1
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
2
|
Byun HS, Ju E, Park KA, Sohn KC, Jung CS, Hong JH, Ro H, Lee HY, Quan KT, Park I, Na M, Hur GM. Rubiarbonol B induces RIPK1-dependent necroptosis via NOX1-derived ROS production. Cell Biol Toxicol 2023; 39:1677-1696. [PMID: 36163569 DOI: 10.1007/s10565-022-09774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.
Collapse
Affiliation(s)
- Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Chan Seok Jung
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
3
|
Bang J, Son KH, Heo HR, Park E, Kwak HJ, Uhm KO, Chung MH, Kim YY, Lim HJ. Exogenous 8-Hydroxydeoxyguanosine Attenuates PM 2.5-Induced Inflammation in Human Bronchial Epithelial Cells by Decreasing NLRP3 Inflammasome Activation. Antioxidants (Basel) 2023; 12:1189. [PMID: 37371919 DOI: 10.3390/antiox12061189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Particulate matter 2.5 (PM2.5) induces lung injury by increasing the generation of reactive oxygen species (ROS) and inflammation. ROS aggravates NLRP3 inflammasome activation, which activates caspase-1, IL-1β, and IL-18 and induces pyroptosis; these factors propagate inflammation. In contrast, treatment with exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases RAC1 activity and eventually decreases dinucleotide phosphate oxidase (NOX) and ROS generation. To establish modalities that would mitigate PM2.5-induced lung injury, we evaluated whether 8-OHdG decreased PM2.5-induced ROS generation and NLRP3 inflammasome activation in BEAS-2B cells. CCK-8 and lactate dehydrogenase assays were used to determine the treatment concentration. Fluorescence intensity, Western blotting, enzyme-linked immunosorbent assay, and immunoblotting assays were also performed. Treatment with 80 μg/mL PM2.5 increased ROS generation, RAC1 activity, NOX1 expression, NLRP3 inflammasome (NLRP3, ASC, and caspase-1) activity, and IL-1β and IL-18 levels in cells; treatment with 10 μg/mL 8-OHdG significantly attenuated these effects. Furthermore, similar results, such as reduced expression of NOX1, NLRP3, ASC, and caspase-1, were observed in PM2.5-treated BEAS-2B cells when treated with an RAC1 inhibitor. These results show that 8-OHdG mitigates ROS generation and NLRP3 inflammation by inhibiting RAC1 activity and NOX1 expression in respiratory cells exposed to PM2.5.
Collapse
Affiliation(s)
- Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Kuk Hui Son
- Gachon University Gil Medical Center, Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gachon University, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Hye-Ryeon Heo
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Hyun-Jeong Kwak
- Major of Life Science, Division of Bioconvergence, College of Convergence and Integrated Science, Kyonggi University, 154-42 Gwanggosan-ro, Yeongtong-gu, Suwon-si 16227, Republic of Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Myung-Hee Chung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| |
Collapse
|
4
|
Xia F, Li Y, Deng L, Ren R, Ge B, Liao Z, Xiang S, Zhou B. Alisol B 23-Acetate Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction by Inhibiting TLR4-NOX1/ROS Signaling Pathway in Caco-2 Cells. Front Pharmacol 2022; 13:911196. [PMID: 35774596 PMCID: PMC9237229 DOI: 10.3389/fphar.2022.911196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in the rhizome of medicinal and dietary plants from Alisma species. Previous studies have demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction (TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A protective effects on intestinal barrier dysfunction and determine the mechanisms for restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines production like IL-6, TNF-α, IL-1β, and prevented the paracellular permeability by inhibiting the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1 expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2 monolayers, suggesting that AB23A may have positive impact on maintaining the intestinal barrier’s integrity.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Lijun Deng
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ruxia Ren
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bingchen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ziqiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| |
Collapse
|
5
|
The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox “Tai Chi” theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
|
6
|
Kaczmarek A, Wrońska AK, Kazek M, Boguś MI. Octanoic Acid-An Insecticidal Metabolite of Conidiobolus coronatus (Entomopthorales) That Affects Two Majors Antifungal Protection Systems in Galleria mellonella (Lepidoptera): Cuticular Lipids and Hemocytes. Int J Mol Sci 2022; 23:5204. [PMID: 35563592 PMCID: PMC9101785 DOI: 10.3390/ijms23095204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1-9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Anna Katarzyna Wrońska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
- Biomibo, 04-872 Warsaw, Poland
| |
Collapse
|
7
|
Anti-Inflammatory Effect of Resveratrol Derivatives via the Downregulation of Oxidative-Stress-Dependent and c-Src Transactivation EGFR Pathways on Rat Mesangial Cells. Antioxidants (Basel) 2022; 11:antiox11050835. [PMID: 35624699 PMCID: PMC9138040 DOI: 10.3390/antiox11050835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
In Taiwan, the root extract of Vitis thunbergii Sieb. et Zucc. (Vitaceae, VT) is rich in stilbenes, with resveratrol (Res) and its derivatives being the most abundant. Previously, we showed that the effect of Res derivatives against tumor necrosis factor-α (TNF-α)-stimulated inflammatory responses occurs via cPLA2/COX-2/PGE2 inhibition. This study compared and explored the underlying anti-inflammatory pharmacological mechanisms. Before stimulation with TNF-α, RMCs were treated with/without pharmacological inhibitors of specific protein kinases. The expression of inflammatory mediators was determined by Western blotting, gelatin zymography, real-time PCR, and luciferase assay. Cellular and mitochondrial ROS were measured by H2DHFDA or DHE and MitoSOX™ Red staining, respectively. The RNS level was indirectly measured by Griess reagent assay. Kinase activation and association were assayed by immunoprecipitation followed by Western blotting. TNF-α binding to TNFR recruited Rac1 and p47phox, thus activating the NAPDH oxidase-dependent MAPK and NF-κB pathways. The TNF-α-induced NF-κB activation via c-Src-driven ROS was independent from the EGFR signaling pathway. The anti-inflammatory effects of Res derivatives occurred via the inhibition of ROS derived from mitochondria and NADPH oxidase; RNS derived from iNOS; and the activation of the ERK1/2, JNK1/2, and NF-κB pathways. Overall, this study provides an understanding of the various activities of Res derivatives and their pharmacological mechanisms. In the future, the application of the active molecules of VT to health foods and medicine in Taiwan may increase.
Collapse
|
8
|
Liu D, Marie JC, Pelletier AL, Song Z, Ben-Khemis M, Boudiaf K, Pintard C, Leger T, Terrier S, Chevreux G, El-Benna J, Dang PMC. Protein Kinase CK2 Acts as a Molecular Brake to Control NADPH Oxidase 1 Activation and Colon Inflammation. Cell Mol Gastroenterol Hepatol 2022; 13:1073-1093. [PMID: 35031518 PMCID: PMC8873962 DOI: 10.1016/j.jcmgh.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS NADPH oxidase 1 (NOX1) has emerged as a prime regulator of intestinal mucosa immunity and homeostasis. Dysregulation of NOX1 may cause inflammatory bowel disease (IBD). It is not clear how NOX1 is regulated in vivo under inflammatory conditions. We studied the role of CK2 in this process. METHODS The NOX1 organizer subunit, NADPH oxidase organizer 1 (NOXO1), was immunoprecipitated from cytokine-treated colon epithelial cells, and bound proteins were identified by mass spectrometry analysis. Sites on NOXO1 phosphorylated by CK2 were identified by nanoscale liquid chromatography coupled to tandem mass spectrometry. NOX1 activity was determined in colon epithelial cells and colonoids in the presence or absence of CX-4945, a CK2 specific inhibitor. Acute colitis was induced by administration of trinitrobenzenesulfonic acid in mice treated or not with CX-4945. Colon tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and Western blots. CK2 activity, markers of inflammation, and oxidative stress were assessed. RESULTS We identified CK2 as a major partner of NOXO1 in colon epithelial cells under inflammatory conditions. CK2 directly binds NOXO1 at the C-terminus containing the Phox homology domain and phosphorylates NOXO1 on several sites. CX-4945 increased ROS generation by NOX1 in human colon epithelial cells and organoids. Strikingly, CK2 activity was reduced in trinitrobenzenesulfonic acid-induced acute colitis, and CX-4945 exacerbated colitis inflammation as shown by increased levels of CXCL1, ROS generation, lipid peroxidation, and colon damage. CONCLUSIONS The ubiquitous protein kinase CK2 limits NOX1 activity via NOXO1 binding and phosphorylation in colonic epithelial cells and lessens experimental colitis. Loss of CK2 activity during acute colitis results in excessive ROS production, contributing to the pathogenesis. Strategies to activate CK2 could be an effective novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Dan Liu
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Jean-Claude Marie
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Anne-Laure Pelletier
- Service d'Hépato-Gastroentérologie et Cancérologie Digestive, Hôpital Bichat-Claude Bernard, Paris
| | - Zhuoyao Song
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Marwa Ben-Khemis
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Kaouthar Boudiaf
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Coralie Pintard
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Thibaut Leger
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France; Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères CEDEX, France
| | - Samuel Terrier
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France
| | - Guillaume Chevreux
- Proteoseine@IJM, Institut Jacques Monod - Université Paris, Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris.
| |
Collapse
|
9
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Herranz-Itúrbide M, Peñuelas-Haro I, Espinosa-Sotelo R, Bertran E, Fabregat I. The TGF-β/NADPH Oxidases Axis in the Regulation of Liver Cell Biology in Health and Disease. Cells 2021; 10:cells10092312. [PMID: 34571961 PMCID: PMC8470857 DOI: 10.3390/cells10092312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-β pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-β/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.
Collapse
Affiliation(s)
- Macarena Herranz-Itúrbide
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irene Peñuelas-Haro
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rut Espinosa-Sotelo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-607-828
| |
Collapse
|
11
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
12
|
Miyano K, Okamoto S, Yamauchi A, Kajikawa M, Kiyohara T, Taura M, Kawai C, Kuribayashi F. Constitutive activity of NADPH oxidase 1 (Nox1) that promotes its own activity suppresses the colon epithelial cell migration. Free Radic Res 2020; 54:640-648. [PMID: 32924676 DOI: 10.1080/10715762.2020.1823383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Superoxide producing NADPH oxidase 1 (Nox1), abundantly expressed in the colon epithelium, plays a crucial role in mucosal host defenses. In this study, we found that pre-treatment of cells with edaravone, a free radical scavenger, inhibited Nox1 constitutive activity even after washout without affecting Nox1 trafficking to the plasma membrane and membrane recruitment of the cytosolic regulators Noxo1 and Noxa1. These results suggest that a Nox1-derived product is involved in the step that initiates the electron transfer reaction after the formation of the Nox1-Noxo1-Noxa1 complex. Furthermore, we show that the mean migration directionality and velocity of epithelial cells were significantly enhanced by the inhibition of constitutive Nox1 activity. Thus, the constitutive Nox1 activity limits undesired cell migration in resting cells while participating in a positive feedback loop toward its own oxidase activity.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Machida, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of medicine, Fukuoka University, Fukuoka, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | |
Collapse
|
13
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
14
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
15
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
17
|
Lee SR, An EJ, Kim J, Bae YS. Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomol Ther (Seoul) 2020; 28:25-33. [PMID: 31875663 PMCID: PMC6939690 DOI: 10.4062/biomolther.2019.188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.
Collapse
Affiliation(s)
- Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
18
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
19
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
21
|
Developmental Axon Degeneration Requires TRPV1-Dependent Ca 2+ Influx. eNeuro 2019; 6:eN-NWR-0019-19. [PMID: 30838324 PMCID: PMC6399429 DOI: 10.1523/eneuro.0019-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) in vitro. We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca2+, and here, we address the mechanism of Ca2+ entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca2+ influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca2+ influx in sensory axon degeneration.
Collapse
|
22
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
23
|
Nauseef WM, Clark RA. Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease. Methods Mol Biol 2019; 1982:3-16. [PMID: 31172463 DOI: 10.1007/978-1-4939-9424-3_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neutrophils serve as the circulating cells that respond early and figure prominently in human host defense to infection and in inflammation in other settings. Optimal oxidant-dependent antimicrobial activity by neutrophils relies on the ability of stimulated phagocytes to utilize a multicomponent NADPH oxidase to generate oxidants. The frequent, severe, and often fatal infections experienced by individuals with chronic granulomatous disease (CGD), an inherited disorder in which one of the NADPH oxidase components is absent or dysfunctional, underscore the link between a functional phagocyte NADPH oxidase and robust host protection against microbial infection.The history of the discovery and characterization of the normal neutrophil NADPH oxidase and the saga of recognizing CGD and its underlying causes together illustrate how the observations of astute clinicians and imaginative basic scientists synergize to forge new understanding of both basic cell biology and pathogenesis of human disease.In this chapter, we review the events in the stepwise evolution of our understanding of the phagocyte NADPH oxidase, both in the context of normal human neutrophil function and in the setting of CGD. The phagocyte oxidase complex employs a heterodimeric transmembrane protein composed of gp91phox and p22phox to relay electrons from NADPH to molecular oxygen, while other cofactors contribute to localization and regulation of the activity of the assembled oxidase. The b-type cytochrome gp91phox, also known as NOX2, serves as the catalytic component of this multicomponent enzyme complex. Although many of the features of the composition and regulation of the phagocyte oxidase may apply as well to NOX2 expressed in non-phagocytes and to other members of the NOX protein family, exceptions exist and pose special challenges to investigators exploring the biology of NADPH oxidases.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert A Clark
- Institute for Integration of Medicine and Science and Department of Medicine, University of Texas Health Science Center, and South Texas Veterans Healthcare System, San Antonio, TX, USA.
| |
Collapse
|
24
|
Abstract
Assays based on ectopic expression of NOX NADPH oxidase subunits in heterologous mammalian cells are an important approach for investigating features of this family of enzymes. These model systems have been used to analyze the biosynthesis and functional domains of NOX enzyme components as well as their regulation and cellular activities. This chapter provides an overview of the basic principles and applications of heterologous whole cell assays in studying NOX NADPH oxidases.
Collapse
|
25
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
van Dalen SCM, Kruisbergen NNL, Walgreen B, Helsen MMA, Slöetjes AW, Cremers NAJ, Koenders MI, van de Loo FAJ, Roth J, Vogl T, Blom AB, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthritis Cartilage 2018; 26:1722-1732. [PMID: 30195046 DOI: 10.1016/j.joca.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Synovitis in collagenase-induced osteoarthritis (CiOA) is driven by locally released S100A8/A9 proteins and enhances joint destruction. S100A8/A9 can induce reactive oxygen species (ROS) release by phagocytes in OA synovium via neutrophil cytosolic factor-1 (Ncf1)-regulated NOX2 activation. In the present study we investigated whether NOX2-derived ROS affect joint pathology during CiOA. METHODS CiOA was induced in knee joints of wild type (WT) and Ncf1-deficient (Ncf1**) mice. Synovial gene expression of NOX2-subunits was measured with quantitative real-time polymerase chain reaction (qRT-PCR). Joint pathology was assessed using histology and immunohistochemistry for aggrecan neo-epitope VDIPEN. Levels of inflammatory proteins were measured with Luminex or ELISA. Phagocytes in synovium, blood, bone marrow (BM) and spleen were analyzed with flow cytometry. ROS release by phagocytes was measured with a ROS detection kit. RESULTS CiOA induction in knee joints of WT mice caused significantly increased synovial gene expression of NOX2 subunits. On day 7 of CiOA, cartilage damage and MMP activity, as measured by VDIPEN, were comparable between WT and Ncf1** mice. Synovial thickening, synovial S100A8/A9 levels and percentages of synovial macrophages, polymorphonuclear cells (PMNs), and monocytes were not different, as were levels of inflammatory mediators in serum and phagocyte percentages in blood, BM and spleen. On day 42 of CiOA, synovitis, cartilage damage, and osteophyte formation in Ncf1** mice were unaltered when compared to WT mice. ROS detection confirmed that Ncf1** PMNs lack functional NOX2, but in vitro macrophages showed ROS production, suggesting activation of compensatory mechanisms. CONCLUSIONS Absence of Ncf1-mediated ROS production does not alter joint pathology in CiOA.
Collapse
Affiliation(s)
- S C M van Dalen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - N N L Kruisbergen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - B Walgreen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M M A Helsen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - A W Slöetjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - N A J Cremers
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - F A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - J Roth
- Institute of Immunology, University of Münster, Germany.
| | - T Vogl
- Institute of Immunology, University of Münster, Germany.
| | - A B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - P M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - P L E M van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
28
|
Sharma M, Afolayan AJ. Redox Signaling and Persistent Pulmonary Hypertension of the Newborn. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:277-287. [PMID: 29047092 DOI: 10.1007/978-3-319-63245-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.
Collapse
Affiliation(s)
- Megha Sharma
- Assistant Professor of Pediatrics, 999 N92nd Street, CCC suite 410, Milwaukee, WI, 53226, USA
| | - Adeleye J Afolayan
- Assistant Professor of Pediatrics, 999 N92nd Street, CCC suite 410, Milwaukee, WI, 53226, USA.
| |
Collapse
|
29
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
C-terminal tail of NADPH oxidase organizer 1 (Noxo1) mediates interaction with NADPH oxidase activator (Noxa1) in the NOX1 complex. Biochem Biophys Res Commun 2017. [PMID: 28625920 DOI: 10.1016/j.bbrc.2017.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NOX1 (NADPH oxidase) similar to phagocyte NADPH oxidase, is expressed mainly in the colon epithelium and it is responsible for host defense against microbial infections by generating ROS (reactive oxygen species). NOX1 is activated by two regulatory cytosolic proteins that form a hetero-dimer, Noxo1 (NOX organizer 1) and Noxa1 (NOX activator 1). The interaction between Noxa1 and Noxo1 is critical for activating NOX1. However no structural studies for interaction between Noxa1 and Noxo1 has not been reported till date. Here, we studied the inter-molecular interaction between the SH3 domain of Noxa1 and Noxo1 using pull-down assay and NMR spectroscopy. 15N/13C-labeled SH3 domain of Noxa1 has been purified for hetero-nuclear NMR experiments (HNCACB, CBCACONH, HNCA, HNCO, and HSQC). TALOS analysis using backbone assignment data of the Noxa1 SH3 domain showed that the structure primarily consists of β-sheets. Data from pull-down assay between the Noxo1 and Noxa1 showed that the SH3 domains (Noxa1) is responsible for interaction with Noxo1 C-terminal tail harboring proline rich region (PRR). The concentration-dependent titration of the Noxo1 C-terminal tail to Noxa1 shows that Noxo1 particularly in the RT loop: Q407*, H408, S409, A412*, G414*, E416, D417, L418, and F420; n-Src loop: C430, E431*, V432*, A435, W436, and L437; and terminal region: I447; F448*, F452* and V454 interact with Noxa1. Our results will provide a detailed understanding for interaction between Noxa1 and Noxo1 at the molecular level, providing insights into their cytoplasmic activity-mediated functioning as well as regulatory role of C-terminal tail of Noxo1 in the NOX1 complex.
Collapse
|
31
|
Kovacs L, Su Y. Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:139-160. [PMID: 29047085 PMCID: PMC7036267 DOI: 10.1007/978-3-319-63245-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The calcium-dependent cytosolic, neutral, thiol endopeptidases, calpains, perform limited cleavage of their substrates thereby irreversibly changing their functions. Calpains have been shown to be involved in several physiological processes such as cell motility, proliferation, cell cycle, signal transduction, and apoptosis. Overactivation of calpain or mutations in the calpain genes contribute to a number of pathological conditions including neurodegenerative disorders, rheumatoid arthritis, cancer, and lung diseases. High concentrations of reactive oxygen and nitrogen species (RONS) originated from cigarette smoke or released by numerous cell types such as activated inflammatory cells and other respiratory cells cause oxidative and nitrosative stress contributing to the pathogenesis of COPD. RONS and calpain play important roles in the development of airway and pulmonary vascular remodeling in COPD. Published data show that increased RONS production is associated with increased calpain activation and/or elevated calpain protein level, leading to epithelial or endothelial barrier dysfunction, neovascularization, lung inflammation, increased smooth muscle cell proliferation, and deposition of extracellular matrix protein. Further investigation of the redox-dependent calpain signaling may provide future targets for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
32
|
Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, Sugamata R, Kim YS, Yi L, Ersoy I, Jaeger S, Palaniappan K, Ambruso DR, Jackson SH, Leto TL. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med 2016; 96:99-115. [PMID: 27094494 PMCID: PMC4929831 DOI: 10.1016/j.freeradbiomed.2016.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Nox1 is an abundant source of reactive oxygen species (ROS) in colon epithelium recently shown to function in wound healing and epithelial homeostasis. We identified Peroxiredoxin 6 (Prdx6) as a novel binding partner of Nox activator 1 (Noxa1) in yeast two-hybrid screening experiments using the Noxa1 SH3 domain as bait. Prdx6 is a unique member of the Prdx antioxidant enzyme family exhibiting both glutathione peroxidase and phospholipase A2 activities. We confirmed this interaction in cells overexpressing both proteins, showing Prdx6 binds to and stabilizes wild type Noxa1, but not the SH3 domain mutant form, Noxa1 W436R. We demonstrated in several cell models that Prdx6 knockdown suppresses Nox1 activity, whereas enhanced Prdx6 expression supports higher Nox1-derived superoxide production. Both peroxidase- and lipase-deficient mutant forms of Prdx6 (Prdx6 C47S and S32A, respectively) failed to bind to or stabilize Nox1 components or support Nox1-mediated superoxide generation. Furthermore, the transition-state substrate analogue inhibitor of Prdx6 phospholipase A2 activity (MJ-33) was shown to suppress Nox1 activity, suggesting Nox1 activity is regulated by the phospholipase activity of Prdx6. Finally, wild type Prdx6, but not lipase or peroxidase mutant forms, supports Nox1-mediated cell migration in the HCT-116 colon epithelial cell model of wound closure. These findings highlight a novel pathway in which this antioxidant enzyme positively regulates an oxidant-generating system to support cell migration and wound healing.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Medical Education, School of Medicine, Chungnam National University, Daejeon, 301-747, Korea
| | - Aibing Wang
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Devin J. Burke
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Howard E. Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kristen J. Lekstrom
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryuichi Sugamata
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Yong-Soo Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Liang Yi
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Ilker Ersoy
- Department of Pathology and Anatomical Sciences, University of Missouri, Sch. of Medicine, Columbia, MO, USA
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Sch. of Medicine, Denver, CO, USA
| | - Sharon H. Jackson
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Thomas L. Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Corresponding author: Laboratory of Host Defenses, NIAID, NIH, 12441 Parklawn Drive, Rockville, MD, 20852, USA. Fax: 301 480-1731.
| |
Collapse
|
33
|
Abstract
Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.
Collapse
|
34
|
Sirokmány G, Donkó Á, Geiszt M. Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol Sci 2016; 37:318-327. [DOI: 10.1016/j.tips.2016.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
|
35
|
LU HUIXIA, WU QI, YANG HUIJUN. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway. Int J Mol Med 2015; 36:551-8. [DOI: 10.3892/ijmm.2015.2234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
36
|
Li ZY, Jiang WY, Cui ZJ. An essential role of NAD(P)H oxidase 2 in UVA-induced calcium oscillations in mast cells. Photochem Photobiol Sci 2015; 14:414-28. [PMID: 25460548 DOI: 10.1039/c4pp00304g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solar UVA radiation (320-400 nm) is known to have immunomodulatory effects, but the detailed mechanisms involved are not fully elucidated. UVA irradiation has been shown to induce calcium oscillations in rat peritoneal mast cells due to NAD(P)H oxidase (NOX) activation, but the specific NOX isoforms have not been identified. In the present work effects of UVA irradiation were investigated in isolated rat peritoneal mast cells, in cultured rat mast cell line RBL-2H3, and in mouse bone marrow-derived mast cells (BMMC). It was found that UVA irradiation by alternate 340/380 nm (3.2-5.6 μW cm(-2)) or by LED (380 nm, 80 μW cm(-2)) induced calcium oscillations in isolated rat peritoneal mast cells, in RBL-2H3, and in BMMC. Such UVA-induced calcium oscillations resembled closely those induced by surface IgE receptor (FcεRI) activation. It was found that RBL-2H3 expressed high levels of gp91(phox) (NOX2), p22(phox), p67(phox), p47(phox), p40(phox), Rac1, Rac2, moderate levels of DUOX2, but did not express NOX1, NOX3, NOX4, or DUOX1. The specific cellular localizations of gp91(phox) (NOX2), p22(phox), p47(phox), p67(phox), p40(phox) and Rac1/2 were confirmed by immunocytochemistry. UVA-induced reactive oxygen species (ROS) production in RBL-2H3 was completely suppressed by the NOX inhibitor diphenyleneiodonium chloride (DPI) or by the antioxidant N-acetyl-l-cysteine (NAC). siRNA suppression of gp91(phox) (NOX2), p22(phox) and p47(phox) expression inhibited markedly UVA-induced calcium oscillations, ROS and IL-6/LTC4 production in RBL-2H3. Taken together these data indicate that NOX2 plays an essential role in UVA irradiation-induced calcium oscillations, ROS and mediator production in mast cells.
Collapse
Affiliation(s)
- Zhi Ying Li
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | | | | |
Collapse
|
37
|
Brandes RP, Schröder K. NOXious phosphorylation: Smooth muscle reactive oxygen species production is facilitated by direct activation of the NADPH oxidase Nox1. Circ Res 2015; 115:898-900. [PMID: 25378528 DOI: 10.1161/circresaha.114.305280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ralf P Brandes
- From the Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| | - Katrin Schröder
- From the Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| |
Collapse
|
38
|
Vlahos R, Selemidis S. NADPH oxidases as novel pharmacologic targets against influenza A virus infection. Mol Pharmacol 2014; 86:747-59. [PMID: 25301784 DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza.
Collapse
Affiliation(s)
- Ross Vlahos
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| | - Stavros Selemidis
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| |
Collapse
|
39
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
40
|
NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2014; 12:5-23. [PMID: 25263488 DOI: 10.1038/cmi.2014.89] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Collapse
|
41
|
Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin. Mediators Inflamm 2014; 2014:312484. [PMID: 25276054 PMCID: PMC4167951 DOI: 10.1155/2014/312484] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg−1) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment.
Collapse
|
42
|
Abstract
Nox4 is an oddity among members of the Nox family of NADPH oxidases [seven isoenzymes that generate reactive oxygen species (ROS) from molecular oxygen] in that it is constitutively active. All other Nox enzymes except for Nox4 require upstream activators, either calcium or organizer/activator subunits (p47(phox), NOXO1/p67(phox), and NOXA1). Nox4 may also be unusual as it reportedly releases hydrogen peroxide (H₂O₂) in contrast to Nox1-Nox3 and Nox5, which release superoxide, although this result is controversial in part because of possible membrane compartmentalization of superoxide, which may prevent detection. Our studies were undertaken (1) to identify the Nox4 ROS product using a membrane-free, partially purified preparation of Nox4 and (2) to test the hypothesis that Nox4 activity is acutely regulated not by activator proteins or calcium, but by cellular pO₂, allowing it to function as an O₂ sensor, the output of which is signaling H₂O₂. We find that approximately 90% of the electron flux through isolated Nox4 produces H₂O₂ and 10% forms superoxide. The kinetic mechanism of H₂O₂ formation is consistent with a mechanism involving binding of one oxygen molecule, which is then sequentially reduced by the heme in two one-electron reduction steps first to form a bound superoxide intermediate and then H₂O₂; kinetics are not consistent with a previously proposed internal superoxide dismutation mechanism involving two oxygen binding/reduction steps for each H₂O₂ formed. Critically, Nox4 has an unusually high Km for oxygen (∼18%), similar to the values of known oxygen-sensing enzymes, compared with a Km of 2-3% for Nox2, the phagocyte NADPH oxidase. This allows Nox4 to generate H₂O₂ as a function of oxygen concentration throughout a physiological range of pO2 values and to respond rapidly to changes in pO₂.
Collapse
|
43
|
Pi X, Xie L, Portbury AL, Kumar S, Lockyer P, Li X, Patterson C. NADPH oxidase-generated reactive oxygen species are required for stromal cell-derived factor-1α-stimulated angiogenesis. Arterioscler Thromb Vasc Biol 2014; 34:2023-32. [PMID: 24990230 DOI: 10.1161/atvbaha.114.303733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Reactive oxygen species (ROS) act as signaling molecules during angiogenesis; however, the mechanisms used for such signaling events remain unclear. Stromal cell-derived factor-1α (SDF-1α) is one of the most potent angiogenic chemokines. Here, we examined the role of ROS in the regulation of SDF-1α-dependent angiogenesis. APPROACH AND RESULTS Bovine aortic endothelial cells were treated with SDF-1α, and intracellular ROS generation was monitored. SDF-1α treatment induced bovine aortic endothelial cell migration and ROS generation, with the majority of ROS generated by bovine aortic endothelial cells at the leading edge of the migratory cells. Antioxidants and nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitors blocked SDF-1α-induced endothelial migration. Furthermore, knockdown of either NOX5 or p22phox (a requisite subunit for NOX1/2/4 activation) significantly impaired endothelial motility and tube formation, suggesting that multiple NOXs regulate SDF-1α-dependent angiogenesis. Our previous study demonstrated that c-Jun N-terminal kinase 3 activity is essential for SDF-1α-dependent angiogenesis. Here, we identified that NOX5 is the dominant NOX required for SDF-1α-induced c-Jun N-terminal kinase 3 activation and that NOX5 and MAP kinase phosphatase 7 (MKP7; the c-Jun N-terminal kinase 3 phosphatase) associate with one another but decrease this interaction on SDF-1α treatment. Furthermore, MKP7 activity was inhibited by SDF-1α, and this inhibition was relieved by NOX5 knockdown, indicating that NOX5 promotes c-Jun N-terminal kinase 3 activation by blocking MKP7 activity. CONCLUSIONS We conclude that NOX is required for SDF-1α signaling and that intracellular redox balance is critical for SDF-1α-induced endothelial migration and angiogenesis.
Collapse
Affiliation(s)
- Xinchun Pi
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill.
| | - Liang Xie
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| | - Andrea L Portbury
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| | - Sarayu Kumar
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| | - Pamela Lockyer
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| | - Xi Li
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| | - Cam Patterson
- From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill
| |
Collapse
|
44
|
Lőrincz ÁM, Szarvas G, Smith SME, Ligeti E. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Free Radic Biol Med 2014; 68:65-71. [PMID: 24321316 DOI: 10.1016/j.freeradbiomed.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
Precise spatiotemporal regulation of O2(-)-generating NADPH oxidases (Nox) is a vital requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal control mechanism. Our goal was to investigate the molecular interactions between RacGAPs and phagocytic Nox2 in neutrophilic granulocytes. In structural studies we revealed that simultaneous interaction of Rac with its effector protein p67(phox) and regulatory protein RacGAP was sterically possible. The effect of RacGAPs was experimentally investigated in a cell-free O2(-)-generating system consisting of isolated membranes and recombinant p47(phox) and p67(phox) proteins. Addition of soluble RacGAPs decreased O2(-) production and there was no difference in the effect of four RacGAPs previously identified in neutrophils. Depletion of membrane-associated RacGAPs had a selective effect: a decrease in ARHGAP1 or ARHGAP25 level increased O2(-) production but a depletion of ARHGAP35 had no effect. Only membrane-localized RacGAPs seem to be able to interact with Rac when it is assembled in the Nox2 complex. Thus, in neutrophils multiple RacGAPs are involved in the control of O2(-) production by Nox2, allowing selective regulation via different signaling pathways.
Collapse
Affiliation(s)
- Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Gábor Szarvas
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Susan M E Smith
- Department of Biology and Physics, Kennesaw State University, 1000 Chastain Road, Building 12, Room 308, Kennesaw, GA 30144, USA
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
45
|
Sattayakhom A, Chunglok W, Ittarat W, Chamulitrat W. Study designs to investigate Nox1 acceleration of neoplastic progression in immortalized human epithelial cells by selection of differentiation resistant cells. Redox Biol 2013; 2:140-7. [PMID: 24494188 PMCID: PMC3909263 DOI: 10.1016/j.redox.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022] Open
Abstract
To investigate the role of NADPH oxidase homolog Nox1 at an early step of cell transformation, we utilized human gingival mucosal keratinocytes immortalized by E6/E7 of human papillomavirus (HPV) type 16 (GM16) to generate progenitor cell lines either by chronic ethanol exposure or overexpression with Nox1. Among several cobblestone epithelial cell lines obtained, two distinctive spindle cell lines - FIB and NuB1 cells were more progressively transformed exhibiting tubulogenesis and anchorage-independent growth associated with increased invasiveness. These spindle cells acquired molecular markers of epithelial mesenchymal transition (EMT) including mesenchymal vimentin and simple cytokeratins (CK) 8 and 18 as well as myogenic alpha-smooth muscle actin and caldesmon. By overexpression and knockdown experiments, we showed that Nox1 on a post-translational level regulated the stability of CK18 in an ROS-, phosphorylation- and PKCepilon-dependent manner. PKCepilon may thus be used as a therapeutic target for EMT inhibition. Taken together, Nox1 accelerates neoplastic progression by regulating structural intermediate filaments leading to EMT of immortalized human gingival epithelial cells.
Collapse
Key Words
- AIG, anchorage-independent growth
- CK, cytokeratin
- Cobblestone cells
- Cytokeratins
- EGF, epidermal growth factor
- EMT
- EMT, epithelial mesenchymal transition
- GM, gingival mucosal
- HPV, human papillomavirus
- IAP, inhibitor of apoptosis protein
- Immortalized gingival keratinocytes
- Intermediate filaments
- Invasion
- MEF2, myocyte enhancing factor 2
- MMP, matrix metalloproteinases
- Nox, NAD(P)H oxidase
- PMA, 12-O- tetradecanoylphorbol-13-acetate
- ROS, reactive oxygen species
- Spindle cells
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Apsorn Sattayakhom
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wanida Ittarat
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| |
Collapse
|
46
|
Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H. Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J 2013; 280:5145-59. [PMID: 23957209 DOI: 10.1111/febs.12489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Superoxide production by Nox1, a member of the Nox family NAPDH oxidases, requires expression of its regulatory soluble proteins Noxo1 (Nox organizer 1) and Noxa1 (Nox activator 1) and is markedly enhanced upon cell stimulation with phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC). The mechanism underlying PMA-induced enhancement of Nox1 activity, however, remains to be elucidated. Here we show that, in response to PMA, Noxo1 undergoes phosphorylation at multiple sites, which is inhibited by the PKC inhibitor GF109203X. Among them, Thr341 in Noxo1 is directly phosphorylated by PKC in vitro, and alanine substitution for this residue reduces not only PMA-induced Noxo1 phosphorylation but also PMA-dependent enhancement of Nox1-catalyzed superoxide production. Phosphorylation of Thr341 allows Noxo1 to sufficiently interact with Noxa1, an interaction that participates in Nox1 activation. Thus phosphorylation of Noxo1 at Thr341 appears to play a crucial role in PMA-elicited activation of Nox1, providing a molecular link between PKC-mediated signal transduction and Nox1-catalyzed superoxide production. Furthermore, Ser154 in Noxo1 is phosphorylated in both resting and PMA-stimulated cells, and the phosphorylation probably participates in a PMA-independent constitutive activity of Nox1. Ser154 may also be involved in protein kinase A (PKA) mediated regulation of Nox1; this serine is the major residue that is phosphorylated by PKA in vitro. Thus phosphorylation of Noxo1 at Thr341 and at Ser154 appears to regulate Nox1 activity in different manners. STRUCTURED DIGITAL ABSTRACT Noxo1 binds to p22phox by pull down (1, 2, 3) Noxo1 binds to Noxo1 by pull down (View interaction) Noxa1 binds to Noxo1 by pull down (1, 2, 3, 4, 5).
Collapse
Affiliation(s)
- Asataro Yamamoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
47
|
Kawano M, Ishii R, Yoshioka Y, Fukuda T, Tamura M. C-terminal truncation of Noxa1 greatly enhances its ability to activate Nox2 in a pure reconstitution system. Arch Biochem Biophys 2013; 538:164-70. [PMID: 24008014 DOI: 10.1016/j.abb.2013.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022]
Abstract
Noxa1 activates Nox2 together with Noxo1 and Rac in a pure reconstitution system, but the resulting activity is considerably lower than that induced by p67(phox) and p47(phox). In this study, we found that C-terminal-truncated forms of Noxa1 exhibited higher activities than full-length Noxa1. Of the truncations examined, Noxa1(1-225) showed the highest ability for activation. Kinetic studies revealed that Noxa1(1-225) had a threefold higher Vmax value than full-length Noxa1 with a similar EC50 value. The affinities of Noxo1 and RacQ61L were not much altered by the truncation. Conversely, the affinity of FAD for the Nox2 complex was enhanced after the truncation. In the absence of Noxo1, Noxa1(1-225) showed much higher activity with a lower EC50 than full-length Noxa1. Noxa1(1-225) showed comparable activity to that of p67(phox) with either Noxo1 or p47(phox), although the stability was lower than that with p67(phox) and p47(phox). These findings indicate that the role of the C-terminal half of Noxa1 is autoinhibition. The data suggest a two-step autoinhibition mechanism, comprising self-masking to interrupt the binding to the oxidase, and holding of the activation domain in a suboptimal position to the oxidase. This study reveals that when both types of inhibition are released, Noxa1 achieves high-level superoxide production.
Collapse
Affiliation(s)
- Masahito Kawano
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
48
|
Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells. Br J Nutr 2013; 111:415-23. [DOI: 10.1017/s0007114513002663] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5–25 μm), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.
Collapse
|
49
|
Nauseef WM. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta Gen Subj 2013; 1840:757-67. [PMID: 23660153 DOI: 10.1016/j.bbagen.2013.04.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The recent recognition that isoforms of the cellular NADPH-dependent oxidases, collectively known as the NOX protein family, participate in a wide range of physiologic and pathophysiologic processes in both the animal and plant kingdoms has stimulated interest in the identification, localization, and quantitation of their products in biological settings. Although several tools for measuring oxidants released extracellularly are available, the specificity and selectivity of the methods for reliable analysis of intracellular oxidants have not matched the enthusiasm for studying NOX proteins. SCOPE OF REVIEW Focusing exclusively on superoxide anion and hydrogen peroxide produced by NOX proteins, this review describes the ideal probe for analysis of O2(-) and H2O2 generated extracellularly and intracellularly by NOX proteins. An overview of the components, organization, and topology of NOX proteins provides a rationale for applying specific probes for use and a context in which to interpret results and thereby construct plausible models linking NOX-derived oxidants to biological responses. The merits and shortcomings of methods currently in use to assess NOX activity are highlighted, and those assays that provide quantitation of superoxide or H2O2 are contrasted with those intended to examine spatial and temporal aspects of NOX activity. MAJOR CONCLUSIONS Although interest in measuring the extracellular and intracellular products of the NOX protein family is great, robust analytical probes are limited. GENERAL SIGNIFICANCE The widespread involvement of NOX proteins in many biological processes requires rigorous approaches to the detection, localization, and quantitation of the oxidants produced. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, IA 52240, USA.
| |
Collapse
|
50
|
Taylor-Fishwick DA. NOX, NOX Who is There? The Contribution of NADPH Oxidase One to Beta Cell Dysfunction. Front Endocrinol (Lausanne) 2013; 4:40. [PMID: 23565109 PMCID: PMC3615241 DOI: 10.3389/fendo.2013.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS) and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1) in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxygenase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.
Collapse
Affiliation(s)
- David A. Taylor-Fishwick
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical SchoolNorfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical SchoolNorfolk, VA, USA
| |
Collapse
|