1
|
Huang LK, Huang YC, Chen PC, Lee CH, Lin SM, Hsu YHH, Pan RL. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H +-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry. J Membr Biol 2023; 256:443-458. [PMID: 37955797 DOI: 10.1007/s00232-023-00295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.
Collapse
Affiliation(s)
- Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Yi-Cyuan Huang
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China
| | - Pin-Chuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China.
| |
Collapse
|
2
|
Pal L, Dwivedi V, Gupta SK, Saxena S, Pandey A, Chattopadhyay D. Biochemical analysis of anthocyanin and proanthocyanidin and their regulation in determining chickpea flower and seed coat colour. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:130-148. [PMID: 36205079 DOI: 10.1093/jxb/erac392] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Accepted: 10/06/2022] [Indexed: 05/20/2023]
Abstract
Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.
Collapse
Affiliation(s)
- Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Santosh Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
4
|
Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1376-1388. [DOI: 10.1016/j.bbamcr.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/31/2022]
|
5
|
Khan MF, Kundu D, Hazra C, Patra S. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int J Biol Macromol 2019; 136:66-82. [DOI: 10.1016/j.ijbiomac.2019.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
|
6
|
Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. J Mol Biol 2019; 431:1619-1632. [PMID: 30878480 DOI: 10.1016/j.jmb.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022]
Abstract
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase-2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225-R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225-R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.
Collapse
|
7
|
Strauss J, Wilkinson C, Vidilaseris K, Harborne SPD, Goldman A. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K + as a Cofactor. Methods Enzymol 2018; 607:131-156. [PMID: 30149856 DOI: 10.1016/bs.mie.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Craig Wilkinson
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Keni Vidilaseris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Steven P D Harborne
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom.
| | - Adrian Goldman
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Rosas-Santiago P, Lagunas-Gomez D, Yáñez-Domínguez C, Vera-Estrella R, Zimmermannová O, Sychrová H, Pantoja O. Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1809-1818. [DOI: 10.1016/j.bbamcr.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
|
9
|
Abstract
The two alkali cations Na(+) and K(+) have similar relative abundances in the earth crust but display very different distributions in the biosphere. In all living organisms, K(+) is the major inorganic cation in the cytoplasm, where its concentration (ca. 0.1 M) is usually several times higher than that of Na(+). Accumulation of Na(+) at high concentrations in the cytoplasm results in deleterious effects on cell metabolism, e.g., on photosynthetic activity in plants. Thus, Na(+) is compartmentalized outside the cytoplasm. In plants, it can be accumulated at high concentrations in vacuoles, where it is used as osmoticum. Na(+) is not an essential element in most plants, except in some halophytes. On the other hand, it can be a beneficial element, by replacing K(+) as vacuolar osmoticum for instance. In contrast, K(+) is an essential element. It is involved in electrical neutralization of inorganic and organic anions and macromolecules, pH homeostasis, control of membrane electrical potential, and the regulation of cell osmotic pressure. Through the latter function in plants, it plays a role in turgor-driven cell and organ movements. It is also involved in the activation of enzymes, protein synthesis, cell metabolism, and photosynthesis. Thus, plant growth requires large quantities of K(+) ions that are taken up by roots from the soil solution, and then distributed throughout the plant. The availability of K(+) ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. In contrast, due to natural salinity or irrigation with poor quality water, detrimental Na(+) concentrations, toxic for all crop species, are present in many soils, representing 6 % to 10 % of the earth's land area. Three families of ion channels (Shaker, TPK/KCO, and TPC) and 3 families of transporters (HAK, HKT, and CPA) have been identified so far as contributing to K(+) and Na(+) transport across the plasmalemma and internal membranes, with high or low ionic selectivity. In the model plant Arabidopsis thaliana, these families gather at least 70 members. Coordination of the activities of these systems, at the cell and whole plant levels, ensures plant K(+) nutrition, use of Na(+) as a beneficial element, and adaptation to saline conditions.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Fouad Razzaq Al Shiblawi
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Hervé Sentenac
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France.
| |
Collapse
|
10
|
Sun X, Qi W, Yue Y, Ling H, Wang G, Song R. Maize ZmVPP5 is a truncated Vacuole H(+) -PPase that confers hypersensitivity to salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:518-528. [PMID: 26728417 PMCID: PMC5071666 DOI: 10.1111/jipb.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2015] [Accepted: 12/31/2015] [Indexed: 05/30/2023]
Abstract
In plants, Vacuole H(+) -PPases (VPPs) are important proton pumps and encoded by multiple genes. In addition to full-length VPPs, several truncated forms are expressed, but their biological functions are unknown. In this study, we functionally characterized maize vacuole H(+) -PPase 5 (ZmVPP5), a truncated VPP in the maize genome. Although ZmVPP5 shares high sequence similarity with ZmVPP1, ZmVPP5 lacks the complete structure of the conserved proton transport and the inorganic pyrophosphatase-related domain. Phylogenetic analysis suggests that ZmVPP5 might be derived from an incomplete gene duplication event. ZmVPP5 is expressed in multiple tissues, and ZmVPP5 was detected in the plasma membrane, vacuole membrane and nuclei of maize cells. The overexpression of ZmVPP5 in yeast cells caused a hypersensitivity to salt stress. Transgenic maize lines with overexpressed ZmVPP5 also exhibited the salt hypersensitivity phenotype. A yeast two-hybrid analysis identified the ZmBag6-like protein as a putative ZmVPP5-interacting protein. The results of bimolecular luminescence complementation (BiLC) assay suggest an interaction between ZmBag6-like protein and ZmVPP5 in vivo. Overall, this study suggests that ZmVPP5 might act as a VPP antagonist and participate in the cellular response to salt stress. Our study of ZmVPP5 has expanded the understanding of the origin and functions of truncated forms of plant VPPs.
Collapse
Affiliation(s)
- Xiaoliang Sun
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| | - Yihong Yue
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huiling Ling
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Gang Wang
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| | - Rentao Song
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| |
Collapse
|
11
|
Slavic K, Krishna S, Lahree A, Bouyer G, Hanson KK, Vera I, Pittman JK, Staines HM, Mota MM. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium. Nat Commun 2016; 7:10403. [PMID: 26786069 PMCID: PMC4735874 DOI: 10.1038/ncomms10403] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023] Open
Abstract
Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host.
Collapse
Affiliation(s)
- Ksenija Slavic
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sanjeev Krishna
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Aparajita Lahree
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Guillaume Bouyer
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 8227, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Present address: University of Texas at San Antonio, Department of Biology and STCEID, San Antonio, Texas 78249, USA
| | - Iset Vera
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Jon K. Pittman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Henry M. Staines
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Maria M. Mota
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
12
|
Rosas-Santiago P, Zimmermannova O, Vera-Estrella R, Sychrová H, Pantoja O. Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:67-74. [DOI: 10.1016/j.bbamem.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023]
|
13
|
Sepúlveda-González ME, Parra-Ortega B, Betancourt-Cervantes Y, Hernández-Rodríguez C, Xicohtencatl-Cortes J, Villa-Tanaca L. Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression. Rev Iberoam Micol 2015; 33:26-33. [PMID: 26422323 DOI: 10.1016/j.riam.2014.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2014] [Revised: 08/25/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. AIMS The present paper is the first report on proteolytic activity in the C. glabrata vacuole. METHODS Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. RESULTS Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. CONCLUSIONS The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen.
Collapse
Affiliation(s)
- M Eugenia Sepúlveda-González
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Delegación Miguel Hidalgo, México, D.F., Mexico; Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Delegación Cuauhtémoc, México, D.F., Mexico
| | - Berenice Parra-Ortega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Delegación Miguel Hidalgo, México, D.F., Mexico
| | - Yuliana Betancourt-Cervantes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Delegación Miguel Hidalgo, México, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Delegación Miguel Hidalgo, México, D.F., Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Delegación Cuauhtémoc, México, D.F., Mexico.
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Delegación Miguel Hidalgo, México, D.F., Mexico.
| |
Collapse
|
14
|
Migocka M, Posyniak E, Maciaszczyk-Dziubinska E, Papierniak A, Kosieradzaka A. Functional and Biochemical Characterization of Cucumber Genes Encoding Two Copper ATPases CsHMA5.1 and CsHMA5.2. J Biol Chem 2015; 290:15717-15729. [PMID: 25963145 PMCID: PMC4505482 DOI: 10.1074/jbc.m114.618355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2014] [Revised: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 μM, respectively) and similar affinity to Ag(+) (Km ∼2.5 μM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.
Collapse
Affiliation(s)
- Magdalena Migocka
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Ewelina Posyniak
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Anna Papierniak
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | | |
Collapse
|
15
|
Migocka M, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Kosieradzka A. Molecular and biochemical properties of two P1B2-ATPases, CsHMA3 and CsHMA4, from cucumber. PLANT, CELL & ENVIRONMENT 2015; 38:1127-41. [PMID: 25210955 DOI: 10.1111/pce.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/16/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 05/18/2023]
Abstract
P1B-ATPases (heavy metal ATPases, HMAs) constitute a multigenic subfamily of P-ATPases involved in the transport of monovalent and divalent heavy metals in plant cells. Here, we present the organization of genes encoding the HMA family in the cucumber genome and report the function and biochemical properties of two cucumber proteins homologous to the HMA2-4-like plant HMAs. Eight genes encoding putative P1B -ATPases were identified in the cucumber genome. Among them, CsHMA3 was predominantly expressed in roots and up-regulated by Pb, Zn and Cd excess, whereas the CsHMA4 transcript was most abundant in roots and flowers of cucumber plants, and elevated under Pb and Zn excess. Expression of CsHMA3 in Saccharomyces cerevisiae enhanced yeast tolerance to Cd and Pb, whereas CsHMA4 conferred increased resistance of yeast cells to Cd and Zn. Immunostaining with specific antibodies raised against cucumber proteins revealed tonoplast localization of CsHMA3 and plasma membrane localization of CsHMA4 in cucumber root cells. Kinetic studies of CsHMA3 and CsHMA4 in yeast membranes indicated differing heavy metal cation affinities of these two proteins. Altogether, the results suggest an important role of CsHMA3 and CsHMA4 in Cd and Pb detoxification and Zn homeostasis in cucumber cells.
Collapse
Affiliation(s)
- Magdalena Migocka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw Kanonia 6/8, Wroclaw, 50-328, Poland
| | | | | | | | | |
Collapse
|
16
|
Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1001-15. [PMID: 25422498 DOI: 10.1093/jxb/eru459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.
Collapse
Affiliation(s)
- Magdalena Migocka
- Department of Molecular Plant Physiology, Wroclaw University, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Anna Kosieradzka
- Department of Molecular Plant Physiology, Wroclaw University, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Anna Papierniak
- Department of Molecular Plant Physiology, Wroclaw University, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Wroclaw University, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewelina Posyniak
- Department of Molecular Plant Physiology, Wroclaw University, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Arnold Garbiec
- Department of Animal Developmental Biology, Wroclaw University, Institute of Experimental Biology, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Sophie Filleur
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique (CNRS), 1 Avenue de la Terrasse, Saclay Plant Sciences Labex, 91198 Gif-Sur-Yvette Cedex, France Université Paris 7-Denis Diderot, UFR Sciences du Vivant, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
17
|
Chen YW, Lee CH, Huang YT, Pan YJ, Lin SM, Lo YY, Lee CH, Huang LK, Huang YF, Hsu YD, Pan RL. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani. J Bioenerg Biomembr 2015; 46:127-34. [PMID: 24121937 DOI: 10.1007/s10863-013-9532-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.
Collapse
|
18
|
Migocka M, Papierniak A, Maciaszczyk-Dziubińska E, Poździk P, Posyniak E, Garbiec A, Filleur S. Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5367-84. [PMID: 25039075 PMCID: PMC4400539 DOI: 10.1093/jxb/eru295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells.
Collapse
Affiliation(s)
- Magdalena Migocka
- Wrocław University, Institute of Experimental Biology, Department of Molecular Plant Physiology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Papierniak
- Wrocław University, Institute of Experimental Biology, Department of Molecular Plant Physiology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Ewa Maciaszczyk-Dziubińska
- Wrocław University, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Piotr Poździk
- Wrocław University, Institute of Experimental Biology, Department of Molecular Plant Physiology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Ewelina Posyniak
- Wrocław University, Institute of Experimental Biology, Department of Molecular Plant Physiology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Arnold Garbiec
- Wrocław University, Institute of Experimental Biology, Department of Animal Developmental Biology, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Sophie Filleur
- Institut des Sciences du Végétal, CNRS, 1 Avenue de la Terrasse, Saclay Plant Sciences Labex, 91198 Gif-Sur-Yvette Cedex, France Université Paris 7-Denis Diderot, UFR Sciences du Vivant, Saclay Plant Sciences Labex, 91198 Gif-Sur-Yvette Cedex, France
| |
Collapse
|
19
|
Presence of a plant-like proton-translocating pyrophosphatase in a scuticociliate parasite and its role as a possible drug target. Parasitology 2014; 142:449-62. [DOI: 10.1017/s0031182014001267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
SUMMARYThe proton-translocating inorganic pyrophosphatases (H+-PPases) are primary electrogenic H+ pumps that derive energy from the hydrolysis of inorganic pyrophosphate (PPi). They are widely distributed among most land plants and have also been found in several species of protozoan parasites. Here we describe, for the first time, the molecular cloning and functional characterization of a gene encoding an H+-pyrophosphatase in the protozoan scuticociliate parasite Philasterides dicentrarchi, which infects turbot. The predicted P. dicentrarchi PPase (PdPPase) consists of 587 amino acids of molecular mass 61·7 kDa and an isoelectric point of 5·0. Several motifs characteristic of plant vacuolar H+-PPases (V–H+-PPases) were also found in the PdPPase, which contains all the sequence motifs of the prototypical type I V–H+-PPase from Arabidopsis thaliana vacuolar pyrophosphatase type I (AVP1) plant. The PdPPase has a characteristic residue that determines strict K+-dependence, but unlike AVP1, PdPPase contains an N-terminal signal peptide (SP) sequence. Antibodies generated by vaccination of mice with a genetic or recombinant protein containing a partial sequence of the PdPPase and a common motif with the polyclonal antibody PABHK specific to AVP1 recognized a single band of about 62 kDa in western blots. These antibodies specifically stained both vacuole and the alveolar membranes of trophozoites of P. dicentrarchi. H+ transport was partially inhibited by the bisphosphonate pamidronate (PAM) and completely inhibited by NaF. The bisphosphonate PAM inhibited both H+-translocation and gene expression. PdPPase and PAM also inhibited in vitro growth of the ciliates. The apparent lack of V–H+-PPases in vertebrates and the parasite sensitivity to PPI analogues may provide a molecular target for developing new drugs to control scuticociliatosis.
Collapse
|
20
|
Asaoka M, Segami S, Maeshima M. Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. ACTA ACUST UNITED AC 2014; 156:333-44. [DOI: 10.1093/jb/mvu046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
|
21
|
|
22
|
Lee CH, Chen YW, Huang YT, Pan YJ, Lee CH, Lin SM, Huang LK, Lo YY, Huang YF, Hsu YD, Yen SC, Hwang JK, Pan RL. Functional Investigation of Transmembrane Helix 3 in H+-Translocating Pyrophosphatase. J Membr Biol 2013; 246:959-66. [DOI: 10.1007/s00232-013-9599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
23
|
Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. J Biol Chem 2013; 288:19312-20. [PMID: 23720778 DOI: 10.1074/jbc.m113.469353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.
Collapse
Affiliation(s)
- Yun-Tzu Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kajander T, Kellosalo J, Goldman A. Inorganic pyrophosphatases: one substrate, three mechanisms. FEBS Lett 2013; 587:1863-9. [PMID: 23684653 DOI: 10.1016/j.febslet.2013.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Soluble inorganic pyrophosphatases (PPases) catalyse an essential reaction, the hydrolysis of pyrophosphate to inorganic phosphate. In addition, an evolutionarily ancient family of membrane-integral pyrophosphatases couple this hydrolysis to Na(+) and/or H(+) pumping, and so recycle some of the free energy from the pyrophosphate. The structures of the H(+)-pumping mung bean PPase and the Na(+)-pumping Thermotoga maritima PPase solved last year revealed an entirely novel membrane protein containing 16 transmembrane helices. The hydrolytic centre, well above the membrane, is linked by a charged "coupling funnel" to the ionic gate about 20Å away. By comparing the active sites, fluoride inhibition data and the various models for ion transport, we conclude that membrane-integral PPases probably use binding of pyrophosphate to drive pumping.
Collapse
Affiliation(s)
- Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
25
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
26
|
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012; 337:473-6. [PMID: 22837527 DOI: 10.1126/science.1222505] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.
Collapse
Affiliation(s)
- Juho Kellosalo
- Structural Biology and Biophysics Program, Institute of Biotechnology, Post Office Box 65, University of Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
27
|
Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 2012; 484:399-403. [PMID: 22456709 DOI: 10.1038/nature10963] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2011] [Accepted: 02/17/2012] [Indexed: 11/08/2022]
Abstract
H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 Å resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.
Collapse
|
28
|
Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D. Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 2011; 287:3185-96. [PMID: 22139846 DOI: 10.1074/jbc.m111.305649] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.
Collapse
Affiliation(s)
- Dorina Podar
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1-11. [PMID: 21963407 DOI: 10.1016/j.bbamem.2011.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/18/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | |
Collapse
|
30
|
Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH, Chen YW, Lin SM, Huang LK, Pan RL. Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J Biol Chem 2011; 286:11970-6. [PMID: 21292767 DOI: 10.1074/jbc.m110.190215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.
Collapse
Affiliation(s)
- Chien-Hsien Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Plant Proton Pumps: Regulatory Circuits Involving H+-ATPase and H+-PPase. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/05/2022]
|
32
|
Pan YJ, Lee CH, Hsu SH, Huang YT, Lee CH, Liu TH, Chen YW, Lin SM, Pan RL. The transmembrane domain 6 of vacuolar H(+)-pyrophosphatase mediates protein targeting and proton transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:59-67. [PMID: 20937245 DOI: 10.1016/j.bbabio.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/12/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 11/28/2022]
Abstract
Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.
Collapse
Affiliation(s)
- Yih-Jiuan Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cagnac O, Aranda-Sicilia MN, Leterrier M, Rodriguez-Rosales MP, Venema K. Vacuolar cation/H+ antiporters of Saccharomyces cerevisiae. J Biol Chem 2010; 285:33914-22. [PMID: 20709757 DOI: 10.1074/jbc.m110.116590] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na(+) and K(+)/H(+) antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K(+)/H(+) antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca(2+)/H(+) antiporter activity catalyzed by Vcx1p, the K(+)/H(+) antiporter activity was strongly inhibited by Cd(2+) and to a lesser extend by Zn(2+). Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K(+) and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.
Collapse
Affiliation(s)
- Olivier Cagnac
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado 419, E-18080 Granada, Spain.
| | | | | | | | | |
Collapse
|
34
|
Segami S, Nakanishi Y, Sato MH, Maeshima M. Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1350-60. [PMID: 20605924 DOI: 10.1093/pcp/pcq096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/02/2023]
Abstract
Most plants have two types of H(+)-translocating inorganic pyrophosphatases (H(+)-PPases), I and II, which differ in primary sequence and K(+) dependence of enzyme function. Arabidopsis thaliana has three genes for H(+)-PPases: one for type I and two for type II. The type I H(+)-PPase requires K(+) for maximal enzyme activity and functions together with H(+)-ATPase in vacuolar membranes. The physiological role of the type II enzyme, which does not require K(+), is not clear. We focused on the type II enzymes (AtVHP2;1 and AtVHP2;2) of A. thaliana. Total amounts of AtVHP2s were quantified immunochemically using a specific antibody and determined to be 22 and 12 ng mg(-1) of total protein in the microsomal fractions of suspension-cultured cells and young roots, respectively, and the values are approximately 0.1 and 0.2%, respectively, of the vacuolar H(+)-PPase. In plants, AtVHP2s were detected immunochemically in all tissues except mature leaves, and were abundant in roots and flowers. The intracellular localization of AtVHP2s in suspension cells was determined by sucrose density gradient centrifugation and immunoblotting. Comparison with a number of marker proteins revealed localization in the Golgi apparatus and the trans-Golgi network. These results suggest that the type II H(+)-PPase functions as a proton pump in the Golgi and related vesicles in young tissues, although its content is very low compared with the type I enzyme.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
35
|
Huang YT, Liu TH, Chen YW, Lee CH, Chen HH, Huang TW, Hsu SH, Lin SM, Pan YJ, Lee CH, Hsu IC, Tseng FG, Fu CC, Pan RL. Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer. J Biol Chem 2010; 285:23655-64. [PMID: 20511234 DOI: 10.1074/jbc.m110.134916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Homodimeric H(+)-pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H(+)-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PP(i)), for H(+) translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PP(i) binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H(+)-PPase are 49.3 + or - 4.0 and 67.2 + or - 5.7 A, respectively. Furthermore, putative PP(i) binding motifs on individual subunits are found to be relatively far away from each other (70.8 + or - 4.8 A), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H(+)-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H(+)-PPase upon substrate binding.
Collapse
Affiliation(s)
- Yun-Tzu Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Xu H, Zhang G, Zhu H, Zhang L, Zhang Z, Zhang C, Ma Z. Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat. J Genet Genomics 2010; 36:711-20. [PMID: 20129398 DOI: 10.1016/s1673-8527(08)60164-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2009] [Revised: 05/07/2009] [Accepted: 05/17/2009] [Indexed: 10/20/2022]
Abstract
Vacuolar H(+)-translocating pyrophosphatase (V-PPase) is a key enzyme related to plant growth as well as abiotic stress tolerance. In this work, wheat V-PPase genes TaVP1, TaVP2 and TaVP3 were identified. TaVP1 and TaVP2 are more similar to each other than to TaVP3. Their deduced polypeptide sequences preserve the topological structure and essential residues of V-PPases. Phylogenetic studies suggested that monocot plants, at least monocot grasses, have three VP paralogs. TaVP3 transcripts were only detected in developing seeds, and no TaVP2 transcripts were found in germinating seeds. TaVP2 was mainly expressed in shoot tissues and down-regulated in leaves under dehydration. Its expression was up-regulated in roots under high salinity. TaVP1 was relatively more ubiquitously and evenly expressed than TaVP2. Its expression level in roots was highest among the tissues examined, and was inducible by salinity stress. These results indicated that the V-PPase gene paralogs in wheat are differentially regulated spatially and in response to dehydration and salinity stresses.
Collapse
Affiliation(s)
- Yuezhi Wang
- Crop Genomics and Bioinformatics Center & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. THE PLANT CELL 2009; 21:2323-40. [PMID: 19684242 PMCID: PMC2751950 DOI: 10.1105/tpc.109.067819] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/16/2023]
Abstract
Expression of the Arabidopsis thaliana MYB transcription factor TRANSPARENT TESTA 2 (TT2) in Medicago trunculata hairy roots induces both proanthocyanidin accumulation and the ATP-dependent vacuolar/vesicular uptake of epicatechin 3'-O-glucoside; neither process is active in control roots that do, however, possess anthocyanidin 3-O-glucoside vacuolar uptake activity. A vacuolar membrane-localized multidrug and toxic compound extrusion (MATE) transporter, Medicago MATE1, was identified at the molecular level and shown to preferentially transport epicatechin 3'-O-glucoside. Genetic evidence has implicated TT12, a tonoplastic MATE transporter from Arabidopsis, in the transport of precursors for proanthocyanidin biosynthesis in the seed coat. However, although Arabidopsis TT12 facilitates the transport of cyanidin 3-O-glucoside into membrane vesicles when expressed in yeast, there is no evidence that cyanidin 3-O-glucoside is converted to proanthocyanidins after transport into the vacuole. Here, we show that Arabidopsis TT12, like Medicago MATE1, functions to transport epicatechin 3'-O-glucoside as a precursor for proanthocyanidin biosynthesis, and Medicago MATE1 complements the seed proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis of biochemical properties, tissue-specific expression pattern, and genetic loss-of-function analysis, we conclude that MATE1 is an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed coat. Implications of these findings for the assembly of oligomeric proanthocyanidins are discussed.
Collapse
Affiliation(s)
- Jian Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | |
Collapse
|
38
|
Hirono M, Maeshima M. Functional enhancement by single-residue substitution of Streptomyces coelicolor A3(2) H+-translocating pyrophosphatase. J Biochem 2009; 146:617-21. [PMID: 19628678 DOI: 10.1093/jb/mvp114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
H(+)-translocating pyrophosphatase converts energy from hydrolysis of pyrophosphate to active H(+) transport across biomembranes. Mutational analysis of Streptomyces coelicolor A3(2) enzyme revealed that amino acid substitution of Phe-388 and Ala-514 altered the enzyme activity. Both residues are located at the interface between the transmembrane domains and cytosolic loops, in which the catalytic domain exists. Systematic amino acid substitution was carried out using the Escherichia coli heterologous expression system. Two of the 38 mutant enzymes, F388Y and A514S, showed a high ratio of H(+)-pump to substrate hydrolysis without decrease in the substrate hydrolysis activity, indicating high energy-coupling efficiency.
Collapse
Affiliation(s)
- Megumi Hirono
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
39
|
Malinen AM, Baykov AA, Lahti R. Mutual effects of cationic ligands and substrate on activity of the Na+-transporting pyrophosphatase of Methanosarcina mazei. Biochemistry 2009; 47:13447-54. [PMID: 19053266 DOI: 10.1021/bi801803b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The PP(i)-driven sodium pump (membrane pyrophosphatase) of Methanosarcina mazei (Mm-PPase) absolutely requires Na(+) and Mg(2+) for activity and additionally employs K(+) as a modulating cation. Here we explore relationships among Na(+), K(+), Mg(2+), and PP(i) binding sites by analyzing the dependency of the Mm-PPase PP(i)-hydrolyzing function on these ligands and protection offered by the ligands against Mm-PPase inactivation by trypsin and the SH-reagent mersalyl. Steady-state kinetic analysis of PP(i) hydrolysis indicated that catalysis involves random order binding of two Mg(2+) ions and two Na(+) ions, and the binding was almost independent of substrate (Mg(2)PP(i) complex) attachment. Each pair of metal ions, however, binds in a positively cooperative (or ordered) manner. The apparent cooperativity is lost only when Na(+) binds to preformed enzyme-Mg(2+)-substrate complex. The binding of K(+) increases, by a factor of 2.5, the catalytic constant, the Michaelis constant, and the Mg(2+) binding affinity, and these effects may result from K(+) binding to either one of the Na(+) sites or to a separate site. The effects of ligands on Mm-PPase inactivation by mersalyl and trypsin are highly correlated and are strongly indicative of ligand-induced enzyme conformational changes. Importantly, Na(+) binding induces a conformational change only when completing formation of the catalytically competent enzyme-substrate complex or a similar complex with a diphosphonate substrate analog. These data indicate considerable flexibility in Mm-PPase structure and provide evidence for its cyclic change in the course of catalytic turnover.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
40
|
Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, Fukushi K, Maeshima M, Okada M. Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. PLANT & CELL PHYSIOLOGY 2008; 49:1294-1305. [PMID: 18676378 DOI: 10.1093/pcp/pcn104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/26/2023]
Abstract
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.
Collapse
Affiliation(s)
- Mari Murai-Hatano
- National Agricultural Research Center for Tohoku Region, Climate Change Research Team, Morioka, 020-0198 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N. Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 2008; 283:1911-20. [PMID: 18029350 DOI: 10.1074/jbc.m708213200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2023] Open
Abstract
The tonoplast K(+) membrane transport system plays a crucial role in maintaining K(+) homeostasis in plant cells. Here, we isolated cDNAs encoding a two-pore K(+) channel (NtTPK1) from Nicotiana tabacum cv. SR1 and cultured BY-2 tobacco cells. Two of the four variants of NtTPK1 contained VHG and GHG instead of the GYG signature sequence in the second pore region. All four products were functional when expressed in the Escherichia coli cell membrane, and NtTPK1 was targeted to the tonoplast in tobacco cells. Two of the three promoter sequences isolated from N. tabacum cv. SR1 were active, and expression from these was increased approximately 2-fold by salt stress or high osmotic shock. To determine the properties of NtTPK1, we enlarged mutant yeast cells with inactivated endogenous tonoplast channels and prepared tonoplasts suitable for patch clamp recording allowing the NtTPK1-related channel conductance to be distinguished from the small endogenous currents. NtTPK1 exhibited strong selectivity for K(+) over Na(+). NtTPK1 activity was sensitive to spermidine and spermine, which were shown to be present in tobacco cells. NtTPK1 was active in the absence of Ca(2+), but a cytosolic concentration of 45 microM Ca(2+) resulted in a 2-fold increase in the amplitude of the K(+) current. Acidification of the cytosol to pH 5.5 also markedly increased NtTPK1-mediated K(+) currents. These results show that NtTPK1 is a novel tonoplast K(+) channel belonging to a different group from the previously characterized vacuolar channels SV, FV, and VK.
Collapse
Affiliation(s)
- Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kawachi M, Kobae Y, Mimura T, Maeshima M. Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn(2+)/H(+) antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 2008; 283:8374-83. [PMID: 18203721 DOI: 10.1074/jbc.m707646200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis thaliana AtMTP1 belongs to the cation diffusion facilitator family and is localized on the vacuolar membrane. We investigated the enzymatic kinetics of AtMTP1 by a heterologous expression system in the yeast Saccharomyces cerevisiae, which lacked genes for vacuolar membrane zinc transporters ZRC1 and COT1. The yeast mutant expressing AtMTP1 heterologously was tolerant to 10 mm ZnCl(2). Active transport of zinc into vacuoles of living yeast cells expressing AtMTP1 was confirmed by the fluorescent zinc indicator FuraZin-1. Zinc transport was quantitatively analyzed by using vacuolar membrane vesicles prepared from AtMTP1-expressing yeast cells and radioisotope (65)Zn(2+). Active zinc uptake depended on a pH gradient generated by endogenous vacuolar H(+)-ATPase. The activity was inhibited by bafilomycin A(1), an inhibitor of the H(+)-ATPase. The K(m) for Zn(2+) and V(max) of AtMTP1 were determined to be 0.30 microm and 1.22 nmol/min/mg, respectively. We prepared a mutant AtMTP1 that lacked the major part (32 residues from 185 to 216) of a long histidine-rich hydrophilic loop in the central part of AtMTP1. Yeast cells expressing the mutant became hyperresistant to high concentrations of Zn(2+) and resistant to Co(2+). The K(m) and V(max) values were increased 2-11-fold. These results indicate that AtMTP1 functions as a Zn(2+)/H(+) antiporter in vacuoles and that a histidine-rich region is not essential for zinc transport. We propose that a histidine-rich loop functions as a buffering pocket of Zn(2+) and a sensor of the zinc level at the cytoplasmic surface. This loop may be involved in the maintenance of the level of cytoplasmic Zn(2+).
Collapse
Affiliation(s)
- Miki Kawachi
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
43
|
Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M. Tissue and cell-specific localization of rice aquaporins and their water transport activities. PLANT & CELL PHYSIOLOGY 2008; 49:30-9. [PMID: 18037610 DOI: 10.1093/pcp/pcm162] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Water transport in plants is greatly dependent on the expression and activity of water transport channels, called aquaporins. Here, we have clarified the tissue- and cell-specific localization of aquaporins in rice plants by immunoblotting and immunocytochemistry using seven isoform-specific aquaporin antibodies. We also examined water transport activities of typical aquaporin family members using a yeast expression system in combination with a stopped-flow spectrophotometry assay. OsPIP1 members, OsPIP2;1, OsTIP1;1 and OsTIP2;2 were expressed in both leaf blades and roots, while OsPIP2;3, OsPIP2;5 and OsTIP2;1 were expressed only in roots. In roots, large amounts of aquaporins accumulated in the region adjacent to the root tip (around 1.5-4 mm from the root tip). In this region, cell-specific localization of the various aquaporin members was observed. OsPIP1 members and OsTIP2;2 accumulated predominantly in the endodermis and the central cylinder, respectively. OsTIP1;1 showed specific localization in the rhizodermis and exodermis. OsPIP2;1, OsPIP2;3 and OsPIP2;5 accumulated in all root cells, but they showed higher levels of accumulation in endodermis than other cells. In the region at 35 mm from the root tip, where aerenchyma develops, aquaporins accumulated at low levels. In leaf blades, OsPIP1 members and OsPIP2;1 were localized mainly in mesophyll cells. OsPIP2;1, OsPIP2;3, OsPIP2;5 and OsTIP2;2 expressed in yeast showed high water transport activities. These results suggest that rice aquaporins with various water transport activities may play distinct roles in facilitating water flux and maintaining the water potential in different tissues and cells.
Collapse
Affiliation(s)
- Junko Sakurai
- Climate Change Research Team, National Agricultural Research Center for Tohoku Region, Morioka, 020-0198 Japan.
| | | | | | | | | |
Collapse
|
44
|
Hirono M, Nakanishi Y, Maeshima M. Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H+-pyrophosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1401-11. [DOI: 10.1016/j.bbabio.2007.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/07/2007] [Revised: 09/05/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
|
45
|
Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL. Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:965-73. [PMID: 17543272 DOI: 10.1016/j.bbabio.2007.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/06/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R-->A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R-->A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F- inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.
Collapse
Affiliation(s)
- Yi-Yuong Hsiao
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu 30043, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hirono M, Nakanishi Y, Maeshima M. Essential amino acid residues in the central transmembrane domains and loops for energy coupling of Streptomyces coelicolor A3(2) H+-pyrophosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:930-9. [PMID: 17498645 DOI: 10.1016/j.bbabio.2007.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/22/2007] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 01/30/2023]
Abstract
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.
Collapse
Affiliation(s)
- Megumi Hirono
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
47
|
Hedlund J, Cantoni R, Baltscheffsky M, Baltscheffsky H, Persson B. Analysis of ancient sequence motifs in the H-PPase family. FEBS J 2006; 273:5183-93. [PMID: 17054711 DOI: 10.1111/j.1742-4658.2006.05514.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The unique family of membrane-bound proton-pumping inorganic pyrophosphatases, involving pyrophosphate as the alternative to ATP, was investigated by characterizing 166 members of the UniProtKB/Swiss-Prot + UniProtKB/TrEMBL databases and available completed genomes, using sequence comparisons and a hidden Markov model based upon a conserved 57-residue region in the loop between transmembrane segments 5 and 6. The hidden Markov model was also used to search the approximately one million sequences recently reported from a large-scale sequencing project of organisms in the Sargasso Sea, resulting in additional 164 partial pyrophosphatase sequences. The strongly conserved 57-residue region was found to contain two nonapeptidyl sequences, mainly consisting of the four 'very early' proteinaceous amino acid residues Gly, Ala, Val and Asp, compatible with an ancient origin of the inorganic pyrophosphatases. The nonapeptide patterns have charged amino acid residues at positions 1, 5 and 9, are apparent binding sites for the substrate and parts of the active site, and were shown to be so specific for these enzymes that they can be used for functional assignments of unannotated genomes.
Collapse
Affiliation(s)
- Joel Hedlund
- IFM Bioinformatics, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
48
|
Zancani M, Skiera LA, Sanders D. Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:311-6. [PMID: 17113565 DOI: 10.1016/j.bbamem.2006.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2006] [Revised: 09/14/2006] [Accepted: 10/10/2006] [Indexed: 10/24/2022]
Abstract
To investigate the possible role of basic residues in H+ translocation through vacuolar-type H+-pumping pyrophosphatases (V-PPases), conserved arginine and lysine residues predicted to reside within or close to transmembrane domains of an Arabidopsis thaliana V-PPase (AVP1) were subjected to site-directed mutagenesis. One of these mutants (K461A) exhibited a "decoupled" phenotype in which proton-pumping but not hydrolysis was inhibited. Similar results were reported previously for an E427Q mutant, resulting in the proposal that E427 might be involved in proton translocation. However, the double mutant E427K/K461E has a wild type phenotype, suggesting that E427 and K461 form a stabilising salt bridge, but that neither residue plays a critical role in proton translocation.
Collapse
Affiliation(s)
- Marco Zancani
- Biology Department (Area 9), University of York, PO Box 373, York YO10 5YW, UK.
| | | | | |
Collapse
|
49
|
Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2;1 is Mainly Localized to the ER Membrane and Shows Root-Specific Accumulation in
Arabidopsis thaliana. ACTA ACUST UNITED AC 2006; 47:1420-6. [PMID: 16954136 DOI: 10.1093/pcp/pcl004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022]
Abstract
We investigated a nodulin 26-like protein NIP2;1, which belongs to the third subgroup of Arabidopsis aquaporins. Histochemical analysis of a promoter-beta-glucuronidase fusion revealed the root-specific expression of NIP2;1. The NIP2;1 protein was detected in young roots, but not in leaves, stems, flowers or siliques. The transient expression of NIP2;1 linked with green fluorescent protein in Arabidopsis cultured cells showed its putative endoplasmic reticulum (ER) localization. NIP2;1 expressed in yeast cells had low water channel activity in the membranes. NIP2;1 may function as a water channel and/or ER channel for other small molecules or ions.
Collapse
Affiliation(s)
- Masahiro Mizutani
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
50
|
Venter M, Groenewald JH, Botha FC. Sequence analysis and transcriptional profiling of two vacuolar H+ -pyrophosphatase isoforms in Vitis vinifera. JOURNAL OF PLANT RESEARCH 2006; 119:469-78. [PMID: 16924561 DOI: 10.1007/s10265-006-0009-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/03/2006] [Accepted: 05/11/2006] [Indexed: 05/04/2023]
Abstract
Gene expression of grapevine vacuolar H(+)-pyrophosphatase (V-PPase EC 3.6.1.1.) during fruit ripening has previously been reported. Here we report on putative multiple V-PPase isoforms in grapevine. In this study a full-length cDNA sequence with an open reading frame of 2,295 nucleotides encoding a V-PPase gene (vpp2: acc. nr. AJ557256) was cloned. Sequence analyses of the deduced amino acid residues and RT-PCR experiments indicated that Vitis vinifera L. has at least two distinct isoforms of the V-PPase gene. Bioinformatic analyses of 13 V-PPase protein sequences revealed two highly conserved motifs associated with pyrophosphate (PPi) binding and response to stress, respectively. Both V-PPase isoforms were expressed at higher levels in the late post-véraison stage of grape berry ripening. Results also showed that the expression of grapevine V-PPase was induced by cold stress.
Collapse
Affiliation(s)
- Mauritz Venter
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, South Africa.
| | | | | |
Collapse
|