1
|
Kanatsu-Shinohara M, Yamamoto T, Liu T, Nakayama KI, Shinohara T. Cdkn1c orchestrates a molecular network that regulates euploidy of male mouse germline stem cells. Development 2025; 152:dev204286. [PMID: 39850012 DOI: 10.1242/dev.204286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here, we present a molecular network responsible for maintaining karyotype stability in the male mouse germline. Loss of the cyclin-dependent kinase inhibitor Cdkn1c in undifferentiated spermatogonia induced degeneration of spermatogenesis prior to entry into the differentiating spermatogonia stage. In vitro analysis of mouse spermatogonial stem cells revealed that CDKN1C localized to spindle microtubules during metaphase, and that disrupted microtubule dynamics increased its phosphorylation. Cdkn1c deficiency activated the spindle assembly checkpoint and led to centrosome amplification, premature chromosome segregation, and loss of AURKB, and ultimately TRP53-dependent apoptosis. Trp53-deficient spermatogonial stem cells exhibited karyotype defects, but proliferated normally despite reduced CDKN1C and AURKB expression. In contrast, Aurkb depletion upregulated TRP53 and CDKN1C, suggesting a negative feedback loop to maintain euploidy. Thus, Cdkn1c regulates the male germline karyotype.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- The Department of Gynecology, Chengdu Women and Children's Central Hospital, No.1617, Riyue Avenue, Chengdu, Sichuan 610091, China
| | - Keiichi I Nakayama
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Noor S, Choudhury A, Islam KU, Yousuf M, Raza A, Ansari MA, Ashraf A, Hussain A, Hassan MI. Investigating the chemo-preventive role of noscapine in lung carcinoma via therapeutic targeting of human aurora kinase B. Mol Cell Biochem 2025; 480:1137-1153. [PMID: 38829482 DOI: 10.1007/s11010-024-05036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Lung carcinoma is the major contributor to global cancer incidence and one of the leading causes of cancer-related mortality worldwide. Irregularities in signal transduction events, genetic alterations, and mutated regulatory genes trigger cancer development and progression. Selective targeting of molecular modulators has substantially revolutionized cancer treatment strategies with improvised efficacy. The aurora kinase B (AURKB) is a critical component of the chromosomal passenger complex and is primarily involved in lung cancer pathogenesis. Since AURKB is an important therapeutic target, the design and development of its potential inhibitors are attractive strategies. In this study, noscapine was selected and validated as a possible inhibitor of AURKB using integrated computational, spectroscopic, and cell-based assays. Molecular docking analysis showed noscapine occupies the substrate-binding pocket of AURKB with strong binding affinity. Subsequently, MD simulation studies confirmed the formation of a stable AURKB-noscapine complex with non-significant alteration in various trajectories, including RMSD, RMSF, Rg, and SASA. These findings were further experimentally validated through fluorescence binding studies. In addition, dose-dependent noscapine treatment significantly attenuated recombinant AURKB activity with an IC50 value of 26.6 µM. Cell viability studies conducted on A549 cells and HEK293 cells revealed significant cytotoxic features of noscapine on A549 cells. Furthermore, Annexin-PI staining validated that noscapine triggered apoptosis in lung cancer cells, possibly via an intrinsic pathway. Our findings indicate that noscapine-based AURKB inhibition can be implicated as a potential therapeutic strategy in lung cancer treatment and can also provide a novel scaffold for developing next-generation AURKB-specific inhibitors.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Ahmad Ansari
- Multidisciplinary Research Unit, University College of Medical Sciences, New Delhi, 110095, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Yang J, Xu Z, Zheng W, Li Y, Wei Q, Yang L. Identification of the cytoplasmic DNA-Sensing cGAS-STING pathway-mediated gene signatures and molecular subtypes in prostate cancer. BMC Cancer 2024; 24:732. [PMID: 38877472 PMCID: PMC11179326 DOI: 10.1186/s12885-024-12492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Considering the age relevance of prostate cancer (PCa) and the involvement of the cGAS-STING pathway in aging and cancer, we aim to classify PCa into distinct molecular subtypes and identify key genes from the novel perspective of the cGAS-STING pathway. It is of significance to guide personalized intervention of cancer-targeting therapy based on genetic evidence. METHODS The 430 patients with PCa from the TCGA database were included. We integrated 29 key genes involved in cGAS-STING pathway and analyzed differentially expressed genes and biochemical recurrence (BCR)-free survival-related genes. The assessments of tumor stemness and heterogeneity and tumor microenvironment (TME) were conducted to reveal potential mechanisms. RESULTS PCa patients were classified into two distinct subtypes using AURKB, TREX1, and STAT6, and subtype 1 had a worse prognosis than subtype 2 (HR: 21.19, p < 0.001). The findings were validated in the MSKCC2010 cohort. Among subtype 1 and subtype 2, the top ten mutation genes were MUC5B, DNAH9, SLC5A10, ZNF462, USP31, SIPA1L3, PLEC, HRAS, MYOM1, and ITGB6. Gene set variation analysis revealed a high enrichment of the E2F target in subtype 1, and gene set enrichment analysis showed significant enrichment of base excision repair, cell cycle, and DNA replication in subtype 1. TME evaluation indicated that subtype 1 had a significantly higher level of T cells follicular helper and a lower level of plasma cells than subtype 2. CONCLUSIONS The molecular subtypes mediated by the cGAS-STING pathway and the genetic risk score may aid in identifying potentially high-risk PCa patients who may benefit from pharmacologic therapies targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Zihan Xu
- China Agricultural University, Beijing, 100083, China
| | - Weitao Zheng
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Yifan Li
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China.
| | - Lu Yang
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Shah ET, Molloy C, Gough M, Kryza T, Samuel SG, Tucker A, Bhatia M, Ferguson G, Heyman R, Vora S, Monkman J, Bolderson E, Kulasinghe A, He Y, Gabrielli B, Hooper JD, Richard DJ, O'Byrne KJ, Adams MN. Inhibition of Aurora B kinase (AURKB) enhances the effectiveness of 5-fluorouracil chemotherapy against colorectal cancer cells. Br J Cancer 2024; 130:1196-1205. [PMID: 38287178 PMCID: PMC10991355 DOI: 10.1038/s41416-024-02584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.
Collapse
Affiliation(s)
- Esha T Shah
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Christopher Molloy
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Madeline Gough
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Selwin G Samuel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Amos Tucker
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Maneet Bhatia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Genevieve Ferguson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Heyman
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Shivam Vora
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Yaowu He
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Brian Gabrielli
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Cancer Services, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Li L, Jiang P, Hu W, Zou F, Li M, Rao T, Ruan Y, Yu W, Ning J, Cheng F. AURKB promotes bladder cancer progression by deregulating the p53 DNA damage response pathway via MAD2L2. J Transl Med 2024; 22:295. [PMID: 38515112 PMCID: PMC10956193 DOI: 10.1186/s12967-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is the most common urinary tract malignancy. Aurora kinase B (AURKB), a component of the chromosomal passenger protein complex, affects chromosomal segregation during cell division. Mitotic arrest-deficient 2-like protein 2 (MAD2L2) interacts with various proteins and contributes to genomic integrity. Both AURKB and MAD2L2 are overexpressed in various human cancers and have synergistic oncogenic effects; therefore, they are regarded as emerging therapeutic targets for cancer. However, the relationship between these factors and the mechanisms underlying their oncogenic activity in BC remains largely unknown. The present study aimed to explore the interactions between AURKB and MAD2L2 and how they affect BC progression via the DNA damage response (DDR) pathway. METHODS Bioinformatics was used to analyze the expression, prognostic value, and pro-tumoral function of AURKB in patients with BC. CCK-8 assay, colony-forming assay, flow cytometry, SA-β-gal staining, wound healing assay, and transwell chamber experiments were performed to test the viability, cell cycle progression, senescence, and migration and invasion abilities of BC cells in vitro. A nude mouse xenograft assay was performed to test the tumorigenesis ability of BC cells in vivo. The expression and interaction of proteins and the occurrence of the senescence-associated secretory phenotype were detected using western blot analysis, co-immunoprecipitation assay, and RT-qPCR. RESULTS AURKB was highly expressed and associated with prognosis in patients with BC. AURKB expression was positively correlated with MAD2L2 expression. We confirmed that AURKB interacts with, and modulates the expression of, MAD2L2 in BC cells. AURKB knockdown suppressed the proliferation, migration, and invasion abilities of, and cell cycle progression in, BC cells, inducing senescence in these cells. The effects of AURKB knockdown were rescued by MAD2L2 overexpression in vitro and in vivo. The effects of MAD2L2 knockdown were similar to those of AURKB knockdown. Furthermore, p53 ablation rescued the MAD2L2 knockdown-induced suppression of BC cell proliferation and cell cycle arrest and senescence in BC cells. CONCLUSIONS AURKB activates MAD2L2 expression to downregulate the p53 DDR pathway, thereby promoting BC progression. Thus, AURKB may serve as a potential molecular marker and a novel anticancer therapeutic target for BC.
Collapse
Affiliation(s)
- Linzhi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Pengcheng Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weimin Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Harris RJ, Heer M, Levasseur MD, Cartwright TN, Weston B, Mitchell JL, Coxhead JM, Gaughan L, Prendergast L, Rico D, Higgins JMG. Release of Histone H3K4-reading transcription factors from chromosomes in mitosis is independent of adjacent H3 phosphorylation. Nat Commun 2023; 14:7243. [PMID: 37945563 PMCID: PMC10636195 DOI: 10.1038/s41467-023-43115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Histone modifications influence the recruitment of reader proteins to chromosomes to regulate events including transcription and cell division. The idea of a histone code, where combinations of modifications specify unique downstream functions, is widely accepted and can be demonstrated in vitro. For example, on synthetic peptides, phosphorylation of Histone H3 at threonine-3 (H3T3ph) prevents the binding of reader proteins that recognize trimethylation of the adjacent lysine-4 (H3K4me3), including the TAF3 component of TFIID. To study these combinatorial effects in cells, we analyzed the genome-wide distribution of H3T3ph and H3K4me2/3 during mitosis. We find that H3T3ph anti-correlates with adjacent H3K4me2/3 in cells, and that the PHD domain of TAF3 can bind H3K4me2/3 in isolated mitotic chromatin despite the presence of H3T3ph. Unlike in vitro, H3K4 readers are still displaced from chromosomes in mitosis in Haspin-depleted cells lacking H3T3ph. H3T3ph is therefore unlikely to be responsible for transcriptional downregulation during cell division.
Collapse
Affiliation(s)
- Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Maninder Heer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Bethany Weston
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jennifer L Mitchell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Luke Gaughan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Lisa Prendergast
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, 41092, Seville, Spain.
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
| |
Collapse
|
7
|
Tao W, Lei H, Luo W, Huang Z, Ling P, Guo M, Wan L, Zhai K, Huang Q, Wu Q, Xu S, Zeng L, Wang X, Dong Z, Rich JN, Bao S. Novel INHAT repressor drives glioblastoma growth by promoting ribosomal DNA transcription in glioma stem cells. Neuro Oncol 2023; 25:1428-1440. [PMID: 36521011 PMCID: PMC10398814 DOI: 10.1093/neuonc/noac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Weiwei Tao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hong Lei
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenlong Luo
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peng Ling
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mengyue Guo
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihao Wan
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiulian Wu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shutong Xu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liang Zeng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuxing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiqiang Dong
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jeremy N Rich
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA)
| |
Collapse
|
8
|
Wei H, Wang H, Wang G, Qu L, Jiang L, Dai S, Chen X, Zhang Y, Chen Z, Li Y, Guo M, Chen Y. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nat Commun 2023; 14:4300. [PMID: 37463921 DOI: 10.1038/s41467-023-40087-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Genxin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
10
|
Lu S, Chen Z, Liu Z, Liu Z. Unmasking the biological function and regulatory mechanism of NOC2L: a novel inhibitor of histone acetyltransferase. J Transl Med 2023; 21:31. [PMID: 36650543 PMCID: PMC9844006 DOI: 10.1186/s12967-023-03877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
NOC2 like nucleolar associated transcriptional repressor (NOC2L) was recently identified as a novel inhibitor of histone acetyltransferase (INHAT). NOC2L is found to have two INHAT function domains and regulates histone acetylation in a histone deacetylases (HDAC) independent manner, which is distinct from other INHATs. In this review, we summarize the biological function of NOC2L in histone acetylation regulation, P53-mediated transcription, ribosome RNA processing, certain development events and carcinogenesis. We propose that NOC2L may be explored as a potential biomarker and a therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Siyi Lu
- grid.411642.40000 0004 0605 3760Department of General Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Zhaoyu Chen
- grid.11135.370000 0001 2256 9319Department of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Zhenzhen Liu
- grid.414360.40000 0004 0605 7104Department of Thoracic Surgery, Beijing Jishuitan Hospital, Beijing, 100035 China
| | - Zhentao Liu
- grid.411642.40000 0004 0605 3760Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191 China
| |
Collapse
|
11
|
Baker JA, Brettin JT, Mulligan MK, Hamre KM. Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains. Brain Sci 2022; 12:1634. [PMID: 36552094 PMCID: PMC9776411 DOI: 10.3390/brainsci12121634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are prevalent neurodevelopmental disorders. Genetics have been shown to have a role in the severity of alcohol's teratogenic effects on the developing brain. We previously identified recombinant inbred BXD mouse strains that show high (HCD) or low cell death (LCD) in the hippocampus following ethanol exposure. The present study aimed to identify gene networks that influence this susceptibility. On postnatal day 7 (3rd-trimester-equivalent), male and female neonates were treated with ethanol (5.0 g/kg) or saline, and hippocampi were collected 7hrs later. Using the Affymetrix microarray platform, ethanol-induced gene expression changes were identified in all strains with divergent expression sets found between sexes. Genes, such as Bcl2l11, Jun, and Tgfb3, showed significant strain-by-treatment interactions and were involved in many apoptosis pathways. Comparison of HCD versus LCD showed twice as many ethanol-induced genes changes in the HCD. Interestingly, these changes were regulated in the same direction suggesting (1) more perturbed effects in HCD compared to LCD and (2) limited gene expression changes that confer resistance to ethanol-induced cell death in LCD. These results demonstrate that genetic background and sex are important factors that affect differential cell death pathways after alcohol exposure during development that could have long-term consequences.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jacob T. Brettin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
13
|
Pérez-Fidalgo JA, Gambardella V, Pineda B, Burgues O, Piñero O, Cervantes A. Aurora kinases in ovarian cancer. ESMO Open 2021; 5:e000718. [PMID: 33087400 PMCID: PMC7580081 DOI: 10.1136/esmoopen-2020-000718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Aurora kinases (AURK) are key regulators of the mitotic spindle formation. AURK is frequently overexpressed in ovarian cancer and this overexpression has been frequently associated with prognosis in these tumours. Interestingly, AURK have been shown to interact with DNA repair mechanisms and other cell cycle regulators. These functions have brought light to Aurora family as a potential target for anticancer therapy. In the last years, two clinical trials with different AURK inhibitors have shown activity in epithelial and clear-cell ovarian cancer. Although there is a lack of predictive factors of AURK inhibition activity, recent trials have identified some candidates. This review will focus in the functions of the AURK family, its role as prognostic factor in epithelial ovarian cancer and potential clinical implications.
Collapse
Affiliation(s)
- J Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain.
| | - Valentina Gambardella
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Begoña Pineda
- Department of Physiology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Octavio Burgues
- Department of Pathology, Hospital Clinico Universitario Valencai, Valencia, Spain
| | - Oscar Piñero
- Department of Gynaecology, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
15
|
Marima R, Hull R, Penny C, Dlamini Z. Mitotic syndicates Aurora Kinase B (AURKB) and mitotic arrest deficient 2 like 2 (MAD2L2) in cohorts of DNA damage response (DDR) and tumorigenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108376. [PMID: 34083040 DOI: 10.1016/j.mrrev.2021.108376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Aurora Kinase B (AURKB) and Mitotic Arrest Deficient 2 Like 2 (MAD2L2) are emerging anticancer therapeutic targets. AURKB and MAD2L2 are the least well studied members of their protein families, compared to AURKA and MAD2L1. Both AURKB and MAD2L2 play a critical role in mitosis, cell cycle checkpoint, DNA damage response (DDR) and normal physiological processes. However, the oncogenic roles of AURKB and MAD2L2 in tumorigenesis and genomic instability have also been reported. DDR acts as an arbitrator for cell fate by either repairing the damage or directing the cell to self-destruction. While there is strong evidence of interphase DDR, evidence of mitotic DDR is just emerging and remains largely unelucidated. To date, inhibitors of the DDR components show effective anti-cancer roles. Contrarily, long-term resistance towards drugs that target only one DDR target is becoming a challenge. Targeting interactions between protein-protein or protein-DNA holds prominent therapeutic potential. Both AURKB and MAD2L2 play critical roles in the success of mitosis and their emerging roles in mitotic DDR cannot be ignored. Small molecule inhibitors for AURKB are in clinical trials. A few lead compounds towards MAD2L2 inhibition have been discovered. Targeting mitotic DDR components and their interaction is emerging as a potent next generation anti-cancer therapeutic target. This can be done by developing small molecule inhibitors for AURKB and MAD2L2, thereby targeting DDR components as anti-cancer therapeutic targets and/or targeting mitotic DDR. This review focuses on AURKB and MAD2L2 prospective synergy to deregulate the p53 DDR pathway and promote favourable conditions for uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa.
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| |
Collapse
|
16
|
Aoki MN, Stein A, de Oliveira JC, Chammas R, Uno M, Munhoz FBDA, Marin AM, Canzian F. Susceptibility loci for pancreatic cancer in the Brazilian population. BMC Med Genomics 2021; 14:111. [PMID: 33879152 PMCID: PMC8056496 DOI: 10.1186/s12920-021-00956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PA) is a very aggressive cancer and has one of the poorest prognoses. Usually, the diagnosis is late and resistant to conventional treatment. Environmental and genetic factors contribute to the etiology, such as tobacco and alcohol consumption, chronic pancreatitis, diabetes and obesity. Somatic mutation in pancreatic cancer cells are known and SNP profile by GWAS could access novel genetic risk factors for this disease in different population context. Here we describe a SNP panel for Brazilian pancreatic cancer, together with clinical and epidemiological data. METHODS 78 pancreatic adenocarcinoma and 256 non-pancreatic cancer subjects had 25 SNPs genotyped by real-time PCR. Unconditional logistic regression methods were used to assess the main effects on PA risk, using allelic, co-dominant and dominant inheritance models. RESULTS 9 SNPs were nominally associated with pancreatic adenocarcinoma risk, with 5 of the minor alleles conferring protective effect while 4 related as risk factor. In epidemiological and clinical data, tobacco smoking, diabetes and pancreatitis history were significantly related to pancreatic adenocarcinoma risk. Polygenic risk scores computed using the SNPs in the study showed strong associations with PA risk. CONCLUSION We could assess for the first time some SNPs related with PA in Brazilian populations, a result that could be used for genetic screening in risk population such as familial pancreatic cancer, smokers, alcohol users and diabetes patients.
Collapse
Affiliation(s)
- Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil.
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Roger Chammas
- Departamento de Radiologia E Oncologia, Centro de Investigação Translacional Em Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Miyuki Uno
- Departamento de Radiologia E Oncologia, Centro de Investigação Translacional Em Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
| | - Francielle Boçon de Araújo Munhoz
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021; 26:molecules26071981. [PMID: 33915740 PMCID: PMC8037052 DOI: 10.3390/molecules26071981] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.
Collapse
|
18
|
Borah NA, Sradhanjali S, Barik MR, Jha A, Tripathy D, Kaliki S, Rath S, Raghav SK, Patnaik S, Mittal R, Reddy MM. Aurora Kinase B Expression, Its Regulation and Therapeutic Targeting in Human Retinoblastoma. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33704359 PMCID: PMC7960835 DOI: 10.1167/iovs.62.3.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Aurora kinase B (AURKB) plays a pivotal role in the regulation of mitosis and is gaining prominence as a therapeutic target in cancers; however, the role of AURKB in retinoblastoma (RB) has not been studied. The purpose of this study was to determine if AURKB plays a role in RB, how its expression is regulated, and whether it could be specifically targeted. Methods The protein expression of AURKB was determined using immunohistochemistry in human RB patient specimens and immunoblotting in cell lines. Pharmacological inhibition and shRNA-mediated knockdown were used to understand the role of AURKB in cell viability, apoptosis, and cell cycle distribution. Cell viability in response to AURKB inhibition was also assessed in enucleated RB specimens. Immunoblotting was employed to determine the protein levels of phospho-histone H3, p53, p21, and MYCN. Chromatin immunoprecipitation-qPCR was performed to verify the binding of MYCN on the promoter region of AURKB. Results The expression of AURKB was found to be markedly elevated in human RB tissues, and the overexpression significantly correlated with optic nerve and anterior chamber invasion. Targeting AURKB with small-molecule inhibitors and shRNAs resulted in reduced cell survival and increased apoptosis and cell cycle arrest at the G2/M phase. More importantly, primary RB specimens showed decreased cell viability in response to pharmacological AURKB inhibition. Additional studies have demonstrated that the MYCN oncogene regulates the expression of AURKB in RB. Conclusions AURKB is overexpressed in RB, and targeting it could serve as a novel therapeutic strategy to restrict tumor cell growth.
Collapse
Affiliation(s)
- Naheed Arfin Borah
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swatishree Sradhanjali
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Manas Ranjan Barik
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
| | - Atimukta Jha
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | - Devjyoti Tripathy
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar, India
| | - Sunil K. Raghav
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Bhubaneswar, India
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
19
|
Colón-Marrero S, Jusino S, Rivera-Rivera Y, Saavedra HI. Mitotic kinases as drivers of the epithelial-to-mesenchymal transition and as therapeutic targets against breast cancers. Exp Biol Med (Maywood) 2021; 246:1036-1044. [PMID: 33601912 DOI: 10.1177/1535370221991094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.
Collapse
Affiliation(s)
- Stephanie Colón-Marrero
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Shirley Jusino
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
20
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
21
|
Yin H, Xie J, Jiang P, Jiang X, Duan D, Qi J, Luo Z, Ma C, Hong H. Chiauranib selectively inhibits colorectal cancer with KRAS wild-type by modulation of ROS through activating the p53 signaling pathway. Am J Cancer Res 2020; 10:3666-3685. [PMID: 33294260 PMCID: PMC7716162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the top three most deadly cancers despite using chemotherapy based on oxaliplatin or irinotecan combined with targeted therapy. Chiauranib has recently been identified to be a promising anticancer candidate with impressive efficacy and safety. However, the role and molecular mechanisms of Chiauranib in the treatment of CRC remain to be elucidated. Our study shows that Chiauranib inhibits cell proliferation and induces apoptosis in KRAS wild-type CRC cells in a dose- and time-dependent manner, but not mutation ones. Meanwhile, Chiauranib increases ROS production in KRAS wild-type CRC cells. Moreover, Chiauranib selectively suppresses KRAS wild-type CRC cells growth in vivo. Mechanistically, Chiauranib inhibits KRAS wild-type CRC cells by triggering ROS production via activating the p53 signaling pathway. Further, KRAS mutation CRC cells are resistant to Chiauranib by increasing Nrf2 to stably elevate the basal antioxidant program and thereby lower intracellular ROS induced by Chiauranib. Our findings provide the rationale for further clinical evaluation of Chiauranib as a therapeutic agent in treating KRAS wild-type CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan People’s HospitalZhongshan, Guangdong, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First’ People Hospital, School of Medicine, South China University of TechnologyGuangzhou, Guangdong, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Deyu Duan
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Junhua Qi
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children’s Medical Center of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
22
|
NIR promotes progression of colorectal cancer through regulating RB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118856. [PMID: 32931817 DOI: 10.1016/j.bbamcr.2020.118856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023]
Abstract
NIR, a novel INHAT, negatively regulates the transcription activity of tumor repressor p53. However, if NIR functions in the tumorigenesis dependent on the regulation of p53 remains unknown. Here, we report that NIR promotes progression of colorectal cancer (CRC) through regulating RB function. Firstly, we found that NIR expression is upregulated in the human CRC tissues and significantly associated with the poor outcome of the patients. Sequence alignment shows that NIR contains an RB-binding motif LxCxE in its INHAT-2 domain. We demonstrate that NIR interacts with RB via INHAT-2 in CRC cells and promotes RB degradation through proteasome-mediated pathway. Further, either full-length GFP-NIR or GFP-NIR-INHAT2 facilitates poly-ubiquitination of RB. In addition, NIR inhibits RB acetylation by INHAT-2, suggesting NIR might promote RB degradation through inhibiting RB acetylation. Importantly, endogenous NIR is downregulated upon DNA damage, which is consistent with the upregulation of total level and acetylation of RB. We further show that Flag-NIR inhibits DNA damage-induced RB acetylation. Thus, downregulation of NIR might contribute to maintain the cellular homeostasis under DNA damage. Consequently, depletion of NIR inhibits cell proliferation and tumor growth in mouse xenografts. Taken together, we demonstrate that NIR promotes CRC progression partially through inhibiting RB acetylation and promoting RB degradation. Targeting NIR may provide a potential therapeutic strategy for NIR-upregulated CRC patients.
Collapse
|
23
|
Timofeev O, Koch L, Niederau C, Tscherne A, Schneikert J, Klimovich M, Elmshäuser S, Zeitlinger M, Mernberger M, Nist A, Osterburg C, Dötsch V, Hrabé de Angelis M, Stiewe T. Phosphorylation Control of p53 DNA-Binding Cooperativity Balances Tumorigenesis and Aging. Cancer Res 2020; 80:5231-5244. [PMID: 32873634 DOI: 10.1158/0008-5472.can-20-2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Posttranslational modifications are essential for regulating the transcription factor p53, which binds DNA in a highly cooperative manner to control expression of a plethora of tumor-suppressive programs. Here we show at the biochemical, cellular, and organismal level that the cooperative nature of DNA binding is reduced by phosphorylation of highly conserved serine residues (human S183/S185, mouse S180) in the DNA-binding domain. To explore the role of this inhibitory phosphorylation in vivo, new phosphorylation-deficient p53-S180A knock-in mice were generated. Chromatin immunoprecipitation sequencing and RNA sequencing studies of S180A knock-in cells demonstrated enhanced DNA binding and increased target gene expression. In vivo, this translated into a tissue-specific vulnerability of the bone marrow that caused depletion of hematopoietic stem cells and impaired proper regeneration of hematopoiesis after DNA damage. Median lifespan was significantly reduced by 20% from 709 days in wild type to only 568 days in S180A littermates. Importantly, lifespan was reduced by a loss of general fitness and increased susceptibility to age-related diseases, not by increased cancer incidence as often seen in other p53-mutant mouse models. For example, S180A knock-in mice showed markedly reduced spontaneous tumorigenesis and increased resistance to Myc-driven lymphoma and Eml4-Alk-driven lung cancer. Preventing phosphorylation of S183/S185 in human cells boosted p53 activity and allowed tumor cells to be killed more efficiently. Together, our data identify p53 DNA-binding domain phosphorylation as a druggable mechanism that balances tumorigenesis and aging. SIGNIFICANCE: These findings demonstrate that p53 tumor suppressor activity is reduced by DNA-binding domain phosphorylation to prevent aging and identify this phosphorylation as a potential target for cancer therapy.See related commentary by Horikawa, p. 5164.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| | - Lukas Koch
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Constantin Niederau
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Alina Tscherne
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Zeitlinger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | | | | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany. .,Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
24
|
Kasam RK, Ghandikota S, Soundararajan D, Reddy GB, Huang SK, Jegga AG, Madala SK. Inhibition of Aurora Kinase B attenuates fibroblast activation and pulmonary fibrosis. EMBO Mol Med 2020; 12:e12131. [PMID: 32761869 PMCID: PMC7507328 DOI: 10.15252/emmm.202012131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation including proliferation, survival, and ECM production is central to initiation and maintenance of fibrotic lesions in idiopathic pulmonary fibrosis (IPF). However, druggable molecules that target fibroblast activation remain limited. In this study, we show that multiple pro‐fibrotic growth factors, including TGFα, CTGF, and IGF1, increase aurora kinase B (AURKB) expression and activity in fibroblasts. Mechanistically, we demonstrate that Wilms tumor 1 (WT1) is a key transcription factor that mediates TGFα‐driven AURKB upregulation in fibroblasts. Importantly, we found that inhibition of AURKB expression or activity is sufficient to attenuate fibroblast activation. We show that fibrosis induced by TGFα is highly dependent on AURKB expression and treating TGFα mice with barasertib, an AURKB inhibitor, reverses fibroblast activation, and pulmonary fibrosis. Barasertib similarly attenuated fibrosis in the bleomycin model of pulmonary fibrosis. Together, our preclinical studies provide important proof‐of‐concept that demonstrate barasertib as a possible intervention therapy for IPF.
Collapse
Affiliation(s)
- Rajesh K Kasam
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH, USA
| | | | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
Aurora kinases and DNA damage response. Mutat Res 2020; 821:111716. [PMID: 32738522 DOI: 10.1016/j.mrfmmm.2020.111716] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
It is well established that Aurora kinases perform critical functions during mitosis. It has become increasingly clear that the Aurora kinases also perform a myriad of non-mitotic functions including DNA damage response. The available evidence indicates that inhibition Aurora kinase A (AURKA) may contribute to the G2 DNA damage checkpoint through AURKA's functions in PLK1 and CDC25B activation. Both AURKA and Aurora kinase B (AURKB) are also essential in mitotic DNA damage response that guard against DNA damage-induced chromosome segregation errors, including the control of abscission checkpoint and prevention of micronuclei formation. Dysregulation of Aurora kinases can trigger DNA damage in mitosis that is sensed in the subsequent G1 by a p53-dependent postmitotic checkpoint. Aurora kinases are themselves linked to the G1 DNA damage checkpoint through p53 and p73 pathways. Finally, several lines of evidence provide a connection between Aurora kinases and DNA repair and apoptotic pathways. Although more studies are required to provide a comprehensive picture of how cells respond to DNA damage, these findings indicate that both AURKA and AURKB are inextricably linked to pathways guarding against DNA damage. They also provide a rationale to support more detailed studies on the synergism between small-molecule inhibitors against Aurora kinases and DNA-damaging agents in cancer therapies.
Collapse
|
26
|
Kudo-Saito C, Miyamoto T, Imazeki H, Shoji H, Aoki K, Boku N. IL33 Is a Key Driver of Treatment Resistance of Cancer. Cancer Res 2020; 80:1981-1990. [PMID: 32156776 DOI: 10.1158/0008-5472.can-19-2235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Recurrence and treatment resistance are major causes of cancer-associated death. There has been a growing interest in better understanding epithelial-mesenchymal transition, stemness of cancer cells, and exhaustion and dysfunction of the immune system for which numerous genomic, proteomic, microenvironmental, and immunologic mechanisms have been demonstrated. However, practical treatments for such patients have not yet been established. Here we identified IL33 as a key driver of polyploidy, followed by rapid proliferation after treatment. IL33 induction transformed tumor cells into polyploid giant cells, showing abnormal cell cycle without cell division accompanied by Snail deregulation and p53 inactivation; small progeny cells were generated in response to treatment stress. Simultaneously, soluble IL33 was released from tumor cells, leading to expansion of receptor ST2-expressing cells including IL17RB+GATA3+ cells, which promoted tumor progression and metastasis directly and indirectly via induction of immune exhaustion and dysfunction. Blocking IL33 with a specific mAb in murine IL33+ metastatic tumor models abrogated negative consequences and successfully elicited antitumor efficacy induced by other combined treatments. Ex vivo assays using tumor tissues and peripheral blood mononuclear cells of patients with cancer validated the clinical relevancy of these findings. Together, these data suggest that targeting the IL33-ST2 axis is a promising strategy for diagnosis and treatment of patients likely to be resistant to treatments in the clinical settings. SIGNIFICANCE: These findings indicate that the functional role of IL33 in cancer polyploidy contributes to intrinsic and extrinsic mechanisms underlying treatment failure.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Miyamoto
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
27
|
Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat 2020; 49:100671. [DOI: 10.1016/j.drup.2019.100671] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
28
|
Manzione MG, Rombouts J, Steklov M, Pasquali L, Sablina A, Gelens L, Qian J, Bollen M. Co-regulation of the antagonistic RepoMan:Aurora-B pair in proliferating cells. Mol Biol Cell 2020; 31:419-438. [PMID: 31967936 PMCID: PMC7185888 DOI: 10.1091/mbc.e19-12-0698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromosome segregation during mitosis is antagonistically regulated by the Aurora-B kinase and RepoMan (recruits PP1 onto mitotic chromatin at anaphase)-associated phosphatases PP1/PP2A. Aurora B is overexpressed in many cancers but, surprisingly, this only rarely causes lethal aneuploidy. Here we show that RepoMan abundance is regulated by the same mechanisms that control Aurora B, including FOXM1-regulated expression and proteasomal degradation following ubiquitination by APC/C-CDH1 or SCFFBXW7. The deregulation of these mechanisms can account for the balanced co-overexpression of Aurora B and RepoMan in many cancers, which limits chromosome segregation errors. In addition, Aurora B and RepoMan independently promote cancer cell proliferation by reducing checkpoint-induced cell-cycle arrest during interphase. The co–up-regulation of RepoMan and Aurora B in tumors is inversely correlated with patient survival, underscoring its potential importance for tumor progression. Finally, we demonstrate that high RepoMan levels sensitize cancer cells to Aurora-B inhibitors. Hence, the co–up-regulation of RepoMan and Aurora B is associated with tumor aggressiveness but also exposes a vulnerable target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Lorenzo Pasquali
- Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Anna Sablina
- Department of Oncology, KU Leuven, B-3000 Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Junbin Qian
- Laboratory of Biosignaling & Therapeutics, KU Leuven, B-3000 Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
29
|
Wan B, Huang Y, Liu B, Lu L, Lv C. AURKB: a promising biomarker in clear cell renal cell carcinoma. PeerJ 2019; 7:e7718. [PMID: 31576249 PMCID: PMC6752188 DOI: 10.7717/peerj.7718] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background Aurora kinase B (AURKB) is an important carcinogenic factor in various tumors, while its role in clear cell renal cell carcinoma (ccRCC) still remains unclear. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods Gene expression profiles and clinical data of ccRCC patients were downloaded from The Cancer Genome Atlas database. R software was utilized to analyze the expression and prognostic role of AURKB in ccRCC. Gene set enrichment analysis (GSEA) was used to analyze AURKB related signaling pathways in ccRCC. Results AURKB was expressed at higher levels in ccRCC tissues than normal kidney tissues. Increased AURKB expression in ccRCC correlated with high histological grade, pathological stage, T stage, N stage and distant metastasis (M stage). Kaplan-Meier survival analysis suggested that high AURKB expression patients had a worse prognosis than patients with low AURKB expression levels. Multivariate Cox analysis showed that AURKB expression is a prognostic factor of ccRCC. GSEA indicated that genes involved in autoimmune thyroid disease, intestinal immune network for IgA production, antigen processing and presentation, cytokine-cytokine receptor interaction, asthma, etc., were differentially enriched in the AURKB high expression phenotype. Conclusions AURKB is a promising biomarker for predicting prognosis of ccRCC patients and a potential therapeutic target. In addition, AURKB might regulate progression of ccRCC through modulating intestinal immune network for IgA production and cytokine-cytokine receptor interaction, etc. signaling pathways. However, more research is necessary to validate the findings.
Collapse
Affiliation(s)
- Bangbei Wan
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Yuan Huang
- Neurology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Bo Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou, China
| | - Likui Lu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cai Lv
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|
30
|
Krassowski M, Paczkowska M, Cullion K, Huang T, Dzneladze I, Ouellette BFF, Yamada JT, Fradet-Turcotte A, Reimand J. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Res 2019; 46:D901-D910. [PMID: 29126202 PMCID: PMC5753267 DOI: 10.1093/nar/gkx973] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org.
Collapse
Affiliation(s)
- Michal Krassowski
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Marta Paczkowska
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kim Cullion
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tina Huang
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - B F Francis Ouellette
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph T Yamada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amelie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Québec, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Simpson CM, Zhang B, Hornbeck PV, Gnad F. Systematic analysis of the intersection of disease mutations with protein modifications. BMC Med Genomics 2019; 12:109. [PMID: 31345222 PMCID: PMC6657027 DOI: 10.1186/s12920-019-0543-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Perturbed posttranslational modification (PTM) landscapes commonly cause pathological phenotypes. The Cancer Genome Atlas (TCGA) project profiles thousands of tumors allowing the identification of spontaneous cancer-driving mutations, while Uniprot and dbSNP manage genetic disease-associated variants in the human population. PhosphoSitePlus (PSP) is the most comprehensive resource for studying experimentally observed PTM sites and the only repository with daily updates on functional annotations for many of these sites. To elucidate altered PTM landscapes on a large scale, we integrated disease-associated mutations from TCGA, Uniprot, and dbSNP with PTM sites from PhosphoSitePlus. We characterized each dataset individually, compared somatic with germline mutations, and analyzed PTM sites intersecting directly with disease variants. To assess the impact of mutations in the flanking regions of phosphosites, we developed DeltaScansite, a pipeline that compares Scansite predictions on wild type versus mutated sequences. Disease mutations are also visualized in PhosphoSitePlus. RESULTS Characterization of somatic variants revealed oncoprotein-like mutation profiles of U2AF1, PGM5, and several other proteins, showing alteration patterns similar to germline mutations. The union of all datasets uncovered previously unknown losses and gains of PTM events in diseases unevenly distributed across different PTM types. Focusing on phosphorylation, our DeltaScansite workflow predicted perturbed signaling networks consistent with calculations by the machine learning method MIMP. CONCLUSIONS We discovered oncoprotein-like profiles in TCGA and mutations that presumably modify protein function by impacting PTM sites directly or by rewiring upstream regulation. The resulting datasets are enriched with functional annotations from PhosphoSitePlus and present a unique resource for potential biomarkers or disease drivers.
Collapse
Affiliation(s)
- Claire M Simpson
- Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc, Danvers, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc, Danvers, MA, USA
| | - Peter V Hornbeck
- Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc, Danvers, MA, USA
| | - Florian Gnad
- Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc, Danvers, MA, USA.
| |
Collapse
|
32
|
Ge Y, Wu S, Zhang Z, Li X, Li F, Yan S, Liu H, Huang J, Zhao Y. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers. Protein Cell 2019; 10:808-824. [PMID: 31115790 PMCID: PMC6834538 DOI: 10.1007/s13238-019-0634-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
While the majority of all human cancers counteract telomere shortening by expressing telomerase, ~15% of all cancers maintain telomere length by a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). Here, we show that high load of intrinsic DNA damage is present in ALT cancer cells, leading to apoptosis stress by activating p53-independent, but JNK/c-Myc-dependent apoptotic pathway. Notably, ALT cells expressing wild-type p53 show much lower apoptosis than p53-deficient ALT cells. Mechanistically, we find that intrinsic DNA damage in ALT cells induces low level of p53 that is insufficient to initiate the transcription of apoptosis-related genes, but is sufficient to stimulate the expression of key components of mTORC2 (mTOR and Rictor), which in turn leads to phosphorylation of AKT. Activated AKT (p-AKT) thereby stimulates downstream anti-apoptotic events. Therefore, p53 and AKT are the key factors that suppress spontaneous apoptosis in ALT cells. Indeed, inhibition of p53 or AKT selectively induces rapid death of ALT cells in vitro, and p53 inhibitor severely suppresses the growth of ALT-cell xenograft tumors in mice. These findings reveal a previously unrecognized function of p53 in anti-apoptosis and identify that the inhibition of p53 or AKT has a potential as therapeutics for specifically targeting ALT cancers.
Collapse
Affiliation(s)
- Yuanlong Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Shu Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Zepeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Xiaocui Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China. .,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
33
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
34
|
Udristioiu A, Nica-Badea D. Signification of protein p-53 isoforms and immune therapeutic success in chronic lymphocytic leukemia. Biomed Pharmacother 2018; 106:50-53. [PMID: 29945117 PMCID: PMC11103075 DOI: 10.1016/j.biopha.2018.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
In the past few years has used thetechnique for analyzing deletions of genes, its rearrangements, cross-reactivity or multiplications in human genome affected of genetic diseases. Was proved that, the best techniques in the investigation of malignant lymphocytes are the Flow Cytometry, Elisa, ICT and Fluorescence in situ hybridization (FISH). Last method, FISH is used as an alternative to chromosomal banding, a conventional application in molecular medicine and can detect the chromosomal rearrangements and complexes of different genes in malignant diseases, like chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia, (ALL), or multiple myeloma (MM). Identification of P53 gene deletions and mutations in regions of chromosome 17 in hematological malignancies is important because these mutations have an impact on the clinical management of patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- DNA Damage
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy
- Mutation
- Precision Medicine
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Protein Isoforms
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aurelian Udristioiu
- Molecular Biology, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Delia Nica-Badea
- Constantin Brancusi University, Faculty of Medical Science and Behaviors, Târgu Jiu, Romania.
| |
Collapse
|
35
|
Luwang JW, Natesh R. Phosphomimetic Mutation Destabilizes the Central Core Domain of Human p53. IUBMB Life 2018; 70:1023-1031. [DOI: 10.1002/iub.1914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Johnson Wahengbam Luwang
- School of Biology; Indian Institute of Science Education and Research Thiruvananthapuram; Thiruvananthapuram-695551 Kerala India
| | - Ramanathan Natesh
- School of Biology; Indian Institute of Science Education and Research Thiruvananthapuram; Thiruvananthapuram-695551 Kerala India
| |
Collapse
|
36
|
Singh N, Tripathi AK, Sahu DK, Mishra A, Linan M, Argente B, Varkey J, Parida N, Chowdhry R, Shyam H, Alam N, Dixit S, Shankar P, Mishra A, Agarwal A, Yoo C, Bhatt MLB, Kant R. Differential genomics and transcriptomics between tyrosine kinase inhibitor-sensitive and -resistant BCR-ABL-dependent chronic myeloid leukemia. Oncotarget 2018; 9:30385-30418. [PMID: 30100996 PMCID: PMC6084383 DOI: 10.18632/oncotarget.25752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 01/11/2023] Open
Abstract
Previously, it has been stated that the BCR-ABL fusion-protein is sufficient to induce Chronic Myeloid Leukemia (CML), but additional genomic-changes are required for disease progression. Hence, we profiled control and tyrosine kinase inhibitors (TKI) alone or in combination with other drug-treated CML-samples in different phases, categorized as drug-sensitive and drug-resistant on the basis of BCR-ABL transcripts, the marker of major molecular-response. Molecular-profiling was done using the molecular-inversion probe-based-array, Human Transcriptomics-Array2.0, and Axiom-Biobank genotyping-arrays. At the transcript-level, clusters of control, TKI-resistant and TKI-sensitive cases were correlated with BCR-ABL transcript-levels. Both at the gene- and exon-levels, up-regulation of MPO, TPX2, and TYMS and down-regulation of STAT6, FOS, TGFBR2, and ITK lead up-regulation of the cell-cycle, DNA-replication, DNA-repair pathways and down-regulation of the immune-system, chemokine- and interleukin-signaling, TCR, TGF beta and MAPK signaling pathways. A comparison between TKI-sensitive and TKI-resistant cases revealed up-regulation of LAPTM4B, HLTF, PIEZO2, CFH, CD109, ANGPT1 in CML-resistant cases, leading to up-regulation of autophagy-, protein-ubiquitination-, stem-cell-, complement-, TGFβ- and homeostasis-pathways with specific involvement of the Tie2 and Basigin signaling-pathway. Dysregulated pathways were accompanied with low CNVs in CP-new and CP-UT-TKI-sensitive-cases with undetectable BCR-ABL-copies. High CNVs (previously reported gain of 9q34) were observed in BCR-ABL-independent and -dependent TKI, non-sensitive-CP-UT/AP-UT/B-UT and B-new samples. Further, genotyping CML-CP-UT cases with BCR-ABL 0-to-77.02%-copies, the identified, rsID239798 and rsID9475077, were associated with FAM83B, a candidate for therapeutic resistance. The presence of BCR-ABL, additional genetic-events, dysregulated-signaling-pathways and rsIDs associated with FAM83B in TKI-resistant-cases can be used to develop a signature-profile that may help in monitoring therapy.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, India
| | - Dinesh Kumar Sahu
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Archana Mishra
- Department of Cardio Thoracic and Vascular Surgery, King George's Medical University, Lucknow, India
| | | | | | | | - Niranjan Parida
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Rebecca Chowdhry
- Department of Periodontics, King George's Medical University, Lucknow, India
| | - Hari Shyam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Nawazish Alam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shivani Dixit
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Pratap Shankar
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Abhishek Mishra
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Avinash Agarwal
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Chris Yoo
- Systems Imagination, Scottsdale, Arizona, USA
| | | | - Ravi Kant
- All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
37
|
Zhu B, Zhang W, Lu Y, Hu S, Gao R, Sun Z, Chen X, Ma J, Guo S, Du S, Li P. Network pharmacology-based identification of protective mechanism of Panax Notoginseng Saponins on aspirin induced gastrointestinal injury. Biomed Pharmacother 2018; 105:159-166. [PMID: 29857294 DOI: 10.1016/j.biopha.2018.04.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND & AIMS Aspirin is the first line therapy for cardiovascular and cerebrovascular diseases and is widely used. However aspirin-induced gastrointestinal injury is one of its most common side effect which limits long-term use. Panax Notoginseng Saponins(PNS) which is also used to prevent thrombus may alleviate this side effect according to previous clinical evidences. Owing to the complexity of drug combination, the protective mechanism of PNS on aspirin-induced gastrointestinal injury remains unclear. Therefore, a network pharmacology-based strategy was proposed in this study to address this problem. METHODS A network pharmacology approach comprising multiple components, candidate targets of each component, known therapeutic targets, network analysis has been used in this study. Also, we establish aspirin-induced gastrointestinal injury model by the oral administration of aspirin (0.5 g/kg body weight) to verify the predicted targets from network pharmacology. All rats was randomly allocated to control groups (n = 6),aspirin groups (n = 6)and aspirin + PNS groups (n = 6) and conducted H&E staining and ELISA for VEGFA. RESULTS The comprehensive systematic approach was successfully to identify 5 compounds and 154 candidate targets in PNS and 479 candidate targets in aspirin. After network establishment and analysis, 27 potential targets hit by PNS, aspirin and 6 kind of gastrointestinal diseases were found. The experiments results indicated that aspirin group has visible inflammation and lesions while aspirin + PNS group have not. The higher expression of VEGFA in aspirin + PNS group verified the predicted potential protective targets of PNS. CONCLUSIONS PNS may have protective function for aspirin-induced gastrointestinal injury through increasing VEGFA expression. Network pharmacology strategy may provide a forceful tool for exploring the mechanism of herb medicine and discovering novel bioactive ingredients.
Collapse
Affiliation(s)
- Baochen Zhu
- Beijing University of Chinese Medicine, 100029, China
| | - Wantong Zhang
- China Academy of Chinese Medicine Sciences, Xiyuan Hospital, 100091, China
| | - Yang Lu
- Beijing University of Chinese Medicine, 100029, China
| | - Shaonan Hu
- Beijing University of Chinese Medicine, 100029, China
| | - Rui Gao
- China Academy of Chinese Medicine Sciences, Xiyuan Hospital, 100091, China
| | - Zongxi Sun
- Beijing University of Chinese Medicine, 100029, China
| | - Xiaonan Chen
- Beijing University of Chinese Medicine, 100029, China
| | - Junming Ma
- Beijing University of Chinese Medicine, 100029, China
| | - Shuang Guo
- Beijing University of Chinese Medicine, 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, 100029, China.
| | - Pengyue Li
- Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
38
|
Patrick R, Kobe B, Lê Cao KA, Bodén M. PhosphoPICK-SNP: quantifying the effect of amino acid variants on protein phosphorylation. Bioinformatics 2018; 33:1773-1781. [PMID: 28186228 DOI: 10.1093/bioinformatics/btx072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Genome-wide association studies are identifying single nucleotide variants (SNVs) linked to various diseases, however the functional effect caused by these variants is often unknown. One potential functional effect, the loss or gain of protein phosphorylation sites, can be induced through variations in key amino acids that disrupt or introduce valid kinase binding patterns. Current methods for predicting the effect of SNVs on phosphorylation operate on the sequence content of reference and variant proteins. However, consideration of the amino acid sequence alone is insufficient for predicting phosphorylation change, as context factors determine kinase-substrate selection. Results We present here a method for quantifying the effect of SNVs on protein phosphorylation through an integrated system of motif analysis and context-based assessment of kinase targets. By predicting the effect that known variants across the proteome have on phosphorylation, we are able to use this background of proteome-wide variant effects to quantify the significance of novel variants for modifying phosphorylation. We validate our method on a manually curated set of phosphorylation change-causing variants from the primary literature, showing that the method predicts known examples of phosphorylation change at high levels of specificity. We apply our approach to data-sets of variants in phosphorylation site regions, showing that variants causing predicted phosphorylation loss are over-represented among disease-associated variants. Availability and Implementation The method is freely available as a web-service at the website http://bioinf.scmb.uq.edu.au/phosphopick/snp. Contact m.boden@uq.edu.au. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ralph Patrick
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| |
Collapse
|
39
|
Duteil D, Tourrette Y, Eberlin A, Willmann D, Patel D, Friedrichs N, Müller JM, Schüle R. The histone acetyltransferase inhibitor Nir regulates epidermis development. Development 2018; 145:dev.158543. [PMID: 29490983 DOI: 10.1242/dev.158543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022]
Abstract
In addition to its function as an inhibitor of histone acetyltransferases, Nir (Noc2l) binds to p53 and TAp63 to regulate their activity. Here, we show that epidermis-specific ablation of Nir impairs epidermal stratification and barrier function, resulting in perinatal lethality. Nir-deficient epidermis lacks appendages and remains single layered during embryogenesis. Cell proliferation is inhibited, whereas apoptosis and p53 acetylation are increased, indicating that Nir is controlling cell proliferation by limiting p53 acetylation. Transcriptome analysis revealed that Nir regulates the expression of essential factors in epidermis development, such as keratins, integrins and laminins. Furthermore, Nir binds to and controls the expression of p63 and limits H3K18ac at the p63 promoter. Corroborating the stratification defects, asymmetric cell divisions were virtually absent in Nir-deficient mice, suggesting that Nir is required for correct mitotic spindle orientation. In summary, our data define Nir as a key regulator of skin development.
Collapse
Affiliation(s)
- Delphine Duteil
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Yves Tourrette
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Adrien Eberlin
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Dharmeshkumar Patel
- Pediatric Blood and Marrow Transplant, University of Minnesota, 2-191 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Nicolaus Friedrichs
- Institute of Pathology, University of Cologne Medical School, 50937 Cologne, Germany
| | - Judith M Müller
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany .,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, 79106 Freiburg, Germany.,Deutsche Konsortium für Translationale Krebsforschung (DKTK), Standort, 79106 Freiburg, Germany
| |
Collapse
|
40
|
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk A, Zhong J, Chen F, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt SI, Blackford A, Borges M, Borgida A, Bracci PM, Brais L, Brennan P, Brenner H, Bueno-de-Mesquita B, Buring J, Campa D, Capurso G, Cavestro GM, Chaffee KG, Chung CC, Cleary S, Cotterchio M, Dijk F, Duell EJ, Foretova L, Fuchs C, Funel N, Gallinger S, M Gaziano JM, Gazouli M, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Hackert T, Haiman C, Hartge P, Hasan M, Hegyi P, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Jacobs EJ, Jamroziak K, Janout V, Kaaks R, Khaw KT, Klein EA, Kogevinas M, Kooperberg C, Kulke MH, Kupcinskas J, Kurtz RJ, Laheru D, Landi S, Lawlor RT, Lee IM, LeMarchand L, Lu L, Malats N, Mambrini A, Mannisto S, Milne RL, Mohelníková-Duchoňová B, Neale RE, Neoptolemos JP, Oberg AL, Olson SH, Orlow I, Pasquali C, Patel AV, Peters U, Pezzilli R, Porta M, Real FX, Rothman N, Scelo G, Sesso HD, Severi G, Shu XO, Silverman D, Smith JP, Soucek P, Sund M, Talar-Wojnarowska R, Tavano F, Thornquist MD, Tobias GS, Van Den Eeden SK, Vashist Y, Visvanathan K, Vodicka P, Wactawski-Wende J, Wang Z, Wentzensen N, White E, Yu H, Yu K, Zeleniuch-Jacquotte A, Zheng W, Kraft P, Li D, Chanock S, Obazee O, Petersen GM, Amundadottir LT. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 2018; 9:556. [PMID: 29422604 PMCID: PMC5805680 DOI: 10.1038/s41467-018-02942-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA.
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Chen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda Blackford
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Michael Borges
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sean Cleary
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Frederike Dijk
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic
| | | | - Niccola Funel
- Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - J Michael M Gaziano
- Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Boston VA Healthcare System, Boston, MA, 02132, USA
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, 6725, Szeged, Hungary
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Herman
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland
| | - Vladimir Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic
- Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
- CIBERONC, 28029, Madrid, Spain
| | - Andrea Mambrini
- Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy
| | - Satu Mannisto
- Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Beatrice Mohelníková-Duchoňová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelburg, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
| | - Francisco X Real
- CIBERONC, 28029, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, 20057, USA
| | - Pavel Soucek
- Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden
| | | | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Chan FL, Vinod B, Novy K, Schittenhelm RB, Huang C, Udugama M, Nunez-Iglesias J, Lin JI, Hii L, Chan J, Pickett HA, Daly RJ, Wong LH. Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity. Nucleic Acids Res 2017; 45:12340-12353. [PMID: 29040668 PMCID: PMC5716096 DOI: 10.1093/nar/gkx904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023] Open
Abstract
AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity.
Collapse
Affiliation(s)
- Foong Lyn Chan
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin Vinod
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karel Novy
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Juan Nunez-Iglesias
- Life Sciences Computation Centre, University of Melbourne, Carlton, VIC 3010, Australia
| | - Jane I Lin
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Julie Chan
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
42
|
Subramaniyan B, Kumar V, Mathan G. Effect of sodium salt of Butrin, a novel compound isolated from Butea monosperma flowers on suppressing the expression of SIRT1 and Aurora B kinase-mediated apoptosis in colorectal cancer cells. Biomed Pharmacother 2017; 90:402-413. [PMID: 28390310 DOI: 10.1016/j.biopha.2017.03.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
The infrequent manifestation of SIRT1 and Aurora B kinase has shown to play a pivotal role in colorectal cancer (CRC) progression by regulating Wnt signaling pathway. The present study investigates the signaling events that regulate the modulation of SIRT1 and Aurora B kinase expression and it's mediated cell proliferation in SW480 human primary adenocarcinoma CRC cells using Butea monosperma floral compounds (BMFC). In this, cell viability, mitochondrial mediated apoptosis, cell cycle arrest and inhibition of Wnt pathway were examined. Interestingly, the active novel compound, sodium salt of butrin, from BMFC significantly enhances the apoptosis activity, where SIRT1 and Aurora B kinase were ectopically overexpressed in CRC cells. Moreover, mRNA and protein expressions analysis indicates that the expression of GSK-3β, β-catenin, cyclin D1, pAKT, TGF-3β, SIRT1 and Aurora B kinase were down regulated in BMFC treated cells. These findings provide valuable information that the active BMFC having great impact on SIRT1 and Aurora B kinase mediated Wnt signaling down regulation in SW480 CRC cells.
Collapse
Affiliation(s)
- Boopathi Subramaniyan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli, 620 024 Tamilnadu, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ganeshan Mathan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli, 620 024 Tamilnadu, India.
| |
Collapse
|
43
|
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front Oncol 2016; 6:247. [PMID: 27933271 PMCID: PMC5122578 DOI: 10.3389/fonc.2016.00247] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases–p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases–p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase–mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
44
|
Sandomenico A, Focà A, Sanguigno L, Caporale A, Focà G, Pignalosa A, Corvino G, Caragnano A, Beltrami AP, Antoniali G, Tell G, Leonardi A, Ruvo M. Monoclonal antibodies against pools of mono- and polyacetylated peptides selectively recognize acetylated lysines within the context of the original antigen. MAbs 2016; 8:1575-1589. [PMID: 27560983 DOI: 10.1080/19420862.2016.1225643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-translational modifications (PTMs) strongly influence the structure and function of proteins. Lysine side chain acetylation is one of the most widespread PTMs, and it plays a major role in several physiological and pathological mechanisms. Protein acetylation may be detected by mass spectrometry (MS), but the use of monoclonal antibodies (mAbs) is a useful and cheaper option. Here, we explored the feasibility of generating mAbs against single or multiple acetylations within the context of a specific sequence. As a model, we used the unstructured N-terminal domain of APE1, which is acetylated on Lys27, Lys31, Lys32 and Lys35. As immunogen, we used a peptide mixture containing all combinations of single or multi-acetylated variants encompassing the 24-39 protein region. Targeted screening of the resulting clones yielded mAbs that bind with high affinity to only the acetylated APE1 peptides and the acetylated protein. No binding was seen with the non-acetylated variant or unrelated acetylated peptides and proteins, suggesting a high specificity for the APE1 acetylated molecules. MAbs could not finely discriminate between the differently acetylated variants; however, they specifically bound the acetylated protein in mammalian cell extracts and in intact cells and tissue slices from both breast cancers and from a patient affected by idiopathic dilated cardiomyopathy. The data suggest that our approach is a rapid and cost-effective method to generate mAbs against specific proteins modified by multiple acetylations or other PTMs.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | - Annalia Focà
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | | | - Andrea Caporale
- c Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB) , Napoli , Italy
| | - Giuseppina Focà
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | - Angelica Pignalosa
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | | | - Angela Caragnano
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | | | - Giulia Antoniali
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | - Gianluca Tell
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | - Antonio Leonardi
- e University of Napoli "Federico II," Department of Molecular Medicine and Medical Biotechnology , Napoli , Italy
| | - Menotti Ruvo
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| |
Collapse
|
45
|
Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Oncotarget 2016; 7:53074-53101. [PMID: 27447975 PMCID: PMC5288170 DOI: 10.18632/oncotarget.10628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan-Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks-framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix-loop-helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0752, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Nathan Lian
- REHS, San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
- Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
| |
Collapse
|
46
|
Hoang NTM, Phuong TT, Nguyen TTN, Tran YTH, Nguyen ATN, Nguyen TL, Bui KTV. In Vitro Characterization of Derrone as an Aurora Kinase Inhibitor. Biol Pharm Bull 2016; 39:935-45. [PMID: 26983907 DOI: 10.1248/bpb.b15-00835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among mitotic kinases, Aurora kinases are the most widely studied, since their expression is restricted to mitosis. They play a key role in chromosome segregation and cell polyploidy. Aurora kinases are important therapeutic targets, and several research groups have directed their efforts toward the identification of kinase inhibitors. The aim of this study is to screen and characterize Aurora kinase inhibitors from natural substances extracted from plants that are used in the Vietnamese pharmacopoeia. We have characterized in vitro Derrone, extracted from Erythrina orientalis L. MURR, as a novel Aurora kinase inhibitor. This compound exhibited an ability to inhibit the phosphorylation of histone H3 at ser10 both in kinase assay and at the cellular level. The compound was more effective against Aurora kinase B, with a lower IC50 value as compared to Aurora A. Moreover, it impaired the mitotic spindle checkpoint and led to endoreduplication in cancer cells, a phenomenon caused by an Aurora B inhibitor. Interestingly, using the xCelligence system and real-time cell analysis (RTCA) software, we set up a comparison of cell proliferation profiles between cancer cells treated with Derrone and VX680-a well-known Aurora kinase inhibitor-and we found that these profiles exhibited considerable similarity in cell morphology, growth, and death. Additionally, Derrone significantly inhibited the formation and growth of MCF7 tumor spheroids.
Collapse
|
47
|
Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development. Mol Cell Biol 2015; 35:3566-78. [PMID: 26240282 DOI: 10.1128/mcb.01286-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
Aurora kinase B, one of the three members of the mammalian Aurora kinase family, is the catalytic component of the chromosomal passenger complex, an essential regulator of chromosome segregation in mitosis. Aurora B is overexpressed in human tumors although whether this kinase may function as an oncogene in vivo is not established. Here, we report a new mouse model in which expression of the endogenous Aurkb locus can be induced in vitro and in vivo. Overexpression of Aurora B in cultured cells induces defective chromosome segregation and aneuploidy. Long-term overexpression of Aurora B in vivo results in aneuploidy and the development of multiple spontaneous tumors in adult mice, including a high incidence of lymphomas. Overexpression of Aurora B also results in a reduced DNA damage response and decreased levels of the p53 target p21(Cip1) in vitro and in vivo, in line with an inverse correlation between Aurora B and p21(Cip1) expression in human leukemias. Thus, overexpression of Aurora B may contribute to tumor formation not only by inducing chromosomal instability but also by suppressing the function of the cell cycle inhibitor p21(Cip1).
Collapse
|
48
|
MIMP: predicting the impact of mutations on kinase-substrate phosphorylation. Nat Methods 2015; 12:531-3. [PMID: 25938373 DOI: 10.1038/nmeth.3396] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
|
49
|
Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. J Mol Biol 2014; 427:1728-47. [PMID: 25543083 DOI: 10.1016/j.jmb.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Mouse double minute 2 (MDM2) has a phosphorylation site within a lid motif at Ser17 whose phosphomimetic mutation to Asp17 stimulates MDM2-mediated polyubiquitination of p53. MDM2 lid deletion, but not Asp17 mutation, induced a blue shift in the λ(max) of intrinsic fluorescence derived from residues in the central domain including Trp235, Trp303, Trp323, and Trp329. This indicates that the Asp17 mutation does not alter the conformation of MDM2 surrounding the tryptophan residues. In addition, Phe235 mutation enhanced MDM2 binding to p53 but did not stimulate its ubiquitination function, thus uncoupling increases in p53 binding from its E3 ubiquitin ligase function. However, the Asp17 mutation in MDM2 stimulated its discharge of the UBCH5a-ubiquitin thioester adduct (UBCH5a is a ubiquitin-conjugating enzyme E2D 1 UBC4/5 homolog yeast). This stimulation of ubiquitin discharge from E2 was independent of the p53 substrate. There are now four known effects of the Asp17 mutation on MDM2: (i) it alters the conformation of the isolated N-terminus as defined by NMR; (ii) it induces increased thermostability of the isolated N-terminal domain; (iii) it stimulates the allosteric interaction of MDM2 with the DNA-binding domain of p53; and (iv) it stimulates a novel protein-protein interaction with the E2-ubiquitin complex in the absence of substrate p53 that, in turn, increases hydrolysis of the E2-ubiquitin thioester bond. These data also suggest a new strategy to disrupt MDM2 function by targeting the E2-ubiquitin discharge reaction.
Collapse
|
50
|
Novel INHAT repressor (NIR) is required for early lymphocyte development. Proc Natl Acad Sci U S A 2014; 111:13930-5. [PMID: 25201955 DOI: 10.1073/pnas.1310118111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.
Collapse
|