune system may serve as therapeutic targets.
Collapse
Affiliation(s)
- Torkel Vang
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Tu T, Thotala D, Geng L, Hallahan DE, Willey CD. Bone marrow X kinase-mediated signal transduction in irradiated vascular endothelium. Cancer Res 2008; 68:2861-9. [PMID: 18413754 DOI: 10.1158/0008-5472.can-07-5743] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Radiation-induced activation of the phosphatidyl inositol-3 kinase/Akt signal transduction pathway requires Akt binding to phosphatidyl-inositol phosphates (PIP) on the cell membrane. The tyrosine kinase bone marrow X kinase (Bmx) binds to membrane-associated PIPs in a manner similar to Akt. Because Bmx is involved in cell growth and survival pathways, it could contribute to the radiation response within the vascular endothelium. We therefore studied Bmx signaling within the vascular endothelium. Bmx was activated rapidly in response to clinically relevant doses of ionizing radiation. Bmx inhibition enhanced the efficacy of radiotherapy in endothelial cells as well as tumor vascular endothelium in lung cancer tumors in mice. Retroviral shRNA knockdown of Bmx protein enhanced human umbilical vascular endothelial cell (HUVEC) radiosensitization. Furthermore, pretreatment of HUVEC with a pharmacologic inhibitor of Bmx, LFM-A13, produced significant radiosensitization of endothelial cells as measured by clonogenic survival analysis and apoptosis as well as functional assays including cell migration and tubule formation. In vivo, LFM-A13, when combined with radiation, resulted in significant tumor microvascular destruction as well as enhanced tumor growth delay. Bmx therefore represents a molecular target for the development of novel radiosensitizing agents.
Collapse
Affiliation(s)
- Tianxiang Tu
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232-5671, USA
| | | | | | | | | |
Collapse
|
21
|
Loss of heterozygosity at chromosome 14q is associated with poor prognosis in head and neck squamous cell carcinomas. J Cancer Res Clin Oncol 2008; 134:1267-76. [DOI: 10.1007/s00432-008-0423-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2008] [Accepted: 05/13/2008] [Indexed: 12/12/2022]
|
22
|
Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816-30. [DOI: 10.1111/j.1742-4658.2008.06249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
|
23
|
Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C, Feliciello A. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem 2008; 283:10919-29. [PMID: 18223254 DOI: 10.1074/jbc.m707248200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
PTPD1 is a cytosolic nonreceptor tyrosine phosphatase and a positive regulator of the Src-epidermal growth factor transduction pathway. We show that PTPD1 localizes along actin filaments and at adhesion plaques. PTPD1 forms a stable complex via distinct molecular modules with actin, Src tyrosine kinase, and focal adhesion kinase (FAK), a scaffold protein kinase enriched at adhesion plaques. Overexpression of PTPD1 promoted cell scattering and migration, short hairpin RNA-mediated silencing of endogenous PTPD1, or expression of PTPD1 mutants lacking either catalytic activity (PTPD1(C1108S)) or the FERM domain (PTPD1(Delta1-325)) significantly reduced cell motility. PTPD1 and Src catalytic activities were both required for epidermal growth factor-induced FAK autophosphorylation at its active site and for downstream propagation of ERK1/2 signaling. Our findings demonstrate that PTPD1 is a component of a multivalent scaffold complex nucleated by FAK at specific intracellular sites. By modulating Src-FAK signaling at adhesion sites, PTPD1 promotes the cytoskeleton events that induce cell adhesion and migration.
Collapse
Affiliation(s)
- Annalisa Carlucci
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, Facoltà di Medicina, Università Federico II, via s. Pansini, 5 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Zeitlin AA, Heward JM, Brand OJ, Newby PR, Franklyn JA, Gough SCL, Simmonds MJ. Use of Tag single nucleotide polymorphisms (SNPs) to screen PTPN21: no association with Graves' disease. Clin Endocrinol (Oxf) 2006; 65:380-4. [PMID: 16918960 DOI: 10.1111/j.1365-2265.2006.02608.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The protein-tyrosine-phosphate nonreceptor 22 gene (PTPN22) has recently been identified as a susceptibility locus for a number of autoimmune diseases including Graves' disease (GD). PTPN21 is another member of the PTPN family and its gene PTPN21 maps to the first reported region of genetic linkage to GD, GD-1, on chromosome 14q31. The aim of this study was to determine whether PTPN21 is acting as a GD susceptibility locus in UK Caucasian subjects. DESIGN A case control association study of seven Tag single nucleotide polymorphisms (SNPs) (rs1469602, rs8007288, rs1998670, rs11622270, rs2274736, rs2295136 and rs366476) selected to predict 51 un-genotyped polymorphisms present within PTPN21. PATIENTS Unrelated Caucasian patients of UK origin with GD and ethnically and gender matched control subjects with no family history of autoimmune disease were recruited. In total, DNA was obtained from 768 GD patients and 768 control subjects. RESULTS No association of any of the seven Tag SNPs was detected with GD. Preliminary evidence of association of rs2274736 was found with younger age of GD onset (0-30 years) (OR = 1. 48 [95% CI = 1.11-1.97]). No other correlations with clinical phenotype or previously established susceptibility loci were detected. CONCLUSIONS Using a Tag SNP approach we screened PTPN21 as a susceptibility locus for GD and found no evidence for association with disease. Preliminary evidence for association of rs2274736 with younger age of GD onset requires replication in similar sized data sets to exclude a false positive result. Methods such as the Tag SNP approach significantly reduce the amount of genotyping required when screening candidate loci, including those within regions of chromosomal linkage.
Collapse
Affiliation(s)
- A A Zeitlin
- Department of Medicine, Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Hsiao JC, Chao CC, Young MJ, Chang YT, Cho EC, Chang W. A poxvirus host range protein, CP77, binds to a cellular protein, HMG20A, and regulates its dissociation from the vaccinia virus genome in CHO-K1 cells. J Virol 2006; 80:7714-28. [PMID: 16840350 PMCID: PMC1563734 DOI: 10.1128/jvi.00207-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus does not grow in Chinese hamster ovary (CHO-K1) cells in the absence of a viral host range factor, cowpox protein CP77. In this study, CP77 was fused to the C terminus of green fluorescence protein (GFP-CP77) and a series of nested deletion mutants of GFP-CP77 was constructed for insertion into a vaccinia virus host range mutant, VV-hr, and expressed from a viral early promoter. Deletion mapping analyses demonstrated that the N-terminal 352 amino acids of CP77 were sufficient to support vaccinia virus growth in CHO-K1 cells, whereas the C-terminal residues 353 to 668 were dispensable. In yeast two-hybrid analyses, CP77 bound to a cellular protein, HMG20A, and GST pulldown analyses showed that residues 1 to 234 of CP77 were sufficient for this interaction. After VV-hr virus infection of CHO-K1 cells, HMG20A was translocated from the nucleus to viral factories and bound to the viral genome via the HMG box region. In control VV-hr-infected CHO-K1 cells, binding of HMG20A to the viral genome persisted from 2 to 8 h postinfection (h p.i.); in contrast, when CP77 was expressed, the association of HMG20A with viral genome was transient, with little HMG20A remaining bound at 8 h p.i. This indicates that dissociation of HMG20A from viral factories correlates well with CP77 host range activity in CHO-K1 cells. Finally, in cells expressing a CP77 deletion protein (amino acids 277 to 668) or a DeltaANK5 mutant that did not support vaccinia virus growth and did not contain the HMG20A binding site, HMG20A remained bound to viral DNA, demonstrating that the binding of CP77 to HMG20A is essential for its host range function. In summary, our data revealed that a novel cellular protein, HMG20A, the dissociation of which from viral DNA is regulated by CP77, providing the first cellular target regulated by viral host range CP77 protein.
Collapse
Affiliation(s)
- Jye-Chian Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Nankang, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Chau CH, Clavijo CA, Deng HT, Zhang Q, Kim KJ, Qiu Y, Le AD, Ann DK. Etk/Bmx mediates expression of stress-induced adaptive genes VEGF, PAI-1, and iNOS via multiple signaling cascades in different cell systems. Am J Physiol Cell Physiol 2005; 289:C444-54. [PMID: 15788485 DOI: 10.1152/ajpcell.00410.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
We recently showed that Etk/Bmx, a member of the Tec family of nonreceptor protein tyrosine kinases, promotes tight junction formation during chronic hypoxic exposure and augments normoxic VEGF expression via a feedforward mechanism. Here we further characterized Etk's role in potentiating hypoxia-induced gene expression in salivary epithelial Pa-4 cells. Using transient transfection in conditionally activated Etk (DeltaEtk:ER) cells, we demonstrated that Etk enhances hypoxia-response element-dependent reporter activation in normoxia and hypoxia. This Etk-driven reporter activation is ameliorated by treatment with wortmannin or LFM-A13. Using lentivirus-mediated gene delivery and small interfering RNA, we provided direct evidence that hypoxia leads to transient Etk and Akt activation and hypoxia-mediated Akt activation is Etk dependent. Northern blot analyses confirmed that Etk activation led to induction of steady-state mRNA levels of endogenous VEGF and plasminogen activator inhibitor (PAI)-1, a hallmark of hypoxia-mediated gene regulation. We also demonstrated that Etk utilizes a phosphatidylinositol 3-kinase/Akt pathway to promote reporter activation driven by NF-kappaB, another oxygen-sensitive transcription factor, and to augment cytokine-induced inducible nitric oxide synthase expression in endothelial cells. To establish the clinical relevance of Etk-induced, hypoxia-mediated gene regulation, we examined Etk expression in keloid, which has elevated VEGF and PAI-1. We found that Etk is overexpressed in keloid (but not normal skin) tissues. The differential steady-state Etk protein levels were further confirmed in primary fibroblast cultures derived from these tissues, suggesting an Etk role in tissue fibrosis. Our results provide further understanding of Etk function within multiple signaling cascades to govern adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts.
Collapse
Affiliation(s)
- Cindy H Chau
- Department of Molecular Pharmacology and Toxicology, School of Medicine, University of Southern California, Los Angeles, California 90033-1049, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang T, Guo Z, Dai B, Kang M, Ann DK, Kung HJ, Qiu Y. Bi-directional Regulation between Tyrosine Kinase Etk/BMX and Tumor Suppressor p53 in Response to DNA Damage. J Biol Chem 2004; 279:50181-9. [PMID: 15355990 DOI: 10.1074/jbc.m409108200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Etk/Bmx, a member of the Tec family of nonreceptor tyrosine kinases, has been implicated in the regulation of various cellular processes including proliferation, differentiation, motility, and apoptosis. Here, we report the identification of Tec family kinases as the potential interacting proteins of the tumor suppressor p53 by an Src homology 3 domain array screening. Etk is physically associated with p53 through its Src homology 3 domain and the proline-rich domain of p53. Induction of p53 expression by DNA damage inhibits Etk activity in several cell types. Down-regulation of Etk expression by a specific small interfering RNA sensitizes prostate cancer cells to doxorubicin-induced apoptosis, suggesting that inhibition of Etk activity is required for apoptosis in response to DNA damage. We also show that Etk primarily interacts with p53 in the cytoplasm and that such interaction leads to bidirectional inhibition of the activities of both proteins. Overexpression of Etk in prostate cancer cells results in inhibition of p53 transcriptional activity and its interaction with the mitochondrial protein BAK and confers the resistance to doxorubicin. Therefore, we propose that the stoichiometry between p53 and the Tec family kinases in a given cell type may determine its sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Tianyun Jiang
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Cardone L, Carlucci A, Affaitati A, Livigni A, DeCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A. Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol Cell Biol 2004; 24:4613-26. [PMID: 15143158 PMCID: PMC416429 DOI: 10.1128/mcb.24.11.4613-4626.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A-kinase anchor protein 121 (AKAP121) and its spliced isoform AKAP84 anchor protein kinase A (PKA) to the outer membrane of mitochondria, focusing and enhancing cyclic AMP signal transduction to the organelle. We find that AKAP121/84 also binds PTPD1, a src-associated protein tyrosine phosphatase. A signaling complex containing AKAP121, PKA, PTPD1, and src is assembled in vivo. PTPD1 activates src tyrosine kinase and increases the magnitude and duration of epidermal growth factor (EGF) signaling. EGF receptor phosphorylation and downstream activation of ERK 1/2 and Elk1-dependent gene transcription are enhanced by PTPD1. Expression of a PTPD1 mutant lacking catalytic activity inhibits src and downregulates ERK 1/2 but does not affect the activity of c-Jun N-terminal kinase 1/2 and p38alpha mitogen-activated protein kinase. AKAP121 binds to and redistributes PTPD1 from the cytoplasm to mitochondria and inhibits EGF signaling. Our findings indicate that PTPD1 is a novel positive regulator of src signaling and a key component of the EGF transduction pathway. By binding and/or targeting the phosphatase on mitochondria, AKAP121 modulates the amplitude and persistence of src-dependent EGF transduction pathway. This represents the first example of physical and functional interaction between AKAPs and a protein tyrosine phosphatase.
Collapse
Affiliation(s)
- Luca Cardone
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, via S. Pansini, 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen KY, Huang LM, Kung HJ, Ann DK, Shih HM. The role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells. Oncogene 2004; 23:1854-62. [PMID: 14676838 DOI: 10.1038/sj.onc.1207308] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Etk/Bmx, a member of the Tec family of tyrosine kinases, mediates various signaling pathways and confers several cellular functions. In the present study, we have explored the functional role of Etk in mediating EGF-induced apoptosis, using MDA-MB-468 cell line as a model. We first demonstrated that EGF treatment induces Etk tyrosine phosphorylation in both HeLa and MDA-MB-468 cells. Overexpression of Etk by recombinant adenovirus in MDA-MB-468 cells potentiates the extent of EGF-induced cell apoptosis. The observed Etk-enhanced MDA-MB-468 cell apoptosis is associated with the Stat1 activation, as demonstrated by electrophoresis mobility shift assays and reporter gene assays. By contrast, a kinase domain deletion mutant EtkDeltaK, functioning as a dominant-negative mutant, ameliorates EGF-induced Stat1 activation and apoptosis in MDA-MB-468 cells. To explore whether the activated Etk alone is sufficient for inducing apoptosis, a conditionally activated Etk (DeltaEtk-ER), a chimeric fusion protein of PH domain-truncated Etk and ligand-binding domain of estrogen receptor, was introduced into MDA-MB-468 cells. Upon beta-estradiol ligand activation, the DeltaEtk-ER could stimulate Stat1 activity and confer cell apoptosis independent of EGF treatment. Taken together, our findings indicate that Etk is a downstream signaling molecule of EGF receptor and suggest that Etk activation is essential for transducing the EGF-induced apoptotic signaling.
Collapse
Affiliation(s)
- Kai-Yun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Aoki N, Ueno S, Mano H, Yamasaki S, Shiota M, Miyazaki H, Yamaguchi-Aoki Y, Matsuda T, Ullrich A. Mutual regulation of protein-tyrosine phosphatase 20 and protein-tyrosine kinase Tec activities by tyrosine phosphorylation and dephosphorylation. J Biol Chem 2003; 279:10765-75. [PMID: 14679216 DOI: 10.1074/jbc.m310401200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase in a phosphotyrosine-dependent manner. The interaction between the two proteins involved the Tec SH2 domain and the C-terminal tyrosine residues Tyr-281, Tyr-303, Tyr-354, and Tyr-381 of PTP20, which were also necessary for tyrosine phosphorylation/dephosphorylation. Association between endogenous PTP20 and Tec was also tyrosine phosphorylation-dependent in the immature B cell line Ramos. Finally, the Tyr-281 residue of PTP20 was shown to be critical for deactivating Tec in Ramos cells upon B cell receptor ligation as well as dephosphorylation and deactivation of Tec and PTP20 itself in transfected COS7 cells. Taken together, PTP20 appears to play a negative role in Tec-mediated signaling, and Tec-PTP20 interaction might represent a negative feedback mechanism.
Collapse
Affiliation(s)
- Naohito Aoki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The protein tyrosine phosphatase PTP-Basophil (PTP-Bas) and its mouse homologue, PTP-Basophil-like (PTP-BL), are high molecular mass protein phosphatases consisting of a number of diverse protein-protein interaction modules. Several splicing variants of these phosphatases are known to exist thus demonstrating the complexity of these molecules. PTP-Bas/BL serves as a central scaffolding protein facilitating the assembly of a multiplicity of different proteins mainly via five different PDZ domains. Many of these interacting proteins are implicated in the regulation of the actin cytoskeleton. However, some proteins demonstrate a nuclear function of this protein tyrosine phosphatase. PTP-Bas is involved in the regulation of cell surface expression of the cell death receptor, Fas. Moreover, it is a negative regulator of ephrinB phosphorylation, a receptor playing an important role during development. The phosphorylation status of other proteins such as RIL, IkappaBalpha and beta-catenin can also be regulated by this phosphatase. Finally, PTP-BL has been shown to be involved in the regulation of cytokinesis, the last step in cell division. Although the precise molecular function of PTP-Bas/BL is still elusive, current data suggest clearly that PTP-Bas/BL belongs to the family of PDZ domain containing proteins involved in the regulation of the cytoskeleton and of intracellular vesicular transport processes.
Collapse
Affiliation(s)
- Kai S Erdmann
- Department of Molecular Neurobiochemistry, Ruhr-University Bochum, Germany.
| |
Collapse
|
33
|
Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya KI, Terasaki T, Shih HM, Ann DK. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene 2002; 21:8817-29. [PMID: 12483534 DOI: 10.1038/sj.onc.1206032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2002] [Revised: 08/30/2002] [Accepted: 09/05/2002] [Indexed: 11/09/2022]
Abstract
Etk/Bmx, a member of the Tec family of non-receptor tyrosine kinase, is characterized by an N-terminal PH domain and has recently been shown to be involved in the regulation of various cellular processes, including proliferation, differentiation, motility and apoptosis. Since VEGF and the activation of its signaling pathway have been implicated in modulating a variety of biological responses, we characterized the role of Etk-dependent signaling pathways involved in the upregulation of VEGF expression, and explored the functional implications of this enhancement in sustaining cell proliferation and survival. Using Northern and Western analyses, transient transfections, and pharmacological agents, we demonstrate that Etk activation alone is sufficient to transcriptionally induce VEGF expression, independent of the previously identified hypoxia response element (HRE), in both Pa-4 epithelial and TR-BBB endothelial cells under normoxia. In addition, Etk utilizes both MEK/ERK and PI3-K/Pak1 signaling pathways in concert to activate VEGF transcription. Functionally, Etk activation elicits a profound stimulatory effect on TR-BBB cell proliferation and formation of capillary-like networks in Matrigel containing reduced levels of growth factors. Finally, antisense oligonucleotides against either endogenous VEGF or Etk abrogate the proliferation of Etk-activated TR-BBB cells, and exogenous VEGF treatment stimulates endogenous Etk tyrosine phosphorylation in HUVECs. Taken together, these results indicate that VEGF is both an Etk downstream target gene and an Etk upstream activator, constituting a reciprocal Etk-VEGF autoregulatory loop. These findings, to our knowledge, are the first delineation of a network of positive feedforward signaling pathways that converge on the Etk-VEGF axis, causally associating Etk-mediation of VEGF induction with enhanced cellular processes in both epithelial and endothelial cells.
Collapse
Affiliation(s)
- Cindy H Chau
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, California, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 2001; 21:8385-97. [PMID: 11713275 PMCID: PMC100003 DOI: 10.1128/mcb.21.24.8385-8397.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.
Collapse
Affiliation(s)
- L F Lee
- Department of Biological Chemistry and Cancer Center, University of California at Davis, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
35
|
Edwards K, Davis T, Marcey D, Kurihara J, Yamamoto D. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene 2001; 275:195-205. [PMID: 11587846 DOI: 10.1016/s0378-1119(01)00686-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The FERM-PTPs are a group of proteins that have FERM (Band 4.1, ezrin, radixin, moesin homology) domains at or near their N-termini, and PTP (protein tyrosine phosphatase) domains at their C-termini. Their central regions contain either PSD-95, Dlg, ZO-1 homology domains or putative Src homology 3 domain binding sites. The known FERM-PTPs fall into three distinct classes, which we name BAS, MEG, and PEZ, after representative human PTPs. Here we analyze Pez, a novel gene encoding the single PEZ-class protein present in Drosophila. Pez cDNAs were sequenced from the distantly related flies Drosophila melanogaster and Drosophila silvestris, and found to be highly conserved except in the central region, which contains at least 21 insertions and deletions. Comparison of fly and human Pez reveals several short conserved motifs in the central region that are likely protein binding sites and/or phosphorylation sites. We also identified novel invertebrate members of the BAS and MEG classes using genome data, and generated an alignment of vertebrate and invertebrate FERM domains of each class. 'Specialized' residues were identified that are conserved only within a given class of PTPs. These residues highlight surface regions that may bind class-specific ligands; for PEZ, these residues cluster on and near FERM subdomain F1. Finally, the PTP domain of fly Pez was modeled based on known PTP tertiary structures, and we conclude that Pez is likely a functional phosphatase despite some unusual features of the active site cleft sequences. Biochemical confirmation of this hypothesis and genetic analysis of Pez are currently underway.
Collapse
Affiliation(s)
- K Edwards
- Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | | | | | | | | |
Collapse
|
36
|
Zentner MD, Lin HH, Deng HT, Kim KJ, Shih HM, Ann DK. Requirement for high mobility group protein HMGI-C interaction with STAT3 inhibitor PIAS3 in repression of alpha-subunit of epithelial Na+ channel (alpha-ENaC) transcription by Ras activation in salivary epithelial cells. J Biol Chem 2001; 276:29805-14. [PMID: 11390395 DOI: 10.1074/jbc.m103153200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have demonstrated that oxidative stress or Ras/ERK activation leads to the transcriptional repression of alpha-subunit of epithelial Na(+) channel (ENaC) in lung and salivary epithelial cells. Here, we further investigated the coordinated molecular mechanisms by which alpha-ENaC expression is regulated. Using both stable and transient transfection assays, we demonstrate that the overexpression of high mobility group protein I-C (HMGI-C), a Ras/ERK-inducible HMG-I family member, represses glucocorticoid receptor (GR)/dexamethasone (Dex)-stimulated alpha-ENaC/reporter activity in salivary epithelial cells. Northern analyses further confirm that the expression of endogenous alpha-ENaC gene in salivary Pa-4 cells is suppressed by an ectopic HMGI-C overexpression. Through yeast two-hybrid screening and co-immunoprecipitation assays from eukaryotic cells, we also discovered the interaction between HMGI-C and PIAS3 (protein inhibitor of activated STAT3 (signal transducer and activator of transcription 3)). A low level of ectopically expressed PIAS3 cooperatively inhibits GR/Dex-dependent alpha-ENaC transcription in the presence of HMGI-C. Reciprocally, HMGI-C expression also coordinately enhances PIAS3-mediated repression of STAT3-dependent transactivation. Moreover, overexpression of antisense HMGI-C construct is capable of reversing the repression mediated by Ras V12 on GR- and STAT3-dependent transcriptional activation. Together, our results demonstrate that Ras/ERK-mediated induction of HMGI-C is required to effectively repress GR/Dex-stimulated transcription of alpha-ENaC gene and STAT3-mediated transactivation. These findings delineate a network of inhibitory signaling pathways that converge on HMGI-C.PIAS3 complex, causally associating Ras/ERK activation with the repression of both GR and STAT3 signaling pathways in salivary epithelial cells.
Collapse
Affiliation(s)
- M D Zentner
- Department of Molecular Pharmacology and Toxicology, Will Rogers Institute, Pulmonary Research Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Etk/Bmx is a member of the Btk/Tec family of kinases, which are characterized by having a pleckstrin homology domain at the N terminus, in addition to the Src homology 3 (SH3), SH2, and the catalytic domains, shared with the Src family kinases. Etk, or Btk kinases in general, has been implicated in the regulation of apoptosis. To test whether Etk is the substrate for caspases during apoptosis, in vitro translated [(35)S]methionine-labeled Etk was incubated with different apoptotic extracts and recombinant caspases, respectively. Results showed that Etk was proteolyzed in all conditions tested with identical cleavage patterns. Caspase-mediated cleavage of Etk generated a C-terminal fragment, containing the complete SH2 and tyrosine kinase domains, but without intact pleckstrin homology and SH3 domains. This fragment has 4-fold higher kinase activity than that of the full-length Etk. Ectopic expression of the C-terminal fragment of Etk sensitized the PC3 prostate cancer cells to apoptosis in response to apoptosis-inducing stimuli. The finding, together with an earlier report that Etk is potentially antiapoptotic, suggests that Etk may serve as an apoptotic switch, depending on the forms of Etk existing inside the cells. To our knowledge, this is the first case where the activity of a tyrosine kinase is induced by caspase cleavage.
Collapse
Affiliation(s)
- Y M Wu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan, Republic of China
| | | | | | | |
Collapse
|