1
|
Martínez-Aracil A. [Quantification of CDX2 using H-Score and its prognostic value in colon cancer]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2024; 57:288-294. [PMID: 39393897 DOI: 10.1016/j.patol.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 10/13/2024]
Abstract
Colorectal cancer is the third tumor with the highest incidence in the world population and is the second cause of death according to the Globocan study. CDX2 has been acquiring an important role as a sensitive and specific marker in the diagnosis of colorectal cancer. However, the lack of inclusion of this marker in the pathology guidelines together with the lack of existing studies prevent its daily use. Although multiple studies relate the absence of staining to a worse prognosis, the literature does not define how intense the staining must be to be considered positive or negative. In the present study, the H-Score is described as a method to determine the positivity of CDX2 staining, using free access software called QuPath with a sample of 169 patients. Furthermore, it is suggested that those patients whose tumors had an H-Score for CDX2 less than or equal to 152 points had a significantly shorter recurrence-free interval time compared to those with an H-Score greater than this threshold. For this reason, this study aims to highlight the importance of quantification using digital pathology, as it could be applied in daily practice, and suggests a reference value for CDX2 from which the tumor prognosis may differ.
Collapse
Affiliation(s)
- Adriano Martínez-Aracil
- Servicio de Anatomía Patológica, Bioaraba Research Health Institute, Hospital Universitario de Álava, Vitoria-Gasteiz, Álava, España.
| |
Collapse
|
2
|
Ramavath HN, Konda V, Pullakhandam R. Quercetin Inhibits Hephaestin Expression and Iron Transport in Intestinal Cells: Possible Role of PI3K Pathway. Nutrients 2023; 15:nu15051205. [PMID: 36904205 PMCID: PMC10005583 DOI: 10.3390/nu15051205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Previous studies demonstrated that quercetin, a polyphenolic compound, inhibits the transport of iron by down-regulation of ferroportin (FPN1), an iron export protein. We have previously demonstrated that activation of the PI3K signaling pathway by zinc stimulates the intestinal iron uptake and transport by stimulating the expression of iron regulatory protein 2 (IRP2) dependent divalent metal iron transporter 1 (DMT1, apical iron transporter) expression and caudal-related homeobox transcription factor 2 (CDX2) dependent hephaestin (HEPH, basolateral ferroxidase required for iron oxidation) expression, respectively. Since polyphenols are antagonists of the PI3K pathway, we hypothesized that quercetin might inhibit basolateral iron transport via the down-regulation of hephaestin (HEPH). Here in we investigated the effect of quercetin on iron uptake, transport, and expression of iron transporters in intestinal cells. In differentiated Caco-2 cells grown on permeable supports, quercetin inhibited the basolateral iron transport while increasing the iron uptake, possibly due to higher cellular retention. Further, quercetin down-regulated the protein and mRNA expression of HEPH and FPN1 but not that of IRP2 or DMT1. In addition, quercetin also abrogated the zinc-induced Akt, CDX2 phosphorylation, and HEPH expression. Together these results suggest that inhibition of iron transport by quercetin is mediated via the down-regulation of CDX2-dependent HEPH expression via inhibition of the PI3K pathway.
Collapse
|
3
|
Fritsche K, Boccellato F, Schlaermann P, Koeppel M, Denecke C, Link A, Malfertheiner P, Gut I, Meyer TF, Berger H. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics 2022; 14:193. [PMID: 36585699 PMCID: PMC9801550 DOI: 10.1186/s13148-022-01406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.
Collapse
Affiliation(s)
- Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Koeppel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Denecke
- Center for Bariatric and Metabolic Surgery, Center of Innovative Surgery (ZIC), Department of Surgery, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Jahan S, Awaja N, Hess B, Hajjar S, Sad S, Lohnes D. The transcription factor Cdx2 regulates inflammasome activity through expression of the NLRP3 suppressor TRIM31 to maintain intestinal homeostasis. J Biol Chem 2022; 298:102386. [PMID: 35985421 PMCID: PMC9508567 DOI: 10.1016/j.jbc.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
The intestine-specific transcription factor Cdx2 is essential for intestinal homeostasis and has been implicated in the pathogenesis of disorders including inflammatory bowel disease. However, the mechanism by which Cdx2 influences intestinal disease is not clear. Here, we present evidence supporting a novel Cdx2–TRIM31–NLRP3 (NLR family, pyrin domain containing 3) signaling pathway, which may represent a mechanistic means by which Cdx2 impacts intestinal inflammation. We found that conditional loss of Cdx function resulted in an increase in proinflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, in the mouse colon. We further show that TRIM31, which encodes a suppressor of NLRP3 (a central component of the NLRP3 inflammasome complex) is a novel Cdx2 target gene and is attenuated in the colon of Cdx conditional mutants. Consistent with this, we found that attenuation of TRIM31 in Cdx mutant intestine occurs concomitant with elevated levels of NLRP3 and an increase in inflammasome products. We demonstrate that specific inhibition of NLRP3 activity significantly reduced IL-1β and IL-6 levels and extended the life span of Cdx conditional mutants, reflecting the therapeutic potential of targeting NLRP3. Tumor necrosis factor-alpha levels were also induced independent of NLRP3, potentially via elevated activity of the proinflammatory NF-κB signaling pathway in Cdx mutants. Finally, in silico analysis of ulcerative colitis patients revealed attenuation of CDX2 and TRIM31 expression coincident with enhanced expression of proinflammatory cytokines. We conclude that the novel Cdx2–TRIM31–NLRP3 signaling pathway promotes proinflammatory cytokine expression, and its inhibition may have therapeutic potential in human intestinal diseases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nidaa Awaja
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Ramavath HN, Chandra Mashurabad P, Yaduvanshi PS, Veleri S, Sharp PA, Pullakhandam R. Zinc induces hephaestin expression via a PI3K-CDX2 dependent mechanism to regulate iron transport in intestinal Caco-2 cells. Biochem Biophys Res Commun 2022; 626:1-7. [DOI: 10.1016/j.bbrc.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
|
6
|
Guo Y, Xu C, Gong R, Hu T, Zhang X, Xie X, Chi J, Li H, Xia X, Liu X. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathog 2022; 14:13. [PMID: 35331316 PMCID: PMC8944046 DOI: 10.1186/s13099-022-00486-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The chronic infection with Helicobacter pylori (H. pylori), especially cytotoxin-associated gene A-positive (CagA+) strains, has been associated with various extragastric disorders. Evaluating the potential impacts of virulence factor CagA on intestine may provide a better understanding of H. pylori pathogenesis such as colitis. The intestinal mucosal barrier is essential for maintaining its integrity and functions. However, how persistent CagA+ H. pylori colonization influences barrier disruption and thereby affects chronic colitis is not fully understood. RESULTS Chronic colitis models of CagA+ H. pylori-colonized mice treated with 2% Dextran sulphate sodium (DSS) were established to assess the disease activity and pertinent expression of tight junction proteins closely related to mucosal integrity. The aggravating effect of CagA+ H. pylori infection on DSS-induced chronic colitis was confirmed in mouse models. In addition, augmented Claudin-2 expression was detected in CagA+ H. pylori infection conditions and selected for mechanistic analysis. Next, GES-1 human gastric epithelial cells were cultured with CagA+ H. pylori or a recombinant CagA protein, and exosomes isolated from conditioned media were then identified. We assessed the Claudin-2 levels after exposure to CagA+ exosomes, CagA- exosomes, and IFN-γ incubation, revealing that CagA+ H. pylori compromised the colonic mucosal barrier and facilitated IFN-γ-induced intestinal epithelial destruction through CagA-containing exosome-mediated mechanisms. Specifically, CagA upregulated Claudin-2 expression at the transcriptional level via a CDX2-dependent mechanism to slow the restoration of wounded mucosa in colitis in vitro. CONCLUSIONS These data suggest that exosomes containing CagA facilitate CDX2-dependent Claudin-2 maintenance. The exosome-dependent mechanisms of CagA+ H. pylori infection are indispensable for damaging the mucosal barrier integrity in chronic colitis, which may provide a new idea for inflammatory bowel disease (IBD) treatment.
Collapse
Affiliation(s)
- Yinjie Guo
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China
| | - Renjie Gong
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Tingzi Hu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xue Zhang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xiaoran Xie
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Jingshu Chi
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Huan Li
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xiujuan Xia
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China.
| |
Collapse
|
7
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
8
|
Fallah S, Beaulieu JF. Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biol Open 2021; 10:272600. [PMID: 34693980 PMCID: PMC8609238 DOI: 10.1242/bio.058904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal cell lineage differentiation is a tightly regulated mechanism that involves several intracellular signaling pathways affecting the expression of a variety of transcription factors, which ultimately regulate cell specific gene expression. Absorptive and goblet cells are the two main epithelial cell types of the intestine. Previous studies from our group using an shRNA knockdown approach have shown that YAP1, one of the main Hippo pathway effectors, inhibits the differentiation of these two cell types. In the present study, we show that YAP1 activity is regulated by Src family kinases (SFKs) in these cells. Inhibition of SFKs led to a sharp reduction in YAP1 expression at the protein level, an increase in CDX2 and the P1 forms of HNF4α and of absorptive and goblet cell differentiation specific markers. Interestingly, in Caco-2/15 cells which express both YAP1 and its paralog TAZ, TAZ was not reduced by the inhibition of SFKs and its specific knockdown rather impaired absorptive cell differentiation indicating that YAP1 and TAZ are not always interchangeable for regulating cell functions. This article has an associated First Person interview with the first author of the paper. Summary: Inhibition of Src family kinases leads to a sharp reduction in YAP1 expression and an increase in CDX2 and HNF4α, two regulators of intestinal cell differentiation, while its paralog TAZ appears not to be directly involved.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
9
|
Ashry M, Rajput SK, Folger JK, Yang C, Knott JG, Smith GW. Follistatin treatment modifies DNA methylation of the CDX2 gene in bovine preimplantation embryos. Mol Reprod Dev 2020; 87:998-1008. [PMID: 32776625 PMCID: PMC7670970 DOI: 10.1002/mrd.23409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023]
Abstract
CDX2 plays a crucial role in the formation and maintenance of the trophectoderm epithelium in preimplantation embryos. Follistatin supplementation during the first 72 hr of in vitro culture triggers a significant increase in blastocyst rates, CDX2 expression, and trophectoderm cell numbers. However, the underlying epigenetic mechanisms by which follistatin upregulates CDX2 expression are not known. Here, we investigated whether stimulatory effects of follistatin are linked to alterations in DNA methylation within key regulatory regions of the CDX2 gene. In vitro-fertilized (IVF) zygotes were cultured with or without 10 ng/ml of recombinant human follistatin for 72 hr, then cultured without follistatin until Day 7. The bisulfite-sequencing analysis revealed differential methylation (DM) at specific CpG sites within the CDX2 promoter and intron 1 following follistatin treatment. These DM CpG sites include five hypomethylated sites at positions -1384, -1283, -297, -163, and -23, and four hypermethylated sites at positions -1501, -250, -243, and +20 in the promoter region. There were five hypomethylated sites at positions +3060, +3105, +3219, +3270, and +3545 in intron 1. Analysis of transcription factor binding sites using MatInspector combined with a literature search revealed a potential association between differentially methylated CpG sites and putative binding sites for key transcription factors involved in regulating CDX2 expression. The hypomethylated sites are putative binding sites for FXR, STAF, OCT1, KLF, AP2 family, and P53 protein, whereas the hypermethylated sites are putative binding sites for NRSF. Collectively, our results suggest that follistatin may increase CDX2 expression in early bovine embryos, at least in part, by modulating DNA methylation at key regulatory regions.
Collapse
Affiliation(s)
- Mohamed Ashry
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sandeep K. Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Fertility Labs of Colorado, CCRM, Lone Tree, Colorado
| | - Joseph K. Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Chunyan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - George W. Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Tumour suppressor 15-hydroxyprostaglandin dehydrogenase induces differentiation in colon cancer via GLI1 inhibition. Oncogenesis 2020; 9:74. [PMID: 32814764 PMCID: PMC7438320 DOI: 10.1038/s41389-020-00256-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established risk factor for colorectal cancer. We and others have shown that colorectal cancer patients with elevated cysteinyl leukotriene receptor 2 (CysLT2R) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) levels exhibit good prognoses. However, both CysLT2R and 15-PGDH, which act as tumour suppressors, are often suppressed in colorectal cancer. We previously reported that leukotriene C4 (LTC4)-induced differentiation in colon cancer via CysLT2R signalling. Here, we investigated the involvement of Hedgehog (Hh)-GLI1 signalling, which is often hyperactivated in colorectal cancer. We found that the majority of colorectal cancer patients had high-GLI1 expression, which was negatively correlated with CysLT2R, 15-PGDH, and Mucin-2 and overall survival compared with the low-GLI1 group. LTC4-induced 15-PGDH downregulated both the mRNA and protein expression of GLI1 in a protein kinase A (PKA)-dependent manner. Interestingly, the LTC4-induced increase in differentiation markers and reduction in Wnt targets remained unaltered in GLI1-knockdown cells. The restoration of GLI1 in 15-PGDH-knockdown cells did not ameliorate the LTC4-induced effects, indicating the importance of both 15-PGDH and GLI1. LTC4-mediated reduction in the DCLK1 and LGR5 stemness markers in colonospheres was abolished in cells lacking 15-PGDH or GLI1. Both DCLK1 and LGR5 were highly increased in tumour tissue compared with the matched controls. Reduced Mucin-2 levels were observed both in zebrafish xenografts with GLI1-knockdown cells and in the cysltr2-/- colitis-associated colon cancer (CAC) mouse model. Furthermore, GLI1 expression was positively correlated with stemness and negatively correlated with differentiation in CRC patients when comparing tumour and mucosal tissues. In conclusion, restoring 15-PGDH expression via CysLT2R activation might benefit colorectal cancer patients.
Collapse
|
11
|
Fallah S, Beaulieu JF. The Hippo Pathway Effector YAP1 Regulates Intestinal Epithelial Cell Differentiation. Cells 2020; 9:cells9081895. [PMID: 32823612 PMCID: PMC7463744 DOI: 10.3390/cells9081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
12
|
N-Glycoproteins Have a Major Role in MGL Binding to Colorectal Cancer Cell Lines: Associations with Overall Proteome Diversity. Int J Mol Sci 2020; 21:ijms21155522. [PMID: 32752259 PMCID: PMC7432225 DOI: 10.3390/ijms21155522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.
Collapse
|
13
|
Wu CC, Hsu TW, Yeh CC, Huang HB. The role of transcription factor caudal-related homeobox transcription factor 2 in colorectal cancer. Tzu Chi Med J 2020; 32:305-311. [PMID: 33163374 PMCID: PMC7605288 DOI: 10.4103/tcmj.tcmj_49_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant tumors in humans and causes mass mortality. In the age of precise medicine, more and more subtypes of CRC were classified. The caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor which is implicated in differentiation, proliferation, cell-adhesion, and migration. The loss of CDX2 in immunohistochemical stain was reported to be a prognostic factor of colon cancer, but the clinical application remained controversial. Most of the CRCs expressed or over-expressed CDX2. Homeobox genes can display either an oncogenic or a tumor-suppressing activity. CDX2 regulates the developing intestinal epithelium and CRC by different pathways. The complex regulation of CDX2 and its complex targets cause the difficulties of application for CDX2 in the prediction of prognosis. However, CDX2 is a potential biomarker applied in the precise classification of CRC for personalized medicine. This review partially clarifies the role of CDX2 in CRC.
Collapse
Affiliation(s)
- Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ta-Wen Hsu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsien-Bing Huang
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
14
|
Inoue Y, Kishida T, Kotani SI, Akiyoshi M, Taga H, Seki M, Ukimura O, Mazda O. Direct conversion of fibroblasts into urothelial cells that may be recruited to regenerating mucosa of injured urinary bladder. Sci Rep 2019; 9:13850. [PMID: 31554870 PMCID: PMC6761134 DOI: 10.1038/s41598-019-50388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023] Open
Abstract
Urothelial cells play essential roles in protection of urine exudation and bacterial invasion at the urothelial mucosa, so that defect or damage of urothelial cells associated with urinary tract diseases may cause serious problems. If a sufficient number of functional urothelial cells are prepared in culture and transplanted into the damaged urothelial lesions, such technology may provide beneficial effects to patients with diseases of the urinary tract. Here we found that human adult dermal fibroblasts were converted into urothelial cells by transducing genes for four transcription factors, FOXA1, TP63, MYCL and KLF4 (FTLK). The directly converted urothelial cells (dUCs) formed cobblestone-like colonies and expressed urothelium-specific markers. dUCs were successfully expanded and enriched after serial passages using a specific medium that we optimized for the cells. The passaged dUCs showed similar genome-wide gene expression profiles to normal urothelial cells and had a barrier function. The FTLK-transduced fibroblasts were also converted into urothelial cells in vivo and recruited to the regenerating urothelial tissue after they were transplanted into the bladder of mice with interstitial cystitis. Our technology may provide a promising solution for a number of patients with urinary tract disorders.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shin-Ichiro Kotani
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mika Akiyoshi
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,CellAxia Inc. 1-10-9-6F Nihonbashi Horidome-cho, Chuo-ku, Tokyo, 103-0012, Japan
| | - Hideto Taga
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Makoto Seki
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,CellAxia Inc. 1-10-9-6F Nihonbashi Horidome-cho, Chuo-ku, Tokyo, 103-0012, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
15
|
Vomhof-DeKrey EE, Lee J, Lansing J, Brown C, Darland D, Basson MD. Schlafen 3 knockout mice display gender-specific differences in weight gain, food efficiency, and expression of markers of intestinal epithelial differentiation, metabolism, and immune cell function. PLoS One 2019; 14:e0219267. [PMID: 31260507 PMCID: PMC6602453 DOI: 10.1371/journal.pone.0219267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Self-renewal and differentiation are essential for intestinal epithelium absorptive functioning and adaptation to pathological states such as short gut syndrome, ulcers, and inflammatory bowel disease. The rodent Slfn3 and its human analog Slfn12 are critical in regulating intestinal epithelial differentiation. We sought to characterize intestinal function in Slfn3 knockout (KO) mice. Male and female pair-fed Slfn3KO mice gained less weight with decreased food efficiency than wild type (WT) mice, with more pronounced effects in females. RNA sequencing performed on intestinal mucosa of Slfn3KO and WT mice showed gene ontology decreases in cell adhesion molecule signaling, tumor necrosis factor receptor binding, and adaptive immune cell proliferation/functioning genes in Slfn3KO mice, with greater effects in females. qPCR analysis of fatty acid metabolism genes, Pla2g4c, Pla2g2f, and Cyp3c55 revealed an increase in Pla2g4c, and a decrease in Pla2g2f in Slfn3KO females. Additionally, adipogenesis genes, Fabp4 and Lpl were decreased and ketogenesis gene Hmgcs2 was increased in female Slfn3KO mice. Sequencing did not reveal significant changes in differentiation markers, so qPCR was utilized. Slfn3KO tended to have decreased expression of intestinal differentiation markers sucrase isomaltase, dipeptidyl peptidase 4, villin 1, and glucose transporter 1 (Glut1) vs. WT males, although these trends did not achieve statistical significance unless data from several markers was pooled. Differentiation markers, Glut2 and sodium-glucose transporter 1 (SGLT1), did show statistically significant sex-dependent differences. Glut2 mRNA was reduced in Slfn3KO females, while SGLT1 increased in Slfn3KO males. Notch2 and Cdx2 were only increased in female Slfn3KO mice. Although Slfn3KO mice gain less weight and decreased food efficiency, their biochemical phenotype is more subtle and suggests a complex interplay between gender effects, Slfn3, and another regulatory pathway yet to be identified that compensates for the chronic loss of Slfn3.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, United States of America
| | - Jun Lee
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, United States of America
| | - Jack Lansing
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, United States of America
| | - Chris Brown
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, United States of America
| | - Diane Darland
- Department of Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Marc D. Basson
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
16
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
17
|
Xu W, Zhu Y, Shen W, Ding W, Wu T, Guo Y, Chen X, Zhou M, Chen Y, Cui L, Du P. Combination of CDX2 expression and T stage improves prognostic prediction of colorectal cancer. J Int Med Res 2019; 47:1829-1842. [PMID: 30616445 PMCID: PMC6567745 DOI: 10.1177/0300060518819620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Prognostic prediction of colorectal cancer (CRC) remains challenging because of its heterogeneity. Aberrant expression of caudal-type homeobox transcription factor 2 (CDX2) is strongly correlated with the prognosis of CRC. METHODS Tissue samples of patients with CRC who underwent surgery in Xinhua Hospital (Shanghai, China) from January 2010 to January 2013 were collected. CDX2 expression was semiquantitatively evaluated via immunohistochemistry. RESULTS In total, 138 patients were enrolled in this study from a prospectively maintained institutional cancer database. The median follow-up duration was 57.5 months (interquartile range, 17.0-71.0 months). In the Cox proportional hazards model, low CDX2 expression combined with stage T4 CRC was significantly the worst prognostic factor for disease-free survival (hazard ratio = 7.020, 95% confidence interval = 3.922-12.564) and overall survival (hazard ratio = 5.176, 95% CI = 3.237-10.091). In the Kaplan-Meier survival analysis, patients with low CDX2 expression and stage T4 CRC showed significantly worse disease-free survival and overall survival than those with low CDX2 expression alone. CONCLUSION CDX2 expression combined with the T stage was more accurate for predicting the prognosis of CRC. Determining the prognosis of CRC using more than one variable is valuable in developing appropriate treatment and follow-up strategies.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilian Zhu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Shen
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingyu Wu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuegui Guo
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobing Chen
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Cui
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
19
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
20
|
Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors. Methods Mol Biol 2019; 1765:57-77. [PMID: 29589301 DOI: 10.1007/978-1-4939-7765-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins' gene regulatory activity of possible target genes. In the first part, a bioinformatic approach to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay.We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase/β-galactosidase (Dual Light) assay presented is a highly sensitive assay that can monitor small changes in the promoter/enhancer activity and includes an internal control monitoring transfection efficiency.
Collapse
|
21
|
CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis 2019; 10:26. [PMID: 30631044 PMCID: PMC6328578 DOI: 10.1038/s41419-018-1263-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.
Collapse
|
22
|
Danielsen ET, Olsen AK, Coskun M, Nonboe AW, Larsen S, Dahlgaard K, Bennett EP, Mitchelmore C, Vogel LK, Troelsen JT. Intestinal regulation of suppression of tumorigenicity 14 (ST14) and serine peptidase inhibitor, Kunitz type -1 (SPINT1) by transcription factor CDX2. Sci Rep 2018; 8:11813. [PMID: 30087389 PMCID: PMC6081401 DOI: 10.1038/s41598-018-30216-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
The type II membrane-anchored serine protease, matriptase, encoded by suppression of tumorgenicity-14 (ST14) regulates the integrity of the intestinal epithelial barrier in concert with its inhibitor, HAI-1 encoded by serine peptidase inhibitor, Kunitz type -1 (SPINT1). The balance of the protease/inhibitor gene expression ratio is vital in preventing the oncogenic potential of matriptase. The intestinal cell lineage is regulated by a transcriptional regulatory network where the tumor suppressor, Caudal homeobox 2 (CDX2) is considered to be an intestinal master transcription factor. In this study, we show that CDX2 has a dual function in regulating both ST14 and SPINT1, gene expression in intestinal cells. We find that CDX2 is not required for the basal ST14 and SPINT1 gene expression; however changes in CDX2 expression affects the ST14/SPINT1 mRNA ratio. Exploring CDX2 ChIP-seq data from intestinal cell lines, we identified genomic CDX2-enriched enhancer elements for both ST14 and SPINT1, which regulate their corresponding gene promoter activity. We show that CDX2 displays both repressive and enhancing regulatory abilities in a cell specific manner. Together, these data reveal new insight into transcriptional mechanisms controlling the intestinal matriptase/inhibitor balance.
Collapse
Affiliation(s)
- E Thomas Danielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krüger Olsen
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, University of Copenhagen, DK-2730, Herlev, Denmark
| | - Annika W Nonboe
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathy Mitchelmore
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lotte Katrine Vogel
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
23
|
Davidsen J, Larsen S, Coskun M, Gögenur I, Dahlgaard K, Bennett EP, Troelsen JT. The VTI1A-TCF4 colon cancer fusion protein is a dominant negative regulator of Wnt signaling and is transcriptionally regulated by intestinal homeodomain factor CDX2. PLoS One 2018; 13:e0200215. [PMID: 29975781 PMCID: PMC6033461 DOI: 10.1371/journal.pone.0200215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Sequencing of primary colorectal tumors has identified a gene fusion in approximately 3% of colorectal cancer patients of the VTI1A and TCF7L2 genes, encoding a VTI1A-TCF4 fusion protein containing a truncated TCF4. As dysregulation of the Wnt signaling pathway is associated with colorectal cancer development and progression, the functional properties and transcriptional regulation of the VTI1A-TCF4 fusion protein may also play a role in these processes. Functional characteristics of the VTI1A-TCF4 fusion protein in Wnt signaling were analyzed in NCI-H508 and LS174T colon cancer cell lines. The NCI-H508 cell line, containing the VTI1A-TCF7L2 fusion gene, showed no active Wnt signaling, and overexpression of the VTI1A-TCF4 fusion protein in LS174T cells along with a Wnt signaling luciferase reporter plasmid showed inhibition of activity. The transcriptional regulation of the VTI1A-TCF4 fusion gene was investigated in LS174T cells where the activity of the VTI1A promoter was compared to that of the TCF7L2 promoter, and the transcription factor CDX2 was analyzed for gene regulatory activity of the VTI1A promoter through luciferase reporter gene assay using colon cancer cell lines as a model. Transfection of LS174T cells showed that the VTI1A promoter is highly active compared to the TCF7L2 promoter, and that CDX2 activates transcription of VTI1A. These results suggest that the VTI1A-TCF4 fusion protein is a dominant negative regulator of the Wnt signaling pathway, and that transcription of VTI1A is activated by CDX2.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Herlev Hospital, Herlev, Denmark
| | - Ismail Gögenur
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Mubarokah N, Hulin JA, Mackenzie PI, McKinnon RA, Haines AZ, Hu DG, Meech R. Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 α Is Mediated by a Novel Composite Regulatory Element. Mol Pharmacol 2018; 93:541-552. [PMID: 29519853 DOI: 10.1124/mol.117.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
Abstract
The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.
Collapse
Affiliation(s)
- Nurul Mubarokah
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
25
|
Fan HB, Zhai ZY, Li XG, Gao CQ, Yan HC, Chen ZS, Wang XQ. CDX2 Stimulates the Proliferation of Porcine Intestinal Epithelial Cells by Activating the mTORC1 and Wnt/β-Catenin Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112447. [PMID: 29156556 PMCID: PMC5713414 DOI: 10.3390/ijms18112447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/β-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/β-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/β-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/β-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/β-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hong-Bo Fan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Ya Zhai
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Chun-Qi Gao
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Chao Yan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, St. John's University, Queens, NY 11439, USA.
| | - Xiu-Qi Wang
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Pinto R, Hansen L, Hintze J, Almeida R, Larsen S, Coskun M, Davidsen J, Mitchelmore C, David L, Troelsen JT, Bennett EP. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression. Nucleic Acids Res 2017; 45:e123. [PMID: 28472465 PMCID: PMC5570051 DOI: 10.1093/nar/gkx371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/30/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide a strategy for characterization of dose-dependent effector functions of essential genes that require absence of endogenous gene expression.
Collapse
Affiliation(s)
- Rita Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Almeida
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Cathy Mitchelmore
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Leonor David
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Khan N, Binder L, Pantakani DVK, Asif AR. MPA Modulates Tight Junctions' Permeability via Midkine/PI3K Pathway in Caco-2 Cells: A Possible Mechanism of Leak-Flux Diarrhea in Organ Transplanted Patients. Front Physiol 2017; 8:438. [PMID: 28694783 PMCID: PMC5483464 DOI: 10.3389/fphys.2017.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer. In the present study, we investigated the possible involvement of Midkine dependent PI3K pathway in alteration of TJs under MPA treatment. Caco-2 cells were grown as monolayer to develop TJs and were treated for 72 h with DMSO (control) or MPA in presence and absence of Midkine inhibitor (iMDK) or PI3K inhibitors (LY/AMG). Caco-2 monolayer integrity was assessed by transepithelial electrical resistance (TEER) and FITC-dextran assays. Our functional assays showed that PI3K inhibitors (LY/AMG) can significantly inhibit the compromised TJs integrity of MPA-treated Caco-2 cells monolayer. Chromatin immunoprecipitation analyses showed a significant epigenetic activation of Midkine, PI3K, Cdx-2, and Cldn-2 genes and epigenetic repression of Cldn-1 gene after MPA treatment. The MPA-induced epigenetic alterations were further confirmed by mRNA and protein expression analysis. Collectively, our data shows that PI3K pathway as the downstream target of Midkine which in turn modulates p38MAPK and pAKT signaling to alter TJs permeability in Caco-2 cell monolayers treated with MPA. These results highlight the possible use of either Midkine or PI3K inhibitors as therapeutic agents to prevent MPA induced GI disturbances.
Collapse
Affiliation(s)
- Niamat Khan
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Lutz Binder
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - D V Krishna Pantakani
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| |
Collapse
|
28
|
Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ 2017; 24:819-831. [PMID: 28234358 PMCID: PMC5423107 DOI: 10.1038/cdd.2017.14] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Impairment in gut epithelial integrity and barrier function is associated with many diseases. The homeostasis of intestinal barrier is based on a delicate regulation of epithelial proliferation and differentiation. AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism, and cellular metabolites are intrinsically involved in epigenetic modifications governing cell differentiation. We aimed to evaluate the regulatory role of AMPK on intestinal epithelial development and barrier function. In this study, AMPK activator (AICAR) improved the barrier function of Caco-2 cells as indicated by increased transepithelial electrical resistance and reduced paracellular FITC-dextran permeability; consistently, AICAR enhanced epithelial differentiation and tight junction formation. Transfection of Caco-2 cells with AMPK WT plasmid, which enhances AMPK activity, improved epithelial barrier function and epithelial differentiation, while K45R (AMPK dominant negative mutant) impaired; these changes were correlated with the expression of caudal type homeobox 2 (CDX2), the key transcription factor committing cells to intestinal epithelial lineage. CDX2 deficiency abolished intestinal differentiation promoted by AMPK activation. Mechanistically, AMPK inactivation was associated with polycomb repressive complex 2 regulated enrichment of H3K27me3, the inhibitory histone modification, and lysine-specific histone demethylase-1-mediated reduction of H3K4me3, a permissive histone modification. Those histone modifications provide a mechanistic link between AMPK and CDX2 expression. Consistently, epithelial AMPK knockout in vivo reduced CDX2 expression, impaired intestinal barrier function, integrity and ultrastructure of tight junction, and epithelial cell migration, promoted intestinal proliferation and exaggerated dextran sulfate sodium-induced colitis. In summary, AMPK enhances intestinal barrier function and epithelial differentiation via promoting CDX2 expression, which is partially mediated by altered histone modifications in the Cdx2 promoter.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| | - Qiyuan Yang
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Carl J Rogers
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| |
Collapse
|
29
|
Jørgensen S, Coskun M, Homburg KM, Pedersen OBV, Troelsen JT. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells. PLoS One 2016; 11:e0164555. [PMID: 27755609 PMCID: PMC5068786 DOI: 10.1371/journal.pone.0164555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report demonstrating the CDX2 regulation of HOXB4 gene expression in the developed intestinal epithelium, indicating a possible role for HOXB4 in intestinal homeostasis.
Collapse
Affiliation(s)
- Steffen Jørgensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole B. V. Pedersen
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Jesper T. Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
30
|
Liebert A, Jones BL, Danielsen ET, Olsen AK, Swallow DM, Troelsen JT. In Vitro Functional Analyses of Infrequent Nucleotide Variants in the Lactase Enhancer Reveal Different Molecular Routes to Increased Lactase Promoter Activity and Lactase Persistence. Ann Hum Genet 2016; 80:307-318. [PMID: 27714771 PMCID: PMC5129500 DOI: 10.1111/ahg.12167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
The genetic trait that allows intestinal lactase to persist into adulthood in some 35% of humans worldwide operates at the level of transcription, the effect being caused by cis‐acting nucleotide changes upstream of the lactase gene (LCT). A single nucleotide substitution, ‐13910 C>T, the first causal variant to be identified, accounts for lactase persistence over most of Europe. Located in a region shown to have enhancer function in vitro, it causes increased activity of the LCT promoter in Caco‐2 cells, and altered transcription factor binding. Three other variants in close proximity, ‐13907 C>G, ‐13915 T>C and ‐14010 G>C, were later shown to behave in a similar manner. Here, we study four further candidate functional variants. Two, ‐14009 T>G and ‐14011 C>T, adjacent to the well‐studied ‐14010 G>C variant, also have a clear effect on promoter activity upregulation as assessed by transfection assays, but notably are involved in different molecular interactions. The results for the two other variants (‐14028 T>C, ‐13779 G>C) were suggestive of function, ‐14028*C showing a clear change in transcription factor binding, but no obvious effect in transfections, while ‐13779*G showed greater effect in transfections but less on transcription factor binding. Each of the four variants arose on independent haplotypic backgrounds with different geographic distribution.
Collapse
Affiliation(s)
- Anke Liebert
- Research Department of Genetics Evolution and Environment, University College London, London, UK
| | - Bryony L Jones
- Research Department of Genetics Evolution and Environment, University College London, London, UK
| | | | - Anders Krüger Olsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dallas M Swallow
- Research Department of Genetics Evolution and Environment, University College London, London, UK
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
31
|
Coskun M, Soendergaard C, Joergensen S, Dahlgaard K, Riis LB, Nielsen OH, Sandelin A, Troelsen JT. Regulation of Laminin γ2 Expression by CDX2 in Colonic Epithelial Cells Is Impaired During Active Inflammation. J Cell Biochem 2016; 118:298-307. [DOI: 10.1002/jcb.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section; Herlev Hospital; University of Copenhagen; Herlev DK-2730 Denmark
- The Bioinformatics Centre; Department of Biology and Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen DK-2200 Denmark
| | - Christoffer Soendergaard
- Department of Gastroenterology, Medical Section; Herlev Hospital; University of Copenhagen; Herlev DK-2730 Denmark
| | - Steffen Joergensen
- Department of Science, Systems and Models; Roskilde University; Roskilde DK-4000 Denmark
| | - Katja Dahlgaard
- Department of Science, Systems and Models; Roskilde University; Roskilde DK-4000 Denmark
| | - Lene Buhl Riis
- Department of Pathology; Herlev Hospital; University of Copenhagen; Herlev DK-2730 Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section; Herlev Hospital; University of Copenhagen; Herlev DK-2730 Denmark
| | - Albin Sandelin
- The Bioinformatics Centre; Department of Biology and Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen DK-2200 Denmark
| | | |
Collapse
|
32
|
Walsh MF, Hermann R, Lee JH, Chaturvedi L, Basson MD. Schlafen 3 Mediates the Differentiating Effects of Cdx2 in Rat IEC-Cdx2L1 Enterocytes. J INVEST SURG 2016; 28:202-7. [PMID: 26268420 DOI: 10.3109/08941939.2015.1005780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM Mature, differentiated enterocytes are essential for normal gut function and critical to recovery from pathological conditions. Little is known about the factors that regulate intestinal epithelial cell differentiation in the adult intestine. The transcription factor, Cdx2, involved in enterocytic differentiation, remains expressed in the adult. Since we have implicated Slfn3 in differentiation in vivo and in vitro, we examined whether it also mediated differentiation in the IEC-Cdx2-L1 cell model of differentiation. MATERIALS AND METHODS IEC-Cdx2-L1 cells, permanently transfected with Cdx2 under the control of isopropyl-β-D-thiogalactoside (IPTG), were stimulated to differentiate by 16-day exposure to IPTG. Transcript levels of Cdx2, Slfn 3, and villin were determined by quantitative reverse transcriptase-polymerase chain reaction of mRNA isolated from IPTG-treated and control cells. Slfn3 expression was lowered with specific siRNA to investigate the role of Slfn3 in Cdx2-driven villin expression in IPTG-differentiated cells. RESULTS Slfn3 and villin expression were significantly greater in IPTG-treated cells. Slfn3 siRNA lowered Slfn3 expression and abolished the IPTG-induced rise in villin expression (p < .05 by ANOVA); Cdx2 expression was unaffected by Slfn3 siRNA. DISCUSSION The data indicate that the presence of Slfn3 is required for Cdx2 to induce villin expression, and thus differentiation. However, Slfn3 must also promote differentiation of Cdx2 independently since IEC-6 cells that do not normally express Cdx2 can be differentiated by a variety of Slfn3-dependent mechanisms.
Collapse
Affiliation(s)
- Mary F Walsh
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
33
|
Olsen J, Eiholm S, Kirkeby LT, Espersen MLM, Jess P, Gögenür I, Olsen J, Troelsen JT. CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer. Exp Mol Pathol 2015; 100:59-66. [PMID: 26551082 DOI: 10.1016/j.yexmp.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Homeobox genes are often deregulated in cancer and can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. CDX2 has been implicated in differentiation, proliferation, cell adhesion, and migration. In this study, we investigated CDX2 mRNA and protein expression in relation to the clinicopathological characteristics of colon cancer, including mismatch repair status and recurrence risk. METHODS Tumor samples were obtained from colon cancer patients. Biopsies from tumor tissue and normal adjacent tissue were fixed in liquid nitrogen for RNA extraction or in formalin and paraffin embedded (FFPE) for immunohistochemical staining. CDX2 mRNA expression was evaluated by RT-qPCR. FFPE sections were stained for MLH1, MSH2, MSH6, PMS2, and CDX2. RESULTS A total of 191 patient samples were included in the study and analyzed by immunohistochemistry. Of these samples, 97 were further evaluated by RT-qPCR. There was no significant difference in CDX2 mRNA expression between tumor and normal tissues. CDX2 mRNA expression was significantly lower in right-sided tumors (p<0.05), poorly differentiated tumors (p<0.05), and MMR-deficient tumors (p<0.05). Similarly, CDX2 protein expression was more often low or absent in right-sided tumors (p<0.01), poorly differentiated tumors (p<0.001), and MMR-deficient tumors (p<0.001). Low CDX2 protein or mRNA expression was not associated with recurrence risk. CONCLUSION We found that CDX2 downregulation is associated with MMR deficiency, right-sided tumors, and poor differentiation at both the mRNA and protein level. Whether CDX2 plays an active role in tumor progression in MSI/MMR-deficient tumors remains to be elucidated.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark; Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - S Eiholm
- Department of Pathology, Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - P Jess
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark.
| | - I Gögenür
- Department of Surgery, Koege-Roskilde University Hospital, Køgevej 7-13, DK-4000, Roskilde, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| | - J Olsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| |
Collapse
|
34
|
Kong J, Sai H, Crissey MAS, Jhala N, Falk GW, Ginsberg GG, Abrams JA, Nakagawa H, Wang K, Rustgi AK, Wang TC, Lynch JP. Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget 2015; 6:32980-3005. [PMID: 26460825 PMCID: PMC4741744 DOI: 10.18632/oncotarget.5431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cdx2, an intestine specific transcription factor, is expressed in Barrett's esophagus (BE). We sought to determine if esophageal Cdx2 expression would accelerate the onset of metaplasia in the L2-IL-1β transgenic mouse model for Barrett's-like metaplasia. The K14-Cdx2::L2-IL-1β double transgenic mice had half as many metaplastic nodules as control L2-IL-1β mice. This effect was not due to a reduction in esophageal IL-1β mRNA levels nor diminished systemic inflammation. The diminished metaplasia was due to an increase in apoptosis in the K14-Cdx2::L2-IL-1β mice. Fluorescence activated cell sorting of immune cells infiltrating the metaplasia identified a population of CD11b+Gr-1+ cells that are significantly reduced in K14-Cdx2::L2-IL-1β mice. These cells have features of immature granulocytes and have immune-suppressing capacity. We demonstrate that the apoptosis in K14-Cdx2::L2-IL-1β mice is CD8+ T cell dependent, which CD11b+Gr-1+ cells are known to inhibit. Lastly, we show that key regulators of CD11b+Gr-1+ cell development, IL-17 and S100A9, are significantly diminished in the esophagus of K14-Cdx2::L2-IL-1β double transgenic mice. We conclude that metaplasia development in this mouse model for Barrett's-like metaplasia requires suppression of CD8+ cell dependent apoptosis, likely mediated by immune-suppressing CD11b+Gr-1+ immature myeloid cells.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Sai
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ann S. Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julian A. Abrams
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Wang
- Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Wang
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Li S, Chen X, Zhou L, Wang BM. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells. Oncol Rep 2015; 34:2674-82. [PMID: 26324224 DOI: 10.3892/or.2015.4207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
The farnesoid X receptor (FXR) signaling pathway is known to be involved in the metabolism of bile acid, glucose and lipid. In the present study, we demonstrated that 400 µmol/l deoxycholic acid (DCA) stimulation promotes the proliferation of normal human gastric epithelial cells (GES-1). In addition, DCA activated FXR and increased the expression of intestinal metaplasia genes, including caudal-related homeobox transcription factor 2 (Cdx2) and mucin 2 (MUC2). The treatment of FXR agonist GW4064/antagonist guggulsterone (Gug.) significantly increased/decreased the expression levels of FXR, Cdx2 and MUC2 protein in DCA-induced GES-1 cells. GW4064/Gug. also enhanced/reduced the nuclear factor-κB (NF-κB) activity and binding of the Cdx2 promoter region and NF-κB, the most common subunit p50 protein. Taken together, the results indicated that DCA is capable of modulating the expression of Cdx2 and the downstream MUC2 via the nuclear receptor FXR-NF-κB activity in normal gastric epithelial cells. FXR signaling pathway may therefore be involved in the intestinal metaplasia of human gastric mucosa.
Collapse
Affiliation(s)
- Shu Li
- Department of Gastroenterology and Hepatology, Tianjin General Hospital, Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin General Hospital, Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin General Hospital, Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin General Hospital, Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
36
|
Pinto R, Barros R, Pereira-Castro I, Mesquita P, da Costa LT, Bennett EP, Almeida R, David L. CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia. J Transl Med 2015; 95:718-27. [PMID: 25867765 DOI: 10.1038/labinvest.2015.52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/08/2015] [Accepted: 03/07/2015] [Indexed: 01/08/2023] Open
Abstract
De novo expression of Sialyl-Tn (STn) antigen is one of the most common features of intestinal metaplasia (IM) and gastric carcinomas, and its biosynthesis has been mostly attributed to ST6GalNAc-I activity. However, the regulation of this glycosyltransferase expression is not elucidated. In IM lesions and in the intestine, CDX2 homeobox transcription factor is co-expressed with STn and ST6GalNAc-I. We therefore hypothesized that CDX2 might induce STn expression by positive regulation of ST6GalNAc-I. We showed that ST6GalNAc-I transcript levels and CDX2 have a coordinated expression upon Caco-2 in vitro differentiation, and overexpression of CDX2 in MKN45 gastric cells increases ST6GalNAc-I transcript levels. Nine putative CDX-binding sites in the ST6GalNAc-I-regulatory sequence were identified and analyzed by chromatin immunoprecipitation in Caco-2 cells and in IM. The results showed that CDX2 protein is recruited to all regions, being the most proximal sites preferentially occupied in vivo. Luciferase assays demonstrated that CDX2 is able to transactivate ST6GalNac-I-regulatory region. The induction was stronger for the regions mapped in the neighbourhood of ATG start codon and site-directed mutagenesis of these sites confirmed their importance. In conclusion, we show that CDX2 transcriptionally regulates ST6GalNAc-I gene expression, specifically in the preneoplastic IM lesion.
Collapse
Affiliation(s)
- Rita Pinto
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Barros
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Isabel Pereira-Castro
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Patricia Mesquita
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, Vale de Santarém, Portugal
| | | | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Almeida
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal [4] Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Leonor David
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal [3] Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Zheng JB, Qiao LN, Sun XJ, Qi J, Ren HL, Wei GB, Zhou PH, Yao JF, Zhang L, Jia PB. Overexpression of caudal-related homeobox transcription factor 2 inhibits the growth of transplanted colorectal tumors in nude mice. Mol Med Rep 2015; 12:3409-3415. [PMID: 26005051 PMCID: PMC4526061 DOI: 10.3892/mmr.2015.3838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022] Open
Abstract
Caudal-related homeobox transcription factor 2 (CDX2) is a transcription factor, which is specifically expressed in the adult intestine. It is essential for the development and homeostasis of the intestinal epithelium and its functions as a tumor suppressor have been demonstrated in the adult colon. The present study aimed to examine the inhibitory effects of the overexpression of CDX2 on subcutaneously-transplanted tumors, derived from LoVo colon cancer cells, in nude mice, and to provide experimental evidence for the biotherapy of colon cancer. A pEGFP-C1-CDX2 eukaryotic expression vector was transfected into the LoVo cells via lipofection, and LoVo cells stably-expressing CDX2 (pEGFP-C1-CDX2 cells) were obtained using G418 selection. A nude mouse subcutaneously-transplanted tumor model was established by inoculating the nude mice with the pEGFP-C1-CDX2 cells, and the effects of overexpression of CDX2 on transplanted tumor growth in the LoVo cells were observed. Western blotting results demonstrated that the protein expression of CDX2 in the LoVo cells was higher in the pEGFP-C1-CDX2 cell group, compared with that in the pEGFP-C1 cell group and the untreated cell group. At 20 days post-inoculation with either pEGFP-C1-CDX2 or pEGFP-C1, the transplanted tumor masses were significantly lower in the pEGFP-C1-CDX2 group, compared with those in the pEGFP-C1 and untreated groups. Immunohistochemistry revealed that the expression levels of CDX2 and matrix metalloproteinase-2 (MMP-2) were detected in each group, and the protein expression of CDX2 was increased in the tumor tissues from the nude mice in the pEGFP-C1-CDX2 group. However the expression of MMP-2 was downregulated in the tumor tissues of the nude mice in the pEGFP-C1-CDX2 group. Taken together, these data suggested that pEGFP-C1-CDX2 cells exhibited suppressed tumor growth in vivo. Overexpression of CDX2 was observed in transplanted tumors in the pEGFP-C1-CDX2 group, and the gene expression of MMP-2 was reduced. These results indicate that CDX2 inhibited the growth of colorectal tumor cells, possibly by downregulating the gene expression.
Collapse
Affiliation(s)
- Jian-Bao Zheng
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Na Qiao
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue-Jun Sun
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hai-Liang Ren
- Department of General Surgery, The Third Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Guang-Bing Wei
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pei-Hua Zhou
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian-Feng Yao
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Zhang
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peng-Bo Jia
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Wu X, Conlin VS, Morampudi V, Ryz NR, Nasser Y, Bhinder G, Bergstrom KS, Yu HB, Waterhouse CCM, Buchan AMJ, Popescu OE, Gibson WT, Waschek JA, Vallance BA, Jacobson K. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS One 2015; 10:e0125225. [PMID: 25932952 PMCID: PMC4416880 DOI: 10.1371/journal.pone.0125225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/22/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP's role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP's role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.
Collapse
Affiliation(s)
- Xiujuan Wu
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria S. Conlin
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Natasha R. Ryz
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasmin Nasser
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Ganive Bhinder
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirk S. Bergstrom
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Hong B. Yu
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Oana E. Popescu
- Department of Pathology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - William T. Gibson
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
39
|
Blij S, Parenti A, Tabatabai-Yazdi N, Ralston A. Cdx2 efficiently induces trophoblast stem-like cells in naïve, but not primed, pluripotent stem cells. Stem Cells Dev 2015; 24:1352-65. [PMID: 25625326 DOI: 10.1089/scd.2014.0395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diverse pluripotent stem cell lines have been derived from the mouse, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), embryonal carcinoma cells (ECCs), and epiblast stem cells (EpiSCs). While all are pluripotent, these cell lines differ in terms of developmental origins, morphology, gene expression, and signaling, indicating that multiple pluripotent states exist. Whether and how the pluripotent state influences the cell line's developmental potential or the competence to respond to differentiation cues could help optimize directed differentiation protocols. To determine whether pluripotent stem cell lines differ in developmental potential, we compared the capacity of mouse ESCs, iPSCs, ECCs, and EpiSCs to form trophoblast. ESCs do not readily differentiate into trophoblast, but overexpression of the trophoblast-expressed transcription factor, CDX2, leads to efficient differentiation to trophoblast and to formation of trophoblast stem cells (TSCs) in the presence of fibroblast growth factor-4 (FGF4) and Heparin. Interestingly, we found that iPSCs and ECCs could both give rise to TSC-like cells following Cdx2 overexpression, suggesting that these cell lines are equivalent in developmental potential. By contrast, EpiSCs did not give rise to TSCs following Cdx2 overexpression, indicating that EpiSCs are no longer competent to respond to CDX2 by differentiating to trophoblast. In addition, we noted that culturing ESCs in conditions that promote naïve pluripotency improved the efficiency with which TSC-like cells could be derived. This work demonstrates that CDX2 efficiently induces trophoblast in more naïve than in primed pluripotent stem cells and that the pluripotent state can influence the developmental potential of stem cell lines.
Collapse
Affiliation(s)
- Stephanie Blij
- 1Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Anthony Parenti
- 2Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Neeloufar Tabatabai-Yazdi
- 1Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Amy Ralston
- 2Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
40
|
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; 32:1083-91. [PMID: 24496776 DOI: 10.1002/stem.1655] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 12/22/2022]
Abstract
Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.
Collapse
Affiliation(s)
- Sabine Middendorp
- Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
42
|
Olsen J, Espersen MLM, Jess P, Kirkeby LT, Troelsen JT. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 2014; 23:167-76. [PMID: 25126956 DOI: 10.1016/j.suronc.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Homeobox genes are often deregulated in cancer. They can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. It is implicated in differentiation, proliferation, cell-adhesion, and migration. CDX2 has been proposed as a tumor suppressor in colorectal cancer but its role is still controversial. This systematic review were undertaken in order to clarify CDX2s role in colorectal cancer. METHODS A literature search was performed in the MEDLINE database from 1966 to February 2014. Only studies in which all or a part of the experimental design were performed on human colorectal cancer tissue were included. Thus, studies solely performed in cell-lines or animal models were excluded. RESULTS Fifty-two articles of relevance were identified. CDX2 expression was rarely lost in colorectal cancers, however the expression pattern may often be heterogeneous within the tumor and can be selectively down regulated at the invasive front and in tumor buddings. Loss of CDX2 expression is probably correlated to tumor grade, stage, right-sided tumor location, MMR-deficiency, CIMP, and BRAF mutations. The CDX2 gene is rarely mutated but the locus harboring the gene is often amplified and may suggest CDX2 as a linage-survival oncogene. CDX2 might be implicated in cell proliferation and migration through cross-talk with the Wnt-signaling pathway, tumor-stroma proteins, and inflammatory cytokines. CONCLUSION A clear role for CDX2 expression in colorectal cancer remains to be elucidated, and it might differ in relation to the underlying molecular pathways leading to the cancer formation.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark.
| | - P Jess
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
43
|
Natoli M, Christensen J, El-Gebali S, Felsani A, Anderle P. The role of CDX2 in Caco-2 cell differentiation. Eur J Pharm Biopharm 2014; 85:20-5. [PMID: 23958315 DOI: 10.1016/j.ejpb.2013.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND CDX2 plays a key part in the differentiation of Caco-2 cells, a colon carcinoma derived cell line that undergoes spontaneous differentiation. The effect of CDX2 expression in Caco-2 cells over time in culture has not been studied yet on a genome-wide level. METHODS The impact of CDX2 expression on the genomic profile of Caco-2 cells was studied by transducing cells with CDX2 targeting shRNAs. Knockdown efficiency was assessed on mRNA level and protein level by RTPCR, microarrays, and Western blots. Gene set enrichment analysis was performed to assess regulation of specific gene sets. RESULTS CDX2 expression had an inhibitory effect on the transcriptional activity of β-catenin/TCF at early stages of culturing, while at later stages, its role in the trans-activation of target genes specific for small intestinal enterocytes seemed more dominant. CONCLUSIONS The unique induction of a small intestinal signature upon differentiation in Caco-2 cells seems to be at least partially under the control of CDX2.
Collapse
Affiliation(s)
- Manuela Natoli
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Coskun M, Olsen AK, Bzorek M, Holck S, Engel UH, Nielsen OH, Troelsen JT. Involvement of CDX2 in the cross talk between TNF-α and Wnt signaling pathway in the colon cancer cell line Caco-2. Carcinogenesis 2014; 35:1185-92. [PMID: 24501326 DOI: 10.1093/carcin/bgu037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is highly upregulated in inflammation and reduces the expression of the intestinal transcription factor, Caudal-related homeobox transcription factor 2 (CDX2). Wnt/β-catenin signaling is critical for intestinal cell proliferation, but a decreased CDX2 expression has influence on the Wnt signaling-related genes and progression of colorectal cancer. Although several inflammatory signaling pathways, including TNF-α, have been reported to promote Wnt/β-catenin activity and development of cancer, the underlying molecular mechanisms remain unclear. The aim was to investigate the signaling pathways involved in the TNF-α-mediated downregulation of CDX2, and its influence on Wnt/β-catenin signaling components in colon cancer cells. The expression of TNF-α and CDX2 at the invasive front were evaluated by immunohistochemical staining and showed reduced CDX2-positive cells in tumor buddings in areas with TNF-α expression in the surrounding inflammatory cells. In vitro studies revealed that TNF-α treatment showed a dose-dependent decrease of CDX2 messenger RNA (mRNA) and protein expression in Caco-2 cells. Inhibition of nuclear factor-kappaB or p38 pathways showed that these are involved in the TNF-α-dependent downregulation of CDX2. Furthermore, TNF-α-mediated downregulation of CDX2 was found to significantly decrease the mRNA levels of adenomatous polyposis coli (APC), axis inhibition protein 2 (AXIN2) and glycogen synthase kinase-3 beta (GSK3β), whereas the mRNA levels of Wnt targets were significantly elevated in TNF-α-treated Caco-2 cells. These findings were associated with reduced binding of CDX2 to promoter or enhancer regions of APC, AXIN2 and GSK3β. In conclusion, it was found that TNF-α induces the expression of Wnt signaling components through a downregulation of the CDX2 expression that might have a tumor-promoting effect on colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, DK-2730 Herlev, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, Alikashani A, Ladouceur M, Ellinghaus D, Törkvist L, Goel G, Lagacé C, Annese V, Bitton A, Begun J, Brant SR, Bresso F, Cho JH, Duerr RH, Halfvarson J, McGovern DPB, Radford-Smith G, Schreiber S, Schumm PL, Sharma Y, Silverberg MS, Weersma RK, D'Amato M, Vermeire S, Franke A, Lettre G, Xavier RJ, Daly MJ, Rioux JD. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet 2013; 9:e1003723. [PMID: 24068945 PMCID: PMC3772057 DOI: 10.1371/journal.pgen.1003723] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (~14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
Collapse
Affiliation(s)
- Mélissa Beaudoin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Ken Sin Lo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Manuel A. Rivas
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Martin Ladouceur
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Leif Törkvist
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gautam Goel
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Lagacé
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Vito Annese
- Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Royal Victoria Hospital, Montréal, Québec, Canada
| | - Jakob Begun
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Steve R. Brant
- Meyerhoff Inflammatory Bowel Diseases Center, Department of Medicine, Johns Hopkins University School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Francesca Bresso
- Department of Medicine of the Karolinska University Hospital, Solna, Sweden
| | - Judy H. Cho
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, and Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Jonas Halfvarson
- Department of Internal Medicine, Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Dermot P. B. McGovern
- Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute, and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases, Genetic and Computational Biology, Queensland Institute of Medical Research, and Department of Gastroenterology, Royal Brisbane and Womens Hospital, and School of Medicine, University of Queensland, Brisbane, Australia
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip L. Schumm
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Yashoda Sharma
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Severine Vermeire
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Andre Franke
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Guillaume Lettre
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Rioux
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
46
|
Lin ME, Huang D, Deng BH, Lv YS, Rong L, Yao YS. Expression and Functional Role of Cdx2 in Intestinal Metaplasia of Cystitis Glandularis. J Urol 2013; 190:1083-9. [PMID: 23545100 DOI: 10.1016/j.juro.2013.03.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Ming-en Lin
- Department of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Nielsen FG, Kooyman M, Kensche P, Marks H, Stunnenberg H, Huynen M. The PinkThing for analysing ChIP profiling data in their genomic context. BMC Res Notes 2013; 6:133. [PMID: 23557140 PMCID: PMC3674928 DOI: 10.1186/1756-0500-6-133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/12/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current epigenetic research makes frequent use of whole-genome ChIP profiling for determining the in vivo binding of proteins, e.g. transcription factors and histones, to DNA. Two important and recurrent questions for these large scale analyses are: 1) What is the genomic distribution of a set of binding sites? and 2) Does this genomic distribution differ significantly from another set of sites? FINDINGS We exemplify the functionality of the PinkThing by analysing a ChIP profiling dataset of cohesin binding sites. We show the subset of cohesin sites with no CTCF binding have a characteristic genomic distribution different from the set of all cohesin sites. CONCLUSIONS The PinkThing is a web application for fast and easy analysis of the context of genomic loci, such as peaks from ChIP profiling experiments. The output of the PinkThing analysis includes: categorisation of position relative to genes (intronic, exonic, 5' near, 3' near 5' far, 3' far and distant), distance to the closest annotated 3' and 5' end of genes, direction of transcription of the nearest gene, and the option to include other genomic elements like ESTs and CpG islands. The PinkThing enables easy statistical comparison between experiments, i.e. experimental versus background sets, reporting over- and underrepresentation as well as p-values for all comparisons. Access and use of the PinkThing is free and open (without registration) to all users via the website: http://pinkthing.cmbi.ru.nl
Collapse
Affiliation(s)
- Fiona G Nielsen
- CMBI - Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
- Department of Molecular Biology, Radboud University Nijmegen, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| | - Maarten Kooyman
- CMBI - Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| | - Philip Kensche
- CMBI - Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud University Nijmegen, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| | - Henk Stunnenberg
- Department of Molecular Biology, Radboud University Nijmegen, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| | - Martijn Huynen
- CMBI - Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, PO box 9101, 6500HB Nijmegen, Netherlands
| |
Collapse
|
48
|
Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jørgensen S, Olsen J, Engel U, Holck S, Troelsen JT. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis 2013; 34:1361-9. [DOI: 10.1093/carcin/bgt037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
49
|
Roff AN, Panganiban RP, Bond JS, Ishmael FT. Post-transcriptional regulation of meprin α by the RNA-binding proteins Hu antigen R (HuR) and tristetraprolin (TTP). J Biol Chem 2012; 288:4733-43. [PMID: 23269677 DOI: 10.1074/jbc.m112.444208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meprins are multimeric proteases that are implicated in inflammatory bowel disease by both genetic association studies and functional studies in knock-out mice. Patients with inflammatory bowel disease show decreased colonic expression of meprin α, although regulation of expression, particularly under inflammatory stimuli, has not been studied. The studies herein demonstrate that the human meprin α transcript is bound and stabilized by Hu antigen R at baseline, and that treatment with the inflammatory stimulus phorbol 12-myristate 13-acetate downregulates meprin α expression by inducing tristetraprolin. The enhanced binding of tristetraprolin to the MEP1A 3'-UTR results in destabilization of the transcript and occurs at a discrete site from Hu antigen R. This is the first report to describe a mechanism for post-transcriptional regulation of meprin α and will help clarify the role of meprins in the inflammatory response and disease.
Collapse
Affiliation(s)
- Alanna N Roff
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
50
|
Bell SM, Zhang L, Xu Y, Besnard V, Wert SE, Shroyer N, Whitsett JA. Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium. Dev Biol 2012; 375:128-39. [PMID: 23266329 DOI: 10.1016/j.ydbio.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Pparγ, Atoh1, Ascl2, Neurog3, Hnf4α, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5(Δ/Δ) fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute, Divisions of Neonatology-Perinatal-Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|