1
|
Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res 2020; 19:4690-4697. [PMID: 32692185 PMCID: PMC7640960 DOI: 10.1021/acs.jproteome.0c00392] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Minchen Chien
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Thomas K. Anderson
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steffen Jockusch
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Chuanjuan Tao
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoxu Li
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Shiv Kumar
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - James J. Russo
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jingyue Ju
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Jockusch S, Tao C, Li X, Anderson TK, Chien M, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res 2020; 180:104857. [PMID: 32562705 PMCID: PMC7299870 DOI: 10.1016/j.antiviral.2020.104857] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.
Collapse
Affiliation(s)
- Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Thomas K Anderson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA; Department of Pharmacology, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Ziegler SJ, Liu C, Landau M, Buzovetsky O, Desimmie BA, Zhao Q, Sasaki T, Burdick RC, Pathak VK, Anderson KS, Xiong Y. Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS One 2018; 13:e0195048. [PMID: 29596531 PMCID: PMC5875850 DOI: 10.1371/journal.pone.0195048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 01/27/2023] Open
Abstract
Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (A3) proteins are a family of cytidine deaminases that catalyze the conversion of deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). A3 proteins act in the innate immune response to viral infection by mutating the viral ssDNA. One of the most well-studied human A3 family members is A3G, which is a potent inhibitor of HIV-1. Each A3 protein prefers a specific substrate sequence for catalysis-for example, A3G deaminates the third dC in the CCCA sequence motif. However, the interaction between A3G and ssDNA is difficult to characterize due to poor solution behavior of the full-length protein and loss of DNA affinity of the truncated protein. Here, we present a novel DNA-anchoring fusion strategy using the protection of telomeres protein 1 (Pot1) which has nanomolar affinity for ssDNA, with which we captured an A3G-ssDNA interaction. We crystallized a non-preferred adenine in the -1 nucleotide-binding pocket of A3G. The structure reveals a unique conformation of the catalytic site loops that sheds light onto how the enzyme scans substrate in the -1 pocket. Furthermore, our biochemistry and virology studies provide evidence that the nucleotide-binding pockets on A3G influence each other in selecting the preferred DNA substrate. Together, the results provide insights into the mechanism by which A3G selects and deaminates its preferred substrates and help define how A3 proteins are tailored to recognize specific DNA sequences. This knowledge contributes to a better understanding of the mechanism of DNA substrate selection by A3G, as well as A3G antiviral activity against HIV-1.
Collapse
Affiliation(s)
- Samantha J. Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Chang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Mark Landau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Belete A. Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Karen S. Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J Virol 2014; 88:7589-601. [PMID: 24760888 DOI: 10.1128/jvi.00302-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The genetic variation in HIV-1 in patients is due to the high rate of viral replication, the high viral load, and the errors made during viral replication. Some of the mutations in reverse transcriptase (RT) that alter the deoxynucleoside triphosphate (dNTP)-binding pocket, including those that confer resistance to nucleoside/nucleotide analogs, affect dNTP selection during replication. The effects of mutations in RT on the spectrum (nature, position, and frequency) of errors made in vivo are poorly understood. We previously determined the mutation rate and the frequency of different types of mutations and identified hot spots for mutations in a lacZα (the α complementing region of lacZ) reporter gene carried by an HIV-1 vector that replicates using wild-type RT. We show here that four mutations (Y115F, M184V, M184I, and Q151M) in the dNTP-binding pocket of RT that had relatively small effects on the overall HIV-1 mutation rate (less than 3-fold compared to the wild type) significantly increased mutations at some specific positions in the lacZα reporter gene. We also show that changes in a sequence that flanks the reporter gene can affect the mutations that arise in the reporter. These data show that changes either in HIV-1 RT or in the sequence of the nucleic acid template can affect the spectrum of mutations made during viral replication. This could, by implication, affect the generation of drug-resistant mutants and immunological-escape mutants in patients. IMPORTANCE RT is the viral enzyme that converts the RNA genome of HIV into DNA. Errors made during replication allow the virus to escape from the host's immune system and to develop resistance to the available anti-HIV drugs. We show that four different mutations in RT which are known to be associated with resistance to anti-RT drugs modestly increased the overall frequency of errors made during viral replication. However, the increased errors were not uniformly distributed; the additional errors occurred at a small number of positions (hot spots). Moreover, some of the RT mutations preferentially affected the nature of the errors that were made (some RT mutations caused an increase in insertion and deletion errors; others caused an increase in substitution errors). We also show that sequence changes in a region adjacent to a target gene can affect the errors made within the target gene.
Collapse
|
6
|
Betancor G, Nevot M, Mendieta J, Gómez-Puertas P, Martínez MA, Menéndez-Arias L. Molecular basis of the association of H208Y and thymidine analogue resistance mutations M41L, L210W and T215Y in the HIV-1 reverse transcriptase of treated patients. Antiviral Res 2014; 106:42-52. [PMID: 24667336 DOI: 10.1016/j.antiviral.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Thymidine analogue resistance mutations (TAMs) in HIV-1 reverse transcriptase (RT) associate in two clusters: (i) TAM1 (M41L, L210W and T215Y) and TAM2 (D67N, K70R, K219E/Q, and sometimes T215F). The amino acid substitution H208Y shows increased prevalence in patients treated with nucleoside analogues and is frequently associated with TAM1 mutations. We studied the molecular mechanism favoring the selection of H208Y in the presence of zidovudine, tenofovir and other nucleoside RT inhibitors (NRTIs). NRTI susceptibility was not affected by the addition of H208Y in phenotypic assays carried out in MT-4 cells using recombinant HIV-1 containing wild-type (subtype B, BH10), H208Y, M41L/L210W/T215Y or M41L/H208Y/L210W/T215Y RTs. However, enzymatic studies carried out with purified RTs revealed that in the presence of M41L/L210W/T215Y, H208Y increases the RT's ability to unblock and extend primers terminated with zidovudine, tenofovir and in a lesser extent, stavudine. These effects were observed with DNA/DNA complexes (but not with RNA/DNA) and resulted from the higher ATP-dependent excision activity of the M41L/H208Y/L210W/T215Y RT compared with the M41L/L210W/T215Y mutant. The increased rescue efficiency of the M41L/H208Y/L210W/T215Y RT was observed in the presence of ATP but not with GTP or ITP. Molecular dynamics studies predict an alteration of the stacking interactions between Tyr(215) and the adenine ring of ATP due to long-distance effects caused by tighter packaging of Tyr(208) and Trp(212). These studies provide a mechanistic explanation for the association of TAM-1 and H208Y mutations in viral isolates from patients treated with NRTIs.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - María Nevot
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain; Biomol-Informatics, Parque Científico de Madrid, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel A Martínez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
7
|
Muftuoglu Y, Sohl CD, Mislak AC, Mitsuya H, Sarafianos SG, Anderson KS. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics. Antiviral Res 2014; 106:1-4. [PMID: 24632447 DOI: 10.1016/j.antiviral.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed.
Collapse
Affiliation(s)
- Yagmur Muftuoglu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Christal D Sohl
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Andrea C Mislak
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Hiroaki Mitsuya
- Department of Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan; Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Stefan G Sarafianos
- CS Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO 65211, United States; Department of Biochemistry, University of Missouri, School of Medicine, Columbia, MO 65211, United States
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
8
|
Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3:119-28. [PMID: 23602470 DOI: 10.1016/j.coviro.2013.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
Structures of RT and its complexes combined with biochemical and clinical data help in illuminating the molecular mechanisms of different drug-resistance mutations. The NRTI drugs that are used in combinations have different primary mutation sites. RT mutations that confer resistance to one drug can be hypersensitive to another RT drug. Structure of an RT-DNA-nevirapine complex revealed how NNRTI binding forbids RT from forming a polymerase competent complex. Collective knowledge about various mechanisms of drug resistance by RT has broader implications for understanding and targeting drug resistance in general. In Part 1, we discussed the role of RT in developing HIV-1 drug resistance, structural and functional states of RT, and the nucleoside/nucleotide analog (NRTI) and non-nucleoside (NNRTI) drugs used in treating HIV-1 infections. In this part, we discuss structural understanding of various mechanisms by which RT confers antiviral drug resistance.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
9
|
Sohl CD, Kasiviswanathan R, Copeland WC, Anderson KS. Mutations in human DNA polymerase γ confer unique mechanisms of catalytic deficiency that mirror the disease severity in mitochondrial disorder patients. Hum Mol Genet 2012. [PMID: 23208208 DOI: 10.1093/hmg/dds509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human mitochondrial DNA polymerase γ (pol γ) is solely responsible for the replication and repair of the mitochondrial genome. Unsurprisingly, alterations in pol γ activity have been associated with mitochondrial diseases such as Alpers syndrome and progressive external ophthalmoplegia. Thus far, predicting the severity of mitochondrial disease based the magnitude of deficiency in pol γ activity has been difficult. In order to understand the relationship between disease severity in patients and enzymatic defects in vitro, we characterized the molecular mechanisms of four pol γ mutations, A957P, A957S, R1096C and R1096H, which have been found in patients suffering from aggressive Alpers syndrome to mild progressive external ophthalmoplegia. The A957P mutant showed the most striking deficiencies in the incorporation efficiency of a correct deoxyribonucleotide triphosphate (dNTP) relative to wild-type pol γ, with less, but still significant incorporation efficiency defects seen in R1096H and R1096C, and only a small decrease in incorporation efficiency observed for A957S. Importantly, this trend matches the disease severity observed in patients very well (approximated as A957P ≫ R1096C ≥ R1096H ≫ A957S, from most severe disease to least severe). Further, the A957P mutation conferred a two orders of magnitude loss of fidelity relative to wild-type pol γ, indicating that a buildup of mitochondrial genomic mutations may contribute to the death in infancy seen with these patients. We conclude that characterizing the unique molecular mechanisms of pol γ deficiency for physiologically important mutant enzymes is important for understanding mitochondrial disease and for predicting disease severity.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
10
|
Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 2012; 287:38110-23. [PMID: 22955279 DOI: 10.1074/jbc.m112.398180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bulst S, Holinski-Feder E, Payne B, Abicht A, Krause S, Lochmüller H, Chinnery PF, Walter MC, Horvath R. In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Mol Genet Metab 2012; 107:95-103. [PMID: 22608879 PMCID: PMC4038513 DOI: 10.1016/j.ymgme.2012.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 01/10/2023]
Abstract
Mitochondrial DNA depletion syndromes are a genetically heterogeneous group of often severe diseases, characterized by reduced cellular mitochondrial DNA content. Investigation of potential therapeutic strategies for mitochondrial DNA depletion syndromes will be dependent on good model systems. We have previously suggested that myotubes may be the optimal model system for such studies. Here we firstly validate this technique in a diverse range of cells of patients with mitochondrial DNA depletion syndromes, showing contrasting effects in cell lines from genetically and phenotypically differing patients. Secondly, we developed a putative therapeutic approach using variable combinations of deoxynucleoside monophosphates in different types of mitochondrial DNA depletion syndromes, showing near normalization of mitochondrial DNA content in many cases. Furthermore, we used nucleoside reverse transcriptase inhibitors to precisely titrate mtDNA depletion in vitro. In this manner we can unmask a physiological defect in mitochondrial depletion syndrome cell lines which is also ameliorated by deoxynucleoside monophosphate supplementation. Finally, we have extended this model to study fibroblasts after myogenic transdifferentiation by MyoD transfection, which similar to primary myotubes also showed deoxynucleoside monophosphate responsive mitochondrial DNA depletion in vitro, thus providing a more convenient method for deriving future models of mitochondrial DNA depletion. Our results suggest that using different combinations of deoxynucleoside monophosphates depending on the primary gene defect and molecular mechanism may be a possible therapeutic approach for many patients with mitochondrial DNA depletion syndromes and is worthy of further clinical investigation.
Collapse
Affiliation(s)
- Stefanie Bulst
- Medical Genetic Center, Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
| | | | - Brendan Payne
- Institute of Genetic Medicine, Newcastle University, UK
| | - Angela Abicht
- Medical Genetic Center, Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
| | | | | | - Maggie C. Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Germany
| | - Rita Horvath
- Medical Genetic Center, Munich, Germany
- Institute of Genetic Medicine, Newcastle University, UK
| |
Collapse
|
12
|
Betancor G, Garriga C, Puertas MC, Nevot M, Anta L, Blanco JL, Pérez-Elías MJ, de Mendoza C, Martínez MA, Martinez-Picado J, Menéndez-Arias L, Iribarren JA, Caballero E, Ribera E, Llibre JM, Clotet B, Jaén A, Dalmau D, Gatel JM, Peraire J, Vidal F, Vidal C, Riera M, Córdoba J, López Aldeguer J, Galindo MJ, Gutiérrez F, Álvarez M, García F, Pérez-Romero P, Viciana P, Leal M, Palomares JC, Pineda JA, Viciana I, Santos J, Rodríguez P, Gómez Sirvent JL, Gutiérrez C, Moreno S, Pérez-Olmeda M, Alcamí J, Rodríguez C, del Romero J, Cañizares A, Pedreira J, Miralles C, Ocampo A, Morano L, Aguilera A, Garrido C, Manuzza G, Poveda E, Soriano V. Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology 2012; 9:68. [PMID: 22889300 PMCID: PMC3468358 DOI: 10.1186/1742-4690-9-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sohl CD, Kasiviswanathan R, Kim J, Pradere U, Schinazi RF, Copeland WC, Mitsuya H, Baba M, Anderson KS. Balancing antiviral potency and host toxicity: identifying a nucleotide inhibitor with an optimal kinetic phenotype for HIV-1 reverse transcriptase. Mol Pharmacol 2012; 82:125-33. [PMID: 22513406 PMCID: PMC3382833 DOI: 10.1124/mol.112.078758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/09/2012] [Indexed: 11/22/2022] Open
Abstract
Two novel thymidine analogs, 3'-fluoro-3'-deoxythymidine (FLT) and 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre-steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2',3'-didehydro-2',3'-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4'-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2',3'-didehydro-2',3'-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A role of template cleavage in reduced excision of chain-terminating nucleotides by human immunodeficiency virus type 1 reverse transcriptase containing the M184V mutation. J Virol 2012; 86:5122-33. [PMID: 22379084 DOI: 10.1128/jvi.05767-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to nucleoside reverse transcriptase (RT) inhibitors is conferred on human immunodeficiency virus type 1 through thymidine analogue resistance mutations (TAMs) that increase the ability of RT to excise chain-terminating nucleotides after they have been incorporated. The RT mutation M184V is a potent suppressor of TAMs. In RT containing TAMs, the addition of M184V suppressed the excision of 3'-deoxy-3'-azidothymidine monophosphate (AZTMP) to a greater extent on an RNA template than on a DNA template with the same sequence. The catalytically inactive RNase H mutation E478Q abolished this difference. The reduction in excision activity was similar with either ATP or pyrophosphate as the acceptor substrate. Decreased excision of AZTMP was associated with increased cleavage of the RNA template at position -7 relative to the primer terminus, which led to increased primer-template dissociation. Whether M184V was present or not, RT did not initially bind at the -7 cleavage site. Cleavage at the initial site was followed by RT dissociation and rebinding at the -7 cleavage site, and the dissociation and rebinding were enhanced when the M184V mutation was present. In contrast to the effect of M184V, the K65R mutation suppressed the excision activity of RT to the same extent on either an RNA or a DNA template and did not alter the RNase H cleavage pattern. Based on these results, we propose that enhanced RNase H cleavage near the primer terminus plays a role in M184V suppression of AZT resistance, while K65R suppression occurs through a different mechanism.
Collapse
|
15
|
Van Cor-Hosmer SK, Daddacha W, Kelly Z, Tsurumi A, Kennedy EM, Kim B. The impact of molecular manipulation in residue 114 of human immunodeficiency virus type-1 reverse transcriptase on dNTP substrate binding and viral replication. Virology 2012; 422:393-401. [PMID: 22153297 PMCID: PMC3804253 DOI: 10.1016/j.virol.2011.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/05/2011] [Accepted: 11/04/2011] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) has a unique tight binding to dNTP substrates. Structural modeling of Ala-114 of HIV-1 RT suggests that longer side chains at this residue can reduce the space normally occupied by the sugar moiety of an incoming dNTP. Indeed, mutations at Ala-114 decrease the ability of RT to synthesize DNA at low dNTP concentrations and reduce the dNTP-binding affinity (K(d)) of RT. However, the K(d) values of WT and A114C RT remained equivalent with an acyclic dNTP substrate. Finally, mutant A114 RT HIV-1 vectors displayed a greatly reduced transduction in nondividing human lung fibroblasts (HLFs), while WT HIV-1 vector efficiently transduced both dividing and nondividing HLFs. Together these data support that the A114 residue of HIV-1 RT plays a key mechanistic role in the dNTP binding of HIV-1 RT and the unique viral infectivity of target cell types with low dNTP pools.
Collapse
Affiliation(s)
- Sarah K Van Cor-Hosmer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
16
|
von Kleist M, Metzner P, Marquet R, Schütte C. HIV-1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance selection. PLoS Comput Biol 2012; 8:e1002359. [PMID: 22275860 PMCID: PMC3261923 DOI: 10.1371/journal.pcbi.1002359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment. Nucleoside analogs (NAs) represent an important drug class for the treatment of viral infections and cancer. They inhibit DNA/RNA polymerization after being incorporated into nascent DNA/RNA, which prevents primer extension. Viruses are particularly versatile and frequently develop mutations enabling them to avert the effects of NAs. The mechanisms of resistance development are, however, still poorly understood. Through mathematical modeling, we assess the mechanisms by which HIV-1 can develop resistance against nucleoside analog reverse transcriptase inhibitors (NRTI). We quantify the effects of treatment and estimate the fitness of drug resistant mutants. We correctly predict that HIV-1 can develop resistance by decreasing NRTI incorporation rate, increasing its excision rate, or decreasing its affinity for the viral polymerase enzyme. Our model also allows quantification of the cell specific factors affecting NRTI efficacy. Resistance development also changes drug susceptibility distinctly and we show, for the first time, that selection of drug resistance can occur in particular target cells. This finding could provide an explanation of how clinically observed resistant viral mutants may arise. It also pin-points important parameters that may impact clinical efficacy of NAs used to treat other viruses.
Collapse
Affiliation(s)
- Max von Kleist
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
17
|
Sierra S, Walter H. Targets for Inhibition of HIV Replication: Entry, Enzyme Action, Release and Maturation. Intervirology 2012; 55:84-97. [DOI: 10.1159/000331995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Betancor G, Puertas MC, Nevot M, Garriga C, Martínez MA, Martinez-Picado J, Menéndez-Arias L. Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother 2010; 54:4799-811. [PMID: 20733040 PMCID: PMC2976120 DOI: 10.1128/aac.00716-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 08/17/2010] [Indexed: 12/15/2022] Open
Abstract
Previous studies showed an increased prevalence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) thumb subdomain polymorphisms Pro272, Arg277, and Thr286 in patients failing therapy with nucleoside analogue combinations. Interestingly, wild-type HIV-1(BH10) RT contains Pro272, Arg277, and Thr286. Here, we demonstrate that in the presence of zidovudine, HIV-1(BH10) RT mutations P272A/R277K/T286A produce a significant reduction of the viral replication capacity in peripheral blood mononuclear cells in both the absence and presence of M41L/T215Y. In studies carried out with recombinant enzymes, we show that RT thumb subdomain mutations decrease primer-unblocking activity on RNA/DNA complexes, but not on DNA/DNA template-primers. These effects were observed with primers terminated with thymidine analogues (i.e., zidovudine and stavudine) and carbovir (the relevant derivative of abacavir) and were more pronounced when mutations were introduced in the wild-type HIV-1(BH10) RT sequence context. RT thumb subdomain mutations increased by 2-fold the apparent dissociation equilibrium constant (K(d)) for RNA/DNA without affecting the K(d) for DNA/DNA substrates. RNase H assays carried out with RNA/DNA complexes did not reveal an increase in the reaction rate or in secondary cleavage events that could account for the decreased excision activity. The interaction of Arg277 with the phosphate backbone of the RNA template in HIV-1 RT bound to RNA/DNA and the location of Thr286 close to the RNA strand are consistent with thumb polymorphisms playing a role in decreasing nucleoside RT inhibitor excision activity on RNA/DNA template-primers by affecting interactions with the template-primer duplex without involvement of the RNase H activity of the enzyme.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maria C. Puertas
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Nevot
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - César Garriga
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Miguel A. Martínez
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Javier Martinez-Picado
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
19
|
Daga PR, Duan J, Doerksen RJ. Computational model of hepatitis B virus DNA polymerase: molecular dynamics and docking to understand resistant mutations. Protein Sci 2010; 19:796-807. [PMID: 20162615 DOI: 10.1002/pro.359] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatitis B virus (HBV) DNA polymerase (HDP) is a pharmacological target of intense interest. Of the seven agents approved in USA for the treatment of HBV infections, five are HDP inhibitors. However, resistance development against HDP inhibitors, such as lamivudine and adefovir, has severely hurt their efficacy to treat HBV. As a step toward understanding the mechanism of resistance development and for gaining detailed insights about the active site of the enzyme, we have built a homology model of HDP which is an advance over previously reported ones. Validation using various techniques, including PROSTAT, PROCHECK, and Verify-3D profile, proved the model to be stereochemically significant. The stability of the model was studied using a 5 ns molecular dynamics simulation. The model was found to be sufficiently stable after the initial 2.5 ns with overall root mean squared deviation (RMSD) of 4.13 A. The homology model matched the results of experimental mutation studies of HDP reported in the literature, including those of antiviral-resistant mutations. Our model suggests the significant role of conserved residues, such as rtLys32, in binding of the inhibitors, contrary to previous studies. The model provides an explanation for the inactivity of some anti-HIV molecules which are inactive against HDP. Conformational changes which occurred in certain binding pocket amino acids helped to explain the better binding of some of the inhibitors in comparison to the substrates.
Collapse
Affiliation(s)
- Pankaj R Daga
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677-1848, USA
| | | | | |
Collapse
|
20
|
Stumpf JD, Bailey CM, Spell D, Stillwagon M, Anderson KS, Copeland WC. mip1 containing mutations associated with mitochondrial disease causes mutagenesis and depletion of mtDNA in Saccharomyces cerevisiae. Hum Mol Genet 2010; 19:2123-33. [PMID: 20185557 DOI: 10.1093/hmg/ddq089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase gamma (pol gamma) is responsible for replication and repair of mitochondrial DNA (mtDNA). Over 150 mutations in POLG (which encodes pol gamma) have been discovered in patients with mitochondrial disorders including Alpers, progressive external ophthalmoplegia and ataxia-neuropathy syndrome. However, the severity and dominance of many POLG disease-associated mutations are unclear, because they have been reported in sporadic cases. To understand the consequences of pol gamma disease-associated mutations in vivo, we identified dominant and recessive changes in mtDNA mutagenesis, depletion and mitochondrial dysfunction caused by 31 mutations in the conserved regions of the gene, MIP1, which encodes the Saccharomyces cerevisiae ortholog of human pol gamma. Twenty mip1 mutant enzymes were shown to disrupt mtDNA replication and may be sufficient to cause disease. Previously uncharacterized sporadic mutations, Q308H, R807C, G1076V, R1096H and S1104C, caused decreased polymerase activity leading to mtDNA depletion and mitochondrial dysfunction. We present evidence showing a limited role of point mutagenesis by these POLG mutations in mitochondrial dysfunction and disease progression. Instead, most mitochondrial defective mip1 mutants displayed reduced or depleted mtDNA. We also determined that the severity of the phenotype of the mip1 mutant strain correlates with the age of onset of disease associated with the human ortholog. Finally, we demonstrated that increasing nucleotide pools by overexpression of ribonucleotide reductase (RNR1) suppressed mtDNA replication defects caused by several dominant mip1 mutations, and the orthologous human mutations revealed severe nucleotide binding defects.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes ofHealth, Research, Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mechanisms of resistance associated with excision of incorporated nucleotide analogue inhibitors of HIV-1 reverse transcriptase. Curr Opin HIV AIDS 2009; 2:103-7. [PMID: 19372874 DOI: 10.1097/coh.0b013e3280287a60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Nucleoside analogue reverse transcriptase inhibitors are important components in current drug regimens used to treat infection with HIV. Despite the potency of drug combinations that involve two nucleoside reverse transcriptase inhibitors and a non-nucleoside analogue or a protease inhibitor, the emergence of resistance remains a major reason for treatment failure. This article reviews biochemical mechanisms associated with resistance to nucleoside reverse transcriptase inhibitors. RECENT FINDINGS The thymidine analogues zidovudine and stavudine select for mutational patterns that facilitate the phosphorolytic excision of literally all available nucleoside reverse transcriptase inhibitors. Major progress has been made in defining genotypes that either support or counteract the reaction. Thymidine analogue-associated mutations were shown to increase rates of excision. In contrast, non-thymidine analogue reverse transcriptase inhibitors select for different mutations, e.g. M184V, L74V, and K65R that diminish the effects of thymidine analogue-associated mutations. Possible underlying biochemical mechanisms are discussed in this review. SUMMARY The non-thymidine analogue-associated mutations M184V, L74V, and K65R show incompatibilities with thymidine-analogue-associated mutations. Maximizing these effects in clinical practice may help delay the emergence of resistance. Together, the clinical and biochemical data validate the excision reaction as a target for the development of novel compounds that interfere with the reaction.
Collapse
|
22
|
Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations. Curr Opin HIV AIDS 2009; 2:81-7. [PMID: 19372871 DOI: 10.1097/coh.0b013e328051b4e8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Nucleoside and nucleotide reverse transcriptase inhibitors constitute the backbone of highly active antiretroviral therapy in the treatment of HIV-1 infection. One of the major obstacles in achieving the long-term efficacy of anti-HIV-1 therapy is the development of resistance. The advent of resistance mutations is usually accompanied by a change in viral replicative fitness. This review focuses on the most common nucleoside reverse transcriptase inhibitor-associated mutations and their effects on HIV-1 replicative fitness. RECENT FINDINGS Recent studies have explained the two main mechanisms of resistance to nucleoside reverse transcriptase inhibitors and their role in HIV-1 replicative fitness. The first involves mutations directly interfering with binding or incorporation and seems to impact replicative fitness more adversely than the second mechanism, which involves enhanced excision of the newly incorporated analogue. Further studies have helped explain the antagonistic effects between amino acid substitutions, K65R, L74V, M184V, and thymidine analogue mutations, showing how viral replicative fitness influences the evolution of thymidine analogue resistance pathways. SUMMARY Nucleoside reverse transcriptase inhibitor resistance mutations impact HIV-1 replicative fitness to a lesser extent than protease resistance mutations. The monitoring of viral replicative fitness may help in the management of HIV-1 infection in highly antiretroviral-experienced individuals.
Collapse
|
23
|
Paredes R, Clotet B. Clinical management of HIV-1 resistance. Antiviral Res 2009; 85:245-65. [PMID: 19808056 DOI: 10.1016/j.antiviral.2009.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Antiretroviral drug resistance is a fundamental survival strategy for the virus that stems from its vast capacity to generate diversity. With the recent availability of new ARV drugs and classes, it is now possible to prescribe fully active ART to most HIV-infected subjects and achieve viral suppression even in those with multidrug-resistant HIV. It is uncertain, however, if this scenario will endure. Given that ART must be given for life, and new compounds other than second-generation integrase inhibitors may not reach the clinic soon, all efforts must be done to avoid the development of resistance to the new agents. Here, we discuss relevant aspects for the clinical management of antiretroviral drug resistance, leaving detailed explanations of mechanisms and mutation patterns to other articles in this issue. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Roger Paredes
- Institut de Recerca de SIDA - irsiCaixa & Fundació Lluita contra SIDA, Servei de Medicina Interna, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain.
| | | |
Collapse
|
24
|
Matamoros T, Nevot M, Martínez MA, Menéndez-Arias L. Thymidine analogue resistance suppression by V75I of HIV-1 reverse transcriptase: effects of substituting valine 75 on stavudine excision and discrimination. J Biol Chem 2009; 284:32792-802. [PMID: 19801659 DOI: 10.1074/jbc.m109.038885] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Val(75) of HIV-1 reverse transcriptase (RT) plays a role in positioning the template nucleotide +1 during the formation of the ternary complex. Mutations, such as V75M and V75A, emerge in patients infected with HIV-1 group M subtype B and group O variants, after failing treatment with stavudine (d4T) and other nucleoside RT inhibitors. V75I is an accessory mutation of the Q151M multidrug resistance complex of HIV-1 RT and is rarely associated with thymidine analogue resistance mutations (TAMs). In vitro, it confers resistance to acyclovir. TAMs confer resistance to zidovudine (AZT) and d4T by increasing the rate of ATP-mediated excision of the terminal nucleotide monophosphate (primer unblocking). In a wild-type HIV-1 group O RT sequence context, V75A and V75M conferred increased excision activity on d4T-terminated primers, in the presence of PP(i). In contrast, V75I decreased the PP(i)-mediated unblocking efficiency on AZT and d4T-terminated primers, in different sequence contexts (i.e. wild-type group M subtype B or group O RTs). Interestingly, in the sequence context of an excision-proficient RT (i.e. M41L/A62V/T69SSS/K70R/T215Y), the introduction of V75I led to a significant decrease of its ATP-dependent excision activity on AZT-, d4T-, and acyclovir-terminated primers. The excision rate of d4T-monophosphate in the presence of ATP (3.2 mm) was about 10 times higher for M41L/A62V/T69SSS/K70R/T215Y than for the mutant M41L/A62V/T69SSS/K70R/V75I/T215Y RT. The antagonistic effect of V75I with TAMs was further demonstrated in phenotypic assays. Recombinant HIV-1 containing the M41L/A62V/T69SSS/K70R/V75I/T215Y RT showed 18.3- and 1.5-fold increased susceptibility to AZT and d4T, respectively, in comparison with virus containing the M41L/A62V/T69SSS/K70R/T215Y RT.
Collapse
Affiliation(s)
- Tania Matamoros
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Ehteshami M, Scarth BJ, Tchesnokov EP, Dash C, Le Grice SFJ, Hallenberger S, Jochmans D, Götte M. Mutations M184V and Y115F in HIV-1 reverse transcriptase discriminate against "nucleotide-competing reverse transcriptase inhibitors". J Biol Chem 2008; 283:29904-11. [PMID: 18728003 DOI: 10.1074/jbc.m804882200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Indolopyridones are potent inhibitors of reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1). Although the structure of these compounds differs from established nucleoside analogue RT inhibitors (NRTIs), previous studies suggest that the prototype compound INDOPY-1 may bind in close proximity to the polymerase active site. NRTI-associated mutations that are clustered around the active site confer decreased, e.g. M184V and Y115F, or increased, e.g. K65R, susceptibility to INDOPY-1. Here we have studied the underlying biochemical mechanism. RT enzymes containing the isolated mutations M184V and Y115F cause 2-3-fold increases in IC(50) values, while the combination of the two mutations causes a >15-fold increase. K65R can partially counteract these effects. Binding studies revealed that the M184V change reduces the affinity to INDOPY-1, while Y115F facilitates binding of the natural nucleotide substrate and the combined effects enhance the ability of the enzyme to discriminate against the inhibitor. Studies with other strategic mutations at residues Phe-61 and Ala-62, as well as the use of chemically modified templates shed further light on the putative binding site of the inhibitor and ternary complex formation. An abasic site residue at position n, i.e. opposite the 3'-end of the primer, prevents binding of INDOPY-1, while an abasic site at the adjacent position n+1 has no effect. Collectively, our findings provide strong evidence to suggest that INDOPY-1 can compete with natural deoxynucleoside triphosphates (dNTPs). We therefore propose to refer to members of this class of compounds as "nucleotide-competing RT inhibitors" (NcRTIs).
Collapse
Affiliation(s)
- Maryam Ehteshami
- Department of Microbiology & Immunology, McGill University, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kisic M, Mendieta J, Puertas MC, Parera M, Martínez MA, Martinez-Picado J, Menéndez-Arias L. Mechanistic basis of zidovudine hypersusceptibility and lamivudine resistance conferred by the deletion of codon 69 in the HIV-1 reverse transcriptase coding region. J Mol Biol 2008; 382:327-41. [PMID: 18662701 DOI: 10.1016/j.jmb.2008.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Deletions in the beta 3-beta 4 hairpin loop of human immunodeficiency virus type 1 reverse transcriptase (RT) are associated with the emergence of multidrug resistance. Common mutational patterns involve the deletion of Asp67 (Delta 67) and mutations such as K70R and T215F or T215Y, or the deletion of Thr69 (Delta 69) and mutations of the Q151M complex. Human immunodeficiency virus type 1 clones containing Delta 69 in a multidrug-resistant sequence background, including the Q151M complex and substitutions K103N, Y181C, M184V, and G190A, showed high-level resistance to all tested nucleoside RT inhibitors. In a multidrug-resistant sequence context, the deletion increases viral replication capacity. By itself, Delta 69 conferred increased susceptibility to beta-d-(+)-3'-azido-3'-deoxythymidine (AZT) and beta-l-(-)-2',3'-dideoxy-3'-thiacytidine resistance. Here, we use transient kinetics to show that, in a wild-type sequence background, Delta 69 does not affect the discrimination between AZT triphosphate and 2'-deoxythymidine 5'-triphosphate, but decreases the catalytic efficiency of the incorporation of beta-l-(-)-2',3'-dideoxy-3'-thiacytidine triphosphate relative to 2'-deoxycytidine 5'-triphosphate. In comparison with the wild-type RT, the Delta 69 mutant showed decreased ability to excise primers terminated with AZT monophosphate in the presence of ATP or pyrophosphate (PPi). These data support the role of the excision mechanism in mediating AZT hypersusceptibility. In addition, we demonstrate that the deletion has no effect on resistance to foscarnet (a PPi analogue) on phenotypic and nucleotide incorporation assays carried out with viral clones and recombinant enzymes, respectively. The results of molecular modeling studies suggest that the side chains of Lys65, Asp67, and Lys219 could play an important role in AZT hypersusceptibility mediated by Delta 69, whereas in the absence of Thr69, local structural rearrangements affecting the beta 3-beta 4 and beta 11a-beta 12 loops of the 66-kDa subunit of the RT could reduce the accessibility of the PPi donor to the terminating nucleotide at the 3' end of the primer.
Collapse
Affiliation(s)
- Mónica Kisic
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 2008; 134:124-46. [PMID: 18272247 DOI: 10.1016/j.virusres.2007.12.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond formation. Unfortunately, available therapies do not completely suppress viral replication, and the emergence of drug-resistant HIV variants is facilitated by the high adaptation capacity of the virus. Mutations in the RT-coding region selected during treatment with nucleoside analogues confer resistance through different mechanisms: (i) altering discrimination between nucleoside RT inhibitors and natural substrates (dNTPs) (e.g. Q151M, M184V, etc.), or (ii) increasing the RT's phosphorolytic activity (e.g. M41L, T215Y and other thymidine analogue resistance mutations), which in the presence of a pyrophosphate donor (usually ATP) allow the removal of chain-terminating inhibitors from the 3' end of the primer. Both mechanisms are implicated in multi-drug resistance. The excision reaction can be modulated by mutations conferring resistance to nucleoside or nonnucleoside RT inhibitors, and by amino acid substitutions that interfere with the proper binding of the template-primer, including mutations that affect RNase H activity. New developments in the field should contribute towards improving the efficacy of current therapies.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Essa AH, Jalbout AF. Analysis of the structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin-1-yl-penta-1,3dienyl)-benzo[1,3]dioxol-2-yl] -tetrahydro-furan-2-yl)-5-methyl-1H-pyrimidine-2,4dione molecule. ECLÉTICA QUÍMICA 2008. [DOI: 10.1590/s0100-46702008000100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Wirden M, Roquebert B, Derache A, Simon A, Duvivier C, Ghosn J, Dominguez S, Boutonnet V, Ait-Arkoub Z, Katlama C, Calvez V, Marcelin AG. Risk factors for selection of the L74I reverse transcriptase mutation in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 2006; 50:2553-6. [PMID: 16801444 PMCID: PMC1489786 DOI: 10.1128/aac.00092-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed 3,475 human immunodeficiency virus sequences and 241 therapeutic histories. The L74I mutation was carried by 7% of viruses. L74I was strongly associated with T215F, K70R, and V75M/S/T/A mutations and increased with the number of thymidine analog mutations. It seemed to be linked to the use of abacavir or efavirenz.
Collapse
Affiliation(s)
- Marc Wirden
- Department of Virology, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Domaoal RA, Bambara RA, Demeter LM. HIV-1 reverse transcriptase mutants resistant to nonnucleoside reverse transcriptase inhibitors do not adversely affect DNA synthesis: pre-steady-state and steady-state kinetic studies. J Acquir Immune Defic Syndr 2006; 42:405-11. [PMID: 16763521 DOI: 10.1097/01.qai.0000222288.90201.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutants have different levels of replication fitness relative to wild type; those with greater reductions in fitness are less likely to develop during therapy in patients. We have also found that reductions in rates of RNase H cleavage by mutant RTs correlate with reductions in fitness and that NNRTI-resistant RTs catalyze polymerization with a processivity similar to wild type. In this study, we evaluated the polymerase function of 3 clinically occurring NNRTI-resistant RTs (K103N, P236L, and V106A) in greater detail, under both pre-steady-state and steady-state conditions. The overall pathway of single-nucleotide incorporation was unchanged for the mutant RTs compared with wild type. In addition, the NNRTI-resistant mutants were each similar to wild type in rate of nucleotide incorporation (kpol), affinity for dGTP (Kd), and steady-state rate of polymerization (kss and kcat), using either RNA or DNA templates. These findings suggest that the close proximity of the NNRTI-resistance mutations to the polymerase active site does not affect the interactions of the enzyme with the incoming nucleotide or the primer-template sufficiently to affect polymerization and support the hypothesis that these reductions in RNase H activity contribute to reductions in replication fitness.
Collapse
Affiliation(s)
- Robert A Domaoal
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
32
|
Götte M, Wainberg MA. Significance of the L74V mutation in HIV-1 reverse transcriptase. Future Virol 2006. [DOI: 10.2217/17460794.1.4.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations that confer resistance to nucleoside analog reverse transcriptase inhibitors of HIV-1 can be divided into two major classes: thymidine analog mutations (TAMs) and TAM suppressors. M184V, K65R and L74V are TAM suppressors that emerge under the selective pressure of non-thymidine analogs. Each of the three TAM suppressors have been shown to decrease the level of resistance to 3´-azido-3´-deoxythymidine against a background of certain combinations of TAMs. L74V and M184V have also been associated with decreased phenotypic susceptibility to tenofovir disoproxil fumarate in vitro. In this review, the effects associated with the L74V mutation, which confer resistance to didanosine and abacavir, are discussed. The clinical significance of this mutation and the underlying biochemical mechanisms of inhibition, resistance and resensitization are also discussed in the context of drug regimens containing didanosine and/or abacavir, in combination with 3´-azido -3´-deoxythymidine and/or tenofovir disoproxil fumarate.
Collapse
Affiliation(s)
- Matthias Götte
- McGill University, Department of Microbiology & Immunology, Duff Medical Building (D-6) 3775, University Street, Montréal, Québec H3A 2B4, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
33
|
Chen R, Yokoyama M, Sato H, Reilly C, Mansky LM. Human immunodeficiency virus mutagenesis during antiviral therapy: impact of drug-resistant reverse transcriptase and nucleoside and nonnucleoside reverse transcriptase inhibitors on human immunodeficiency virus type 1 mutation frequencies. J Virol 2005; 79:12045-57. [PMID: 16140780 PMCID: PMC1212631 DOI: 10.1128/jvi.79.18.12045-12057.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of antiviral drug resistance is an important problem in the treatment of human immunodeficiency virus type 1 (HIV-1) infection. Potent antiretroviral therapy is currently used for treatment, and typically consists of at least two reverse transcriptase (RT) inhibitors. We have previously reported that both drugs and drug-resistant RT mutants can increase virus mutation frequencies. To further assess the contributions of nucleoside RT inhibitors (NRTIs), nonnucleoside RT inhibitors (NNRTIs), and drug-resistant RTs to HIV mutagenesis, a new high-throughput assay system was developed. This assay system was designed to specifically detect frameshift mutations in the luciferase gene in a single virus replication cycle. New drug-resistant RTs were identified that significantly altered virus mutation frequencies. Consistent with our previous observations of NRTIs, abacavir, stavudine, and zalcitabine increased HIV-1 mutation frequencies, supporting the general hypothesis that the NRTIs currently used in antiviral drug therapy increase virus mutation frequencies. Interestingly, similar observations were made with NNRTIs. This is the first report to show that NNRTIs can influence virus mutation frequencies. NNRTI combinations, NRTI-NNRTI combinations, and combinations of drug and drug-resistant RTs led to significant changes in the virus mutation frequencies compared to virus replication of drug-resistant virus in the absence of drug or wild-type virus in the presence of drug. This indicates that combinations of RT drugs or drugs and drug-resistant virus created during the evolution of drug resistance can act together to increase HIV-1 mutation frequencies, which would have important implications for drug therapy regimens. Finally, the influence of drug-resistant RT mutants from CRF01_AE viruses on HIV-1 mutation frequencies was analyzed and it was found that only a highly drug resistant RT led to altered virus mutation frequencies. The results further suggest that high-level drug-resistant RT can significantly influence virus mutation frequencies. A structural model that explains the mutation frequency data is discussed.
Collapse
Affiliation(s)
- Renxiang Chen
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
34
|
Ray AS, Hernandez-Santiago BI, Mathew JS, Murakami E, Bozeman C, Xie MY, Dutschman GE, Gullen E, Yang Z, Hurwitz S, Cheng YC, Chu CK, McClure H, Schinazi RF, Anderson KS. Mechanism of anti-human immunodeficiency virus activity of beta-D-6-cyclopropylamino-2',3'-didehydro-2',3'-dideoxyguanosine. Antimicrob Agents Chemother 2005; 49:1994-2001. [PMID: 15855524 PMCID: PMC1087621 DOI: 10.1128/aac.49.5.1994-2001.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the importance of the oxygen in the ribose ring of planar unsaturated nucleoside analogs that target human immunodeficiency virus (HIV), a 6-cyclopropyl-substituted prodrug of 2',3'-didehydro-2',3'-dideoxyguanosine (cyclo-d4G) was synthesized, and its cellular metabolism, antiviral activity, and pharmacokinetic behavior were studied. Cyclo-d4G had selective anti-HIV activity in primary blood mononuclear cells (PBMCs), effectively inhibiting the LAI strain of HIV-1 by 50% at 1.1 +/- 0.1 microM while showing 50% inhibition of cell viability at 84.5 microM. The antiviral activity in PBMCs was not markedly affected by mutations of methionine to valine at position 184 or by thymidine-associated mutations in the viral reverse transcriptase. Mutations of leucine 74 to valine and of lysine 65 to arginine had mild to moderate resistance (as high as fivefold). Studies to delineate the mechanism of cellular metabolism and activation of cyclo-d4G showed reduced potency in inhibiting viral replication in the presence of the adenosine/adenylate deaminase inhibitor 2'-deoxycoformycin, implying that the antiviral activity is due to its metabolism to the 2'-dGTP analog d4GTP. Intracellular formation of sugar catabolites illustrates the chemical and potentially enzymatic instability of the glycosidic linkage in d4G. Further studies suggest that cyclo-d4G has a novel intracellular phosphorylation pathway. Cyclo-d4G had a lower potential to cause mitochondrial toxicity than 2',3'-dideoxycytidine and 2',3'-didehydro-3'-deoxythymidine in neuronal cells. Also, cyclo-d4G had advantageous synergism with many currently used anti-HIV drugs. Poor oral bioavailability observed in rhesus monkeys may be due to the labile glycosidic bond, and special formulation may be necessary for oral delivery.
Collapse
Affiliation(s)
- Adrian S Ray
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Smith AJ, Meyer PR, Asthana D, Ashman MR, Scott WA. Intracellular substrates for the primer-unblocking reaction by human immunodeficiency virus type 1 reverse transcriptase: detection and quantitation in extracts from quiescent- and activated-lymphocyte subpopulations. Antimicrob Agents Chemother 2005; 49:1761-9. [PMID: 15855493 PMCID: PMC1087649 DOI: 10.1128/aac.49.5.1761-1769.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3'-azido-3'-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [(32)P]ddAMP-terminated DNA primer/template gave rise to (32)P-labeled adenosine 2',3'-dideoxyadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)ddA), ddATP, Gp(4)ddA, and Ap(3)ddA, corresponding to the transfer of [(32)P]ddAMP to ATP, PP(i), GTP, and ADP, respectively. Incubation with [(32)P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous (32)P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PP(i) levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4(+) or CD8(+) T cells, while PP(i) was present at 7 to 15 microM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4(+) or CD8(+) T cells contained 1.4 to 2.7 mM ATP and 55 to 79 microM PP(i). These cellular PP(i) concentrations are lower than previously reported; nonetheless, the PP(i)-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PP(i)-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.
Collapse
Affiliation(s)
- Anthony J Smith
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | | | | | | | |
Collapse
|
36
|
Bouchonnet F, Dam E, Mammano F, de Soultrait V, Henneré G, Benech H, Clavel F, Hance AJ. Quantification of the effects on viral DNA synthesis of reverse transcriptase mutations conferring human immunodeficiency virus type 1 resistance to nucleoside analogues. J Virol 2005; 79:812-22. [PMID: 15613309 PMCID: PMC538537 DOI: 10.1128/jvi.79.2.812-822.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type I (HIV-1) reverse transcriptase (RT) resistance mutations reduce the susceptibility of the virus to nucleoside analogues but may also impair viral DNA synthesis. To further characterize the effect of nucleoside analogue resistance mutations on the efficiency and kinetics of HIV-1 DNA synthesis and to evaluate the impact of the depletion of deoxynucleoside triphosphates (dNTP) on this process, DNA synthesis was evaluated by allowing DNA synthesis to proceed with natural HIV-1 templates and primers, either within permeabilized viral particles or in newly infected cells, and quantifying the products by real-time PCR. Three recombinant viruses derived from three pNL4-3 molecular clones expressing mutations associated with resistance to zidovudine: a clone expressing RT mutation M184V, a clone expressing mutations M41L plus T215Y (M41L+T215Y), and clinical isolate BV34 (carrying seven resistance mutations). Following infection of P4 cells, the BV34 mutant, but not viruses expressing the M184V mutation or M41L+T215Y, exhibited a defect in DNA synthesis. Importantly, however, for mutants carrying the M184V mutation or M41L+T215Y mutations, a defect could be detected by using target cells in which dATP pools had been reduced by pretreatment with hydroxyurea. Based on these observations, we developed a recombinant-virus assay to assess the effects of hydroxyurea pretreatment on infectivity of viruses carrying plasma-derived RT sequences from patients with nucleoside resistance. Using this assay, we found that many, but not all, viruses carrying RT resistance mutations display an increased sensitivity to hydroxyurea, suggesting that the impact of RT resistance mutations on viral replication may be more profound in cell populations characterized by smaller dNTP pools.
Collapse
Affiliation(s)
- Francine Bouchonnet
- INSERM U.552, Hôpital Bichat-Claude Bernard, 46, rue Henri Huchard, 750918 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P. In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Agents Chemother 2004; 48:4387-94. [PMID: 15504868 PMCID: PMC525453 DOI: 10.1128/aac.48.11.4387-4394.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amdoxovir [(-)-beta-d-2,6-diaminopurine dioxolane (DAPD)] is a nucleoside analogue reverse transcriptase inhibitor of human immunodeficiency virus type 1 (HIV-1) replication. DAPD is deaminated by adenosine deaminase to the guanosine analogue dioxolane guanosine (DXG), which is subsequently phosphorylated to the corresponding 5' triphosphate (DXG-TP). DXG-TP competes with the natural substrate dGTP for binding to the enzyme-nucleic acid complex. Mycophenolic acid (MPA) and ribavirin (RBV), inhibitors of inosine monophosphate dehydrogenase (IMPDH), inhibit the de novo synthesis of guanine nucleotides, including dGTP. Reducing the intracellular levels of dGTP would be expected to augment the antiviral activity of analogues of deoxyguanosine. In this study we examined the effect of MPA and RBV on the anti-HIV activity of DAPD and DXG. When tested against wild-type virus, both MPA and RBV decreased the 50% effective concentration (EC(50)) for DXG by at least 10-fold. In contrast, both MPA and RBV increase the EC(50) value for zidovudine. MPA and RBV completely reversed the resistance to DXG observed with HIV isolates containing mutations which confer partial resistance to DAPD and DXG. Similarly, when tested against a mutant virus fully resistant to inhibition by DAPD (K65R/Q151M), MPA and RBV reduced the EC(50) for DAPD to within twofold of that for the wild type. The combination of MPA or RBV with DAPD or DXG did not result in increased cytotoxicity or reduced levels of mitochondrial DNA when tested at physiologically relevant concentrations. These studies suggest a potential role for the use of IMPDH inhibitors in combination therapy with amdoxovir in the treatment of HIV.
Collapse
|
38
|
Götte M. Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance. Expert Rev Anti Infect Ther 2004; 2:707-16. [PMID: 15482234 DOI: 10.1586/14789072.2.5.707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleoside and non-nucleoside analog inhibitors of HIV Type 1 reverse transcriptase are currently used in the clinic to treat infection with this retrovirus. Following their intracellular activation, nucleoside analogs act as chain terminators, while non-nucleoside analog reverse transcriptase inhibitors bind to a hydrophobic pocket in close proximity to the active site and inhibit the catalytic step. Compounds that belong to the two different classes of drugs are frequently administered in combination to take advantage of the different mechanisms of drug action. However, the development of drug resistance may occur under conditions of continued, residual viral replication, which is a major cause of treatment failure. This review addresses the interaction between different inhibitors and resistance-conferring mutations in the context of combination therapy with drugs that target the reverse transcriptase enzyme. Focus is placed on biochemical mechanisms and the development of future approaches.
Collapse
Affiliation(s)
- Matthias Götte
- Jewish General Hospital, McGill University AIDS Center (226), Lady Davis Institute, 3755, chemin Côte-Ste-Catherine, Montréal, Québec, Canada H3T 1E2.
| |
Collapse
|
39
|
Lanier ER, Givens N, Stone C, Griffin P, Gibb D, Walker S, Tisdale M, Irlbeck D, Underwood M, St Clair M, Ait-Khaled M. Effect of concurrent zidovudine use on the resistance pathway selected by abacavir-containing regimens. HIV Med 2004; 5:394-9. [PMID: 15544690 DOI: 10.1111/j.1468-1293.2004.00243.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Abacavir (ABC) selects for four mutations (K65R, L74V, Y115F and M184V) in HIV-1 reverse transcriptase (RT), both in vitro and during monotherapy in vivo. The aim of this analysis was to compare the selection of these and other nucleoside reverse transcriptase inhibitor (NRTI)-associated mutations by ABC-containing therapies in the presence and absence of concurrent lamivudine (3TC) and/or zidovudine (ZDV) and to assess the effect of these mutations on phenotypic susceptibility to the NRTIs. DESIGN This study was a retrospective analysis of the patterns of NRTI-associated mutations selected following virological failure in six multicentre trials conducted during the development of ABC. METHODS Virological failure was defined as confirmed vRNA above 400 HIV-1 RNA copies/mL. RT genotype and phenotype were determined using standard methods. RESULTS K65R was selected infrequently by ABC-containing regimens in the absence of ZDV (13 of 127 patients), while L74V/I was selected more frequently (51 of 127 patients). Selection of both K65R and L74V/I was significantly reduced by co-administration of ZDV with ABC (one of 86 and two of 86 patients, respectively). Y115F was uncommon in the absence (seven of 127 patients) or presence (four of 86 patients) of ZDV. M184V was the most frequently selected mutation by ABC alone (24 of 70 patients) and by ABC plus 3TC (48 of 70 patients). Thymidine analogue mutations were associated with ZDV use. The K65R mutation conferred the broadest phenotypic cross-resistance of the mutations studied. CONCLUSIONS The resistance pathway selected upon virological failure of ABC-containing regimens is significantly altered by concurrent ZDV use, but not by concurrent 3TC use. These data may have important implications for the efficacy of subsequent lines of NRTI therapies.
Collapse
Affiliation(s)
- E R Lanier
- GlaxoSmithKline, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choi Y, Sun G, George C, Nicklaus MC, Kelley JA, Marquez VE. Synthesis and conformational analysis of a locked analogue of carbovir built on a bicyclo[3.1.0]hex-2-enyl template. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 22:2077-91. [PMID: 14714758 DOI: 10.1081/ncn-120026631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synthesis and biological evaluation of a carbovir analogue (5) built on a bicyclo[3.1.0]hex-2-enyl template is described. A conformational analysis using density functional theory at the B3LYP/6-31G* level has been carried out on the rigid pseudosugar template of 5, the cyclopentene moiety of carbovir and the bicyclo[3.1.0]hex-2-yl pseudosugars of two isomeric carbonucleosides (12 and 13) containing exo- and endo-fused cyclopropane rings. The results show that while the planar configuration of the fused cyclopentane ring of compound 5 helps retain weak anti-HIV activity, the ability of the cyclopentene ring of carbovir to easily adopt a planar or puckered conformation with little energy penalty may prove to be a crucial advantage. The bicyclo[3.1.0]hex-2-yl nucleosides 12 and 13 that were inactive against HIV exhibited stiffer resistance to having a planar, fused cyclopentane moiety.
Collapse
Affiliation(s)
- Yongseok Choi
- Laboratory of Medicinal Chemistry, Center for Cancer Research, NCI-Frederick, NIH, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
41
|
Diallo K, Götte M, Wainberg MA. Molecular impact of the M184V mutation in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2004; 47:3377-83. [PMID: 14576091 PMCID: PMC253767 DOI: 10.1128/aac.47.11.3377-3383.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Karidia Diallo
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital and Department of Microbiology and Immunology, McGill University, Montreal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
42
|
White KL, Chen JM, Margot NA, Wrin T, Petropoulos CJ, Naeger LK, Swaminathan S, Miller MD. Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob Agents Chemother 2004; 48:992-1003. [PMID: 14982794 PMCID: PMC353090 DOI: 10.1128/aac.48.3.992-1003.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two amino acids inserted between residues 69 and 70 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rare mutations that may develop in viruses containing multiple thymidine analog (zidovudine [AZT], stavudine)-associated mutations and that confer high-level resistance to all currently approved chain-terminating nucleoside and nucleotide RT inhibitors (NRTIs). The two known mechanisms of resistance to NRTIs are decreased incorporation and increased excision. The mechanism used by RT insertion mutants has not been described for tenofovir (TFV), a recently approved agent in this class. A patient-derived HIV-1 strain (strain FS-SSS) that contained an insertion mutation in a background of additional resistance mutations M41L, L74V, L210W, and T215Y was obtained. A second virus (strain FS) was derived from FS-SSS. In strain FS the insertion and T69S were reverted but the other resistance mutations were retained. The FS virus showed strong resistance to AZT but low-level changes in susceptibilities to other NRTIs and TFV. The FS-SSS virus showed reduced susceptibilities to all NRTIs including TFV. Steady-state kinetics demonstrated that the relative binding or incorporation of TFV was slightly decreased for FS-SSS RT compared to those for wild-type RT. However, significant ATP-mediated excision of TFV was detected for both mutant RT enzymes and followed the order FS-SSS RT > FS RT > wild-type RT. The presence of physiological concentrations of the +1 nucleotide inhibited TFV excision by the wild-type RT and slightly inhibited excision by the FS RT, whereas the level of excision by the FS-SSS RT remained high. Computer modeling suggests that the increased mobility of the beta3-beta4 loop may contribute to the high-level and broad NRTI resistance caused by the T69 insertion mutation.
Collapse
|
43
|
Diallo K, Marchand B, Wei X, Cellai L, Götte M, Wainberg MA. Diminished RNA primer usage associated with the L74V and M184V mutations in the reverse transcriptase of human immunodeficiency virus type 1 provides a possible mechanism for diminished viral replication capacity. J Virol 2003; 77:8621-32. [PMID: 12885880 PMCID: PMC167213 DOI: 10.1128/jvi.77.16.8621-8632.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence of drug resistance-conferring mutations can severely compromise the success of chemotherapy directed against human immunodeficiency virus type 1 (HIV-1). The M184V and/or L74V mutation in the reverse transcriptase (RT) gene are frequently found in viral isolates from patients treated with the nucleoside RT inhibitors lamivudine (3TC), abacavir (ABC), and didanosine (ddI). However, the effectiveness of combination therapy with regimens containing these compounds is often not abolished in the presence of these mutations; it has been conjectured that diminished fitness of HIV-1 variants containing L74V and M184V may contribute to sustained antiviral effects in such cases. We have determined that viruses containing both L74V and M184V are more impaired in replication capacity than viruses containing either mutation alone. To understand the biochemical mechanisms responsible for this diminished fitness, we generated a series of recombinant mutated enzymes containing either or both of the L74V and M184V substitutions. These enzymes were tested for their abilities to bypass important rate-limiting steps during the complex process of reverse transcription. We studied both the initiation of minus-strand DNA synthesis with the cognate replication primer human tRNA(3)(Lys) and the initiation of plus-strand DNA synthesis, using a short RNA primer derived from the viral polypurine tract. We observed that the efficiencies of both reactions were diminished with enzymes containing either L74V or M184V and that these effects were significantly amplified with the double mutant. We also show that release from intrinsic pausing sites during reverse transcription appears to be a major obstacle that cannot be efficiently bypassed. Our data suggest that the efficiency of RNA-primed DNA synthesis represents an important consideration that can affect viral replication kinetics.
Collapse
Affiliation(s)
- Karidia Diallo
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|