1
|
Liu J, Kong D, Ai D, Xu A, Yu W, Peng Z, Peng J, Wang Z, Wang Z, Liu R, Li W, Hai C, Zhang X, Wang X. Insulin resistance enhances binge ethanol-induced liver injury through promoting oxidative stress and up-regulation CYP2E1. Life Sci 2022; 303:120681. [PMID: 35662646 DOI: 10.1016/j.lfs.2022.120681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Alcoholic liver disease (ALD) has caused a serious burden on public and personal health in crowd with ethanol abuse. The effects of insulin resistance (IR) on ALD and the mechanisms underlying these responses are still not well understood. In this study, we investigated the changes of liver injury, inflammation, apoptosis, mitochondrial dysfunction and CYP2E1 changes in liver of mice exposed to ethanol with IR or not. We found IR increased the sensitivity of liver injury in mice exposed to ethanol, manifested as the increase serum activities of AST and ALT, the accumulation of triglycerides, the deterioration of liver pathology and increase of inflammatory factors. IR also exacerbated apoptosis and mitochondrial dysfunction in liver of mice exposed to ethanol. The increase of oxidative stress and the decrease of antioxidant defense ability might be responsible for the sensitizing effects of IR on ethanol-induced liver injury, supported by the increase of MDA levels and the decline of GSH/GSSG, the inactivation of antioxidant enzymes SOD, GR through the inhibition of Nrf-2 pathway. The activation of CYP2E1 might be also involved in the sensitizing effects of IR on ethanol induced liver injury in mice. These results demonstrated that IR exhibited a significant pro-oxidative and pro-apoptosis effects to aggravate alcoholic liver injury. Our study helped us to better understand the sensitive role of IR on ALD and suggested that alcohol intake may be more harmful for people with IR.
Collapse
Affiliation(s)
- Jiangzheng Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Deqin Kong
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Duo Ai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Anqi Xu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Weihua Yu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhengwu Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jie Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rui Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wenli Li
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chunxu Hai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Zhang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Xin Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
2
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
3
|
Phytochemicals with Added Value from Morella and Myrica Species. Molecules 2020; 25:molecules25246052. [PMID: 33371425 PMCID: PMC7767459 DOI: 10.3390/molecules25246052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Terrestrial plants, due to their sessile nature, are highly exposed to environmental pressure and therefore need to produce very effective molecules that enable them to survive all the threats. Myrica and Morella (Myricaceae) are taxonomically close genera, which include species of trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine. For instance, in Chinese or Japanese folk medicine, they are used to treat diarrhea, digestive problems, headache, burns, and skin diseases. A wide array of compounds isolated from different parts of Myrica and/or Morella species possess several biological activities, like anticancer, antidiabetic, anti-obesity, and cardio-/neuro-/hepatoprotective activities, both in vitro and in vivo, with myricanol, myricitrin, quercitrin, and betulin being the most promising. There are still many other compounds isolated from both genera whose biological activities have not been evaluated, which represents an excellent opportunity to discover new applications for those compounds and valorize Morella/Myrica species.
Collapse
|
4
|
An Overview of the Mechanism of Penthorum chinense Pursh on Alcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4875764. [PMID: 33014105 PMCID: PMC7519454 DOI: 10.1155/2020/4875764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Alcohol liver disease (ALD) caused by excessive alcohol consumption is a progressive disease, and alcohol fatty liver disease is the primary stage. Currently, there is no approved drug for its treatment. Abstinence is the best way to heal, but patients' compliance is poor. Unlike other chronic diseases, alcohol fatty liver disease is not caused by nutritional deficiencies; it is caused by the molecular action of ingested alcohol and its metabolites. More and more studies have shown the potential of Penthorum chinense Pursh (PCP) in the clinical use of alcohol fatty liver treatment. The purpose of this paper is to reveal from the essence of PCP treatment of alcohol liver mechanism mainly by the ethanol dehydrogenase (ADH) and microsomal ethanol oxidation system-dependent cytochrome P4502E1 (CYP2E1) to exert antilipogenesis, antioxidant, anti-inflammatory, antiapoptotic, and autophagy effects, with special emphasis on its mechanisms related to SIRT1/AMPK, KEAP-1/Nrf2, and TLR4/NF-κB. Overall, data from the literature shows that PCP appears to be a promising hepatoprotective traditional Chinese medicine (TCM).
Collapse
|
5
|
Wang X, Zhao Y, Luo J, Xu L, Li X, Jin Y, Li C, Feng M, Wang Y, Chen J, Hou Y, Zhao Q, Zhao J, Ning B, Zheng Y, Yu D. MicroRNA hsa-miR-1301-3p Regulates Human ADH6, ALDH5A1 and ALDH8A1 in the Ethanol-Acetaldehyde-Acetate Metabolic Pathway. Mol Pharmacol 2020; 98:120-129. [PMID: 32499331 DOI: 10.1124/mol.120.119693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) are vital enzymes involved in the metabolism of a variety of alcohols. Differences in the expression and enzymatic activity of human ADHs and ALDHs correlate with individual variability in metabolizing alcohols and drugs and in the susceptibility to alcoholic liver disease. MicroRNAs (miRNAs) function as epigenetic modulators to regulate the expression of drug-metabolizing enzymes. To characterize miRNAs that target ADHs and ALDHs in human liver cells, we carried out a systematic bioinformatics analysis to analyze free energies of the interaction between miRNAs and their cognate sequences in ADH and ALDH transcripts and then calculated expression correlations between miRNAs and their targeting ADH and ALDH genes using a public data base. Candidate miRNAs were selected to evaluate bioinformatic predictions using a series of biochemical assays. Our results showed that 11 miRNAs have the potential to modulate the expression of two ADH and seven ALDH genes in the human liver. We found that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and blocked their induction by ethanol. In summary, our results revealed that hsa-miR-1301-3p plays an important role in ethanol metabolism by regulating ADH and ALDH gene expression. SIGNIFICANCE STATEMENT: Systematic bioinformatics analysis showed that 11 microRNAs might play regulatory roles in the expression of two alcohol dehydrogenase (ADH) and seven aldehyde dehydrogenase (ALDH) genes in the human liver. Experimental evidences proved that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and decreased their inducibility by ethanol.
Collapse
Affiliation(s)
- Xubing Wang
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Xinmei Li
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Meiyao Feng
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Yufei Hou
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Jinquan Zhao
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Baitang Ning
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China (X.W., Ya.Z., J.L., L.X., X.L., Y.J., C.L., M.F., Y.W., J.C., Y.H., Q.Z., J.Z., Yu.Z., D.Y.) and National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (B.N.)
| |
Collapse
|
6
|
You M, Jogasuria A, Lee K, Wu J, Zhang Y, Lee YK, Sadana P. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2019; 10:226-236. [PMID: 26278388 DOI: 10.2174/1874467208666150817112109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.
Collapse
Affiliation(s)
- Min You
- 4209 State Route 44, Rootstown OH 44272. United States
| | | | | | - Jiashin Wu
- Department of Pharmaceutical Sciences. 0
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | | |
Collapse
|
7
|
Attignon EA, Leblanc AF, Le-Grand B, Duval C, Aggerbeck M, Rouach H, Blanc EB. Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells. Arch Toxicol 2016; 91:313-324. [PMID: 27055685 DOI: 10.1007/s00204-016-1700-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
The mechanisms by which pollutants participate in the development of diverse pathologies are not completely understood. The pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the AhR (aryl hydrocarbon receptor) signaling pathway. We previously showed that TCDD (25 nM, 30 h) decreased the expression of several alcohol metabolism enzymes (cytochrome P450 2E1, alcohol dehydrogenases ADH1, 4 and 6) in differentiated human hepatic cells (HepaRG). Here, we show that, as rapidly as 8 h after treatment (25 nM TCDD) ADH expression decreased 40 % (p < 0.05). ADH1 and 4 protein levels decreased 40 and 27 %, respectively (p < 0.05), after 72 h (25 nM TCDD). The protein half-lives were not modified by TCDD which suggests transcriptional regulation of expression. The AhR antagonist CH-223191 or AhR siRNA reduced the inhibitory effect of 25 nM TCDD on ADH1A, 4 and 6 expression 50-100 % (p < 0.05). The genomic pathway (via the AhR/ARNT complex) and not the non-genomic pathway involving c-SRC mediated these effects. Other AhR ligands (3-methylcholanthrene and PCB 126) decreased ADH1B, 4 and 6 mRNAs by more than 78 and 55 %, respectively (p < 0.01). TCDD also regulated the expression of ADH4 in the HepG2 human hepatic cell line, in primary human hepatocytes and in C57BL/6J mouse liver. In conclusion, activation of the AhR/ARNT signaling pathway by AhR ligands represents a novel mechanism for regulating the expression of ADHs. These effects may be implicated in the toxicity of AhR ligands as well as in the alteration of ethanol or retinol metabolism and may be associated further with higher risk of liver diseases or/and alcohol abuse disorders.
Collapse
Affiliation(s)
- Eléonore A Attignon
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Alix F Leblanc
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Béatrice Le-Grand
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Caroline Duval
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Martine Aggerbeck
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Hélène Rouach
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Etienne B Blanc
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France. .,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France.
| |
Collapse
|
8
|
You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 4:88-100. [PMID: 26005675 DOI: 10.3978/j.issn.2304-3881.2014.12.06] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is one of the most prevalent forms of liver disease worldwide and can progress to inflammation (hepatitis), fibrosis/cirrhosis, and ultimately lead to end stage liver injury. The mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. Nevertheless, understanding its pathogenesis will facilitate the development of effective pharmacological or nutritional therapies for treating human AFLD. Chronic ethanol consumption causes steatosis and inflammation in rodents or humans by disturbing several important hepatic transcriptional regulators, including AMP-activated kinase (AMPK), lipin-1, sterol regulatory element binding protein 1 (SREBP-1), PPARγ co-activator-1α (PGC-1α), and nuclear transcription factor-κB (NF-κB). Remarkably, the effects of ethanol on these regulators are mediated in whole or in part by inhibition of a central signaling molecule, sirtuin 1 (SIRT1), which is a nicotinamide adenine dinucleotide (NAD(+), NADH)-dependent class III protein deacetylase. In recent years, SIRT1 has emerged as a pivotal molecule controlling the pathways of hepatic lipid metabolism, inflammatory responses and in the development of AFLD in rodents and in humans. Ethanol-mediated SIRT1 inhibition suppresses or stimulates the activities of above described transcriptional regulators and co-regulators, thereby deregulating diverse lipid metabolism and inflammatory response pathways including lipogenesis, fatty acid β-oxidation, lipoprotein uptake and secretion and expression of pro-inflammatory cytokines in the liver. This review aims to highlight our current understanding of SIRT1 regulatory mechanisms and its response to ethanol-induced toxicity, thus, affirming significant role of SIRT1 signaling in the development of AFLD.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Charles Taylor
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
9
|
Influence of fat/carbohydrate ratio on progression of fatty liver disease and on development of osteopenia in male rats fed alcohol via total enteral nutrition (TEN). Alcohol 2014; 48:133-44. [PMID: 24581955 DOI: 10.1016/j.alcohol.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
Alcohol abuse is associated with the development of fatty liver disease and also with significant osteopenia in both genders. In this study, we examined ethanol-induced pathology in response to diets with differing fat/carbohydrate ratios. Male Sprague-Dawley rats were fed intragastrically with isocaloric liquid diets. Dietary fat content was either 5% (high carbohydrate, HC) or 45% (high fat, HF), with or without ethanol (12-13 g/kg/day). After 14, 28, or 65 days, livers were harvested and analyzed. In addition, bone morphology was analyzed after 65 days. HC rats gained more weight and had larger fat pads than HF rats with or without ethanol. Steatosis developed in HC + ethanol (HC + EtOH) compared to HF + ethanol (HF + EtOH) rats, accompanied by increased fatty acid (FA) synthesis and increased nuclear carbohydrate response element binding protein (ChREBP) (p < 0.05), but in the absence of effects on hepatic silent mating type information regulation 2 homolog (SIRT-1) or nuclear sterol regulatory binding element protein (SREBP-1c). Ethanol reduced serum leptin (p < 0.05) but not adiponectin. Over time, HC rats developed fatty liver independent of ethanol. FA degradation was significantly elevated by ethanol in both HC and HF groups (p < 0.05). HF + EtOH rats had increased oxidative stress from 28 days, increased necrosis compared to HF controls and higher expression of cytochromes P450, CYP2E1, and CYP4A1 compared to HC + EtOH rats (p < 0.05). In contrast, HC + EtOH rats had no significant increase in oxidative stress until day 65 with no observed increase in necrosis. Unlike liver pathology, no dietary differences were observed on ethanol-induced osteopenia in HC compared to HF groups. These data demonstrate that interactions between diet composition and alcohol are complex, dependent on the length of exposure, and are an important influence in development of fatty liver injury. Importantly, it appears that diet composition does not affect alcohol-associated skeletal toxicity.
Collapse
|
10
|
Betulinic acid and betulin ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro. Int Immunopharmacol 2013; 17:184-90. [DOI: 10.1016/j.intimp.2013.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/13/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
|
11
|
Park PH, Lim RW, Shukla SD. Gene-selective histone H3 acetylation in the absence of increase in global histone acetylation in liver of rats chronically fed alcohol. Alcohol Alcohol 2012; 47:233-9. [PMID: 22301686 DOI: 10.1093/alcalc/ags004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this study was to determine the effect of chronic ethanol feeding on acetylation of histone H3 at lysine 9 (H3-Lys9) at promoter and coding regions of genes for class I alcohol dehydrogenase (ADH I), inducible nitric oxide synthase (iNOS), Bax, p21, c-met and hepatocyte growth factor in the rat liver. METHODS Rats were fed ethanol-containing liquid diet (5%, w/v) for 1-4 weeks. The global level of acetylation of H3-Lys9 in the liver was examined by western blot analysis. The levels of mRNA for various genes were measured by real-time reverse transcriptase-polymerase chain reaction. The association of acetylated histone H3-Lys9 with the different regions of genes was monitored by chromatin immunoprecipitation assay. RESULTS Chronic ethanol treatment increased mRNA expression of genes for iNOS, c-jun and ADH 1. Chronic ethanol treatment did not cause increase in global acetylation of H3-Lys9, but significantly increased the association of acetylated histone H3-Lys9 in the ADH I gene, both in promoter and in coding regions. In contrast, chronic ethanol treatment did not significantly increase the association of acetylated histone H3-Lys9 with iNOS and c-jun genes. CONCLUSION Chronic ethanol exposure increased the gene-selective association of acetylated H3-Lys9 in the absence of global histone acetylation. Thus, not all genes expressed by ethanol are linked to transcription via histone H3 acetylation at Lys9.
Collapse
Affiliation(s)
- Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | | | | |
Collapse
|
12
|
Lian LH, Wu YL, Song SZ, Wan Y, Xie WX, Li X, Bai T, Ouyang BQ, Nan JX. Gentiana manshurica Kitagawa reverses acute alcohol-induced liver steatosis through blocking sterol regulatory element-binding protein-1 maturation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:13013-13019. [PMID: 21105651 DOI: 10.1021/jf103976y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study was undertaken to investigate the protective effects of Gentiana manshurica Kitagawa (GM) on acute alcohol-induced fatty liver. Mice were treated with ethanol (5 g/kg of body weight) by gavage every 12 h for a total of three doses to induce acute fatty liver. Methanol extract of GM (50, 100, or 200 mg/kg) or silymarin (100 mg/kg) was gavaged simultaneously with ethanol for three doses. GM administration significantly reduced the increases in serum ALT and AST levels, the serum and hepatic triglyceride levels, at 4 h after the last ethanol administration. GM was also found to prevent ethanol-induced hepatic steatosis and necrosis, as indicated by liver histopathological studies. Additionally, GM suppressed the elevation of malondialdehyde (MDA) levels, restored the glutathione (GSH) levels, and enhanced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. The concurrent administration of GM efficaciously abrogated cytochrome P450 2E1 (CYP2E1) induction. Moreover, GM significantly reduced the nuclear translocation of sterol regulatory element-binding protein-1 (nSREBP-1) in ethanol-treated mice. These data indicated that GM possessed the ability to prevent ethanol-induced acute liver steatosis, possibly through blocking CYP2E1-mediated free radical scavenging effects and SREBP-1-regulated fatty acid synthesis. Especially, GM may be developed as a potential therapeutic candidate for ethanol-induced oxidative damage in liver.
Collapse
Affiliation(s)
- Li-Hua Lian
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yan J, Gong Y, Wang G, Gong Y, Burczynski FJ. Regulation of liver fatty acid binding protein expression by clofibrate in hepatoma cells. Biochem Cell Biol 2010; 88:957-67. [DOI: 10.1139/o10-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists such as clofibrate are known to affect liver fatty acid binding protein (L-FABP) levels, which in turn influence hepatocellular oxidant status. The mechanism of clofibrate’s modulation of L-FABP levels is not clear. In this study we used clofibrate (PPARα agonist), MK886 (PPARα antagonist), and GW9662 (PPARγ antagonist) in determining the regulating mechanism of L-FABP expression and its antioxidant activity in CRL-1548 hepatoma cells. Antioxidant activity was assessed by determining intracellular reactive oxygen species (ROS) using dichlorofluorescein (DCF) fluorescence. The effect of clofibrate on cytosolic activity of the intracellular antioxidant enzymes was also assessed. RT-PCR and mRNA stability assay showed that clofibrate treatment enhanced L-FABP mRNA stability, which resulted in increased L-FABP levels. A nuclear run-off assay and RT-PCR measurements of L-FABP mRNA revealed that clofibrate increased the L-FABP gene transcription rate. The increased L-FABP was associated with reduced cytosolic ROS. Levels of superoxide dismutase, glutathione peroxidase, and catalase were not affected by clofibrate treatment. L-FABP siRNA knockdown studies showed that a reduction in L-FABP expression was associated with increased DCF fluorescence. We conclude that clofibrate enhanced L-FABP gene transcription and mRNA stability, thus affecting L-FABP expression and ultimately cellular antioxidant activity.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guqi Wang
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yu Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Frank J. Burczynski
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
14
|
Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12 Suppl 2:83-92. [PMID: 21029304 DOI: 10.1111/j.1463-1326.2010.01275.x] [Citation(s) in RCA: 516] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steatosis is an accumulation of triglycerides in the liver. Although an excessive availability of plasma fatty acids is an important determinant of steatosis, lipid synthesis from glucose (lipogenesis) is now also considered as an important contributing factor. Lipogenesis is an insulin- and glucose-dependent process that is under the control of specific transcription factors, sterol regulatory element binding protein 1c (SREBP-1c), activated by insulin and carbohydrate response element binding protein (ChREBP) activated by glucose. Insulin induces the maturation of SREBP-1c by a proteolytic mechanism initiated in the endoplasmic reticulum (ER). SREBP-1c in turn activates glycolytic gene expression, allowing glucose metabolism, and lipogenic genes in conjunction with ChREBP. Lipogenesis activation in the liver of obese markedly insulin-resistant steatotic rodents is then paradoxical. Recent data suggest that the activation of SREBP-1c and thus of lipogenesis is secondary in the steatotic liver to an ER stress. The ER stress activates the cleavage of SREBP-1c independent of insulin, thus explaining the paradoxical stimulation of lipogenesis in an insulin-resistant liver. Inhibition of the ER stress in obese rodents decreases SREBP-1c activation and lipogenesis and improves markedly hepatic steatosis and insulin sensitivity. ER is thus a new partner in steatosis and metabolic syndrome which is worth considering as a potential therapeutic target.
Collapse
Affiliation(s)
- P Ferré
- INSERM, UMR-S 872, Centre de Recherches des Cordeliers and Université Pierre et Marie Curie-Paris, Paris, France
| | | |
Collapse
|
15
|
Abstract
Alcoholic fatty liver is a major risk factor for advanced liver injuries such as steatohepatitis, fibrosis, and cirrhosis. While the underlying mechanisms are multiple, the development of alcoholic fatty liver has been attributed to a combined increase in the rate of de novo lipogenesis and a decrease in the rate of fatty acid oxidation in animal liver. Among various transcriptional regulators, the hepatic SIRT1 (sirtuin 1)-AMPK (AMPK-activated kinase) signaling system represents a central target for the action of ethanol in the liver. Adiponectin is one of the adipocyte-derived adipokines with potent lipid-lowering properties. Growing evidence has demonstrated that the development of alcoholic fatty liver is associated with reduced circulating adiponectin levels, decreased hepatic adiponectin receptor expression, and impaired hepatic adiponectin signaling. Adiponectin confers protection against alcoholic fatty liver via modulation of complex hepatic signaling pathways largely controlled by the central regulatory system, SIRT1-AMPK axis. This review aims to integrate the current research findings of ethanol-mediated dysregulation of adiponectin and its receptors and to provide a comprehensive point of view for understanding the role of adiponectin signaling in the development of alcoholic fatty liver.
Collapse
Affiliation(s)
- Min You
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, Box 8, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
16
|
Abstract
Alcoholic liver disease still represents an important cause for death and disability in most well-developed countries and is becoming a leading cause of disease in developing countries. It is now increasingly clear that, besides the formation of acetaldehyde, alcohol effects on the liver include oxidative stress, disturbances in methionine metabolism, endoplasmic reticulum stress, inflammatory/immune responses and adipokine imbalances. This article will discuss the most recent findings on the mechanisms by which alcohol abuse causes hepatic steatosis and steatohepatitis, and now it contributes to the progression of fibrosis. Although still incomplete, these data shed new light on the multifactorial pathogenesis of alcoholic liver disease and open new possibilities in the understanding of how gender and genetic factors can influence disease progression.
Collapse
Affiliation(s)
- Emanuele Albano
- Department of Medical Science, University Amedeo Avogadro of East Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
17
|
Badger TM, Ronis MJJ, Wolff G, Stanley S, Ferguson M, Shankar K, Simpson P, Jo CH. Soy protein isolate reduces hepatosteatosis in yellow Avy/a mice without altering coat color phenotype. Exp Biol Med (Maywood) 2008; 233:1242-54. [PMID: 18791133 DOI: 10.3181/0802-rm-60] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Agouti (A(vy)/a) mice fed an AIN-93G diet containing the soy isoflavone genistein (GEN) prior to and during pregnancy were reported to shift coat color and body composition phenotypes from obese-yellow towards lean pseudoagouti, suggesting epigenetic programming. Human consumption of purified GEN is rare and soy protein is the primary source of GEN. Virgin a/a female and A(vy)/a male mice were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) (the same approximate GEN levels as in the above mentioned study) for 2 wks prior to mating. A(vy)/a offspring were weaned to the same diets and studied at age 75 d. Coat color distribution did not differ among diets, but SPI-fed, obese A(vy)/a offspring had lower hepatosteatosis (P < 0.05) and increased (P < 0.05) expression of CYP4a 14, a PPARalpha-regulated gene compared to CAS controls. Similarly, weanling male Sprague-Dawley (SD) rats fed SPI had elevated hepatic Acyl Co-A Oxidase (ACO) mRNA levels and increased in vitro binding of PPARalpha to the PPRE promoter response element. In another hepatosteatosis model, adult SD rats fed a high fat/cholesterol diet, SPI reduced (P < 0.05) steatosis. Thus, 1) consumption of diets made with SPI partially protected against hepatosteatosis in yellow mice and in SD rats, and this may involve induction of PPARalpha-regulated genes; and 2) the lifetime (in utero, neonatal and adult) exposure to dietary soy protein did not result in a shift in coat color phenotype of A(vy)/a mice. These findings, when compared with those of previously published studies of A(vy)/a mice, lead us to conclude that: 1) the effects of purified GEN differ from those of SPI when GEN equivalents are closely matched; 2) SPI does not epigenetically regulate the agouti locus to shift the coat color phenotype in the same fashion as GEN alone; and 3) SPI may be beneficial in management of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- T M Badger
- Arkansas Children's Nutrition Center, Physiology & Biophysics, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294:G892-8. [PMID: 18239056 DOI: 10.1152/ajpgi.00575.2007] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic ethanol feeding causes liver steatosis in animal models by upregulating the sterol regulatory element-binding protein 1 (SREBP-1), which subsequently increases the synthesis of hepatic lipid. SREBP-1 activity is regulated by reversible acetylation at specific lysine residues. The present study tests the hypothesis that activation of SREBP-1 by ethanol may be mediated by mammalian sirtuin 1 (SIRT1), a NAD(+)-dependent class III protein deacetylase. The effects of ethanol on SIRT1 were determined in cultured rat hepatoma cells and in the livers of ethanol-fed mice. In rat H4IIEC3 cells, we observed that ethanol exposure induced SREBP-1c lysine acetylation and SREBP-1c transcriptional activity. The effect of ethanol was abolished by expression of wild-type SIRT1 or by treatment with resveratrol, a known potent SIRT1 agonist. Conversely, knocking down SIRT1 by the small silencing SIRT1 plasmid SIRT1shRNA or expression of a SIRT1 mutant, SIRT1(H363Y), did not negate the ethanol effect. These findings suggest that the effect of ethanol on SREBP-1 is mediated, at least in part, through SIRT1 inhibition. Consistent with the in vitro findings, chronic ethanol feeding substantially downregulated hepatic SIRT1 in mice. Inhibition of hepatic SIRT1 activity was associated with an increase in the acetylated active nuclear form of SREBP-1c in the livers of ethanol-fed mice. Our results indicate an essential role for SIRT1 in mediating the effects of ethanol on SREBP-1 and hepatic lipid metabolism, as well as the development of alcoholic fatty liver. Hence, SIRT1 may represent a novel therapeutic target for treatment of human alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Min You
- Dept. of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, Box 8, Univ. of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
19
|
You M, Cao Q, Liang X, Ajmo JM, Ness GC. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr 2008; 138:497-501. [PMID: 18287356 DOI: 10.1093/jn/138.3.497] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to elucidate the mechanism underlying the protective effect of a high saturated fat (HSF) diet against the development of alcoholic fatty liver in mice. We tested the effects of a HSF diet on the ethanol-mediated increase in hepatic sterol regulatory element binding protein 1 (SREBP-1) activity. Thirty-two male mice were divided into 4 groups and fed liquid diets consisting of either a high polyunsaturated fat (40% of energy from corn oil) or a HSF (40% of energy from cocoa butter) diet with or without ethanol for 4 wk. In the ethanol-containing diets, ethanol was substituted for an equivalent amount of carbohydrate to provide 27.5% of the total energy. Control mice were pair-fed the same volume of liquid diets as the ethanol-fed mice. The HSF diet suppressed the increase in mature SREBP-1 protein and prevented increased mRNA of the SREBP-1-regulated lipogenic enzymes in the ethanol-fed mice (P < 0.05). Sirtuins 1 (SIRT1), a NAD+-dependent class III histone deacetylase, was upregulated by ethanol administration in mice fed the HSF diet (P < 0.05). The HSF diet blocked histone H3 at lysine 9 (lys9) hyperacetylation and attenuated association of acetylated histone H3-Lys9 with the promoters of mitochondrial glycerol-3-phosphate acyltransferase and stearoyl-CoA desaturase 1 in the livers of the ethanol-fed mice. These results suggest that the protective effects of HSF diet against the development of alcoholic liver steatosis may occur via regulation of the hepatic SIRT1-SREBP-1-histone H3 axis, suppressing the expression of genes encoding lipogenic enzymes and slowing the synthesis of hepatic fatty acids.
Collapse
Affiliation(s)
- Min You
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
20
|
Magne L, Blanc E, Marchand A, Fafournoux P, Barouki R, Rouach H, Garlatti M. Stabilization of IGFBP-1 mRNA by ethanol in hepatoma cells involves the JNK pathway. J Hepatol 2007; 47:691-8. [PMID: 17640761 DOI: 10.1016/j.jhep.2007.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/13/2007] [Accepted: 05/07/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Insulin-like growth factor-binding protein-1 (IGFBP-1) modulates cell growth and metabolism in a variety of physiopathological conditions. The aim of this study was to determine the molecular mechanisms involved in IGFBP-1 upregulation by ethanol. METHODS We studied IGFBP-1 regulation by ethanol at the protein, mRNA and gene promoter levels in the human hepatocarcinoma cell line, HepG2, which does not express significantly ethanol-metabolizing enzymes. RESULTS Ethanol (35-150mM) induced the IGFBP-1 mRNA and protein up to 5-fold in a dose-dependent manner. A similar effect was observed using primary cultures of human hepatocytes. Various inhibitors of ethanol metabolism and the antioxidant N-acetylcysteine did not prevent ethanol effects. While ethanol did not modify the IGFBP-1 gene promoter activity, it elicited a 2- to 3-fold increase in IGFBP-1 mRNA half-life and this stabilization required the 5' and the 3' untranslated mRNA region. Ethanol triggered a rapid activation of c-Jun N-terminal Kinase (JNK) in HepG2 cells and IGFBP-1 induction was significantly decreased by a specific inhibitor of JNK. CONCLUSIONS This study reveals a novel pathway of gene regulation by alcohol which involves the activation of JNK and the consequent mRNA stabilization.
Collapse
Affiliation(s)
- Laurent Magne
- INSERM U747, Laboratoire de Pharmacologie, Toxicologie et Signalisation Cellulaire, Paris F-75006, France
| | | | | | | | | | | | | |
Collapse
|
21
|
He L, Marecki JC, Serrero G, Simmen FA, Ronis MJJ, Badger TM. Dose-dependent effects of alcohol on insulin signaling: partial explanation for biphasic alcohol impact on human health. Mol Endocrinol 2007; 21:2541-50. [PMID: 17622585 DOI: 10.1210/me.2007-0036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Routine consumption of alcohol at low doses is associated with decreased risk of acquiring type 2 diabetes, whereas chronic and excessive alcohol consumption increases the risk. Although there is good epidemiologic evidence for these biphasic effects, careful validation of these effects on insulin signaling has not been reported, nor have biological mechanisms underlying these biphasic effects been proposed. In this study, we provide evidence in rats that low-dose alcohol intake (4 g/kg x d) enhances hepatic insulin signaling by suppressing p55gamma (a phosphatidylinositol 3-kinase regulatory subunit isoform) at the posttranscriptional level, leading to the increased association of the phosphatidylinositol 3-kinase catalytic subunit (p110) with insulin receptor substrate-1 (P < 0.05) and subsequent activation of downstream effectors such as Akt, glycogen synthase kinase 3beta, and nuclear sterol regulatory element binding protein (SREBP)-1. These results, combined with our previous data (confirmed in the present study) demonstrating that ethanol intake at high doses (13 g/kg x d) disrupts hepatic insulin signaling by inducing TRB3, a mammalian homolog of Drosophila (tribbles-related protein 3) that prevented activation of downstream effectors (such as Akt, GSK3beta, and nSREBP-1), provide clear mechanistic validation of the biphasic effects of ethanol on insulin signaling. We also report that ethanol induction of TRB3 can be partially blocked (P < 0.01) by compounds (4-phenyl butyric acid and taurine-ursodeoxycholic acid) known to reduce endoplasmic reticulum stress. Thus, alcohol exerts biphasic actions on hepatic insulin signaling, such that low doses activate insulin signaling pathways associated with reduced p55gamma to increase nSREBP-1, whereas high doses of ethanol elevate TRB3 and suppress insulin signaling to decrease SREBP-1.
Collapse
Affiliation(s)
- Ling He
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ronis MJJ, Wands JR, Badger TM, de la Monte SM, Lang CH, Calissendorff J. Alcohol-induced disruption of endocrine signaling. Alcohol Clin Exp Res 2007; 31:1269-85. [PMID: 17559547 DOI: 10.1111/j.1530-0277.2007.00436.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article contains the proceedings of a symposium at the 2006 ISBRA meeting in Sydney Australia, organized and cochaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effect of long-term ethanol consumption on liver injury and repair, by Jack R. Wands; (2) Alcohol-induced insulin resistance in liver: potential roles in regulation of ADH expression, ethanol clearance, and alcoholic liver disease, by Thomas M. Badger; (3) Chronic gestational exposure to ethanol causes brain insulin and insulin-like growth factor resistance, by Suzanne M de la Monte; (4) Disruption of IGF-1 signaling in muscle: a mechanism underlying alcoholic myopathy, by Charles H. Lang; (5) The role of reduced plasma estradiol and impaired estrogen signaling in alcohol-induced bone loss, by Martin J. Ronis; and (6) Short-term influence of alcohol on appetite-regulating hormones in man, by Jan Calissendorff.
Collapse
Affiliation(s)
- Martin J J Ronis
- Arkansas Children's Nutrition Center, Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Shankar K, Hidestrand M, Liu X, Xiao R, Skinner CM, Simmen FA, Badger TM, Ronis MJJ. Physiologic and genomic analyses of nutrition-ethanol interactions during gestation: Implications for fetal ethanol toxicity. Exp Biol Med (Maywood) 2006; 231:1379-97. [PMID: 16946407 DOI: 10.1177/153537020623100812] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nutrition-ethanol (EtOH) interactions during gestation remain unclear primarily due to the lack of appropriate rodent models. In the present report we utilize total enteral nutrition (TEN) to specifically understand the roles of nutrition and caloric intake in EtOH-induced fetal toxicity. Time-impregnated rats were intragastrically fed either control or diets containing EtOH (8-14 g/kg/day) at a recommended caloric intake for pregnant rats or rats 30% undernourished, from gestation day (GD) 6-20. Decreased fetal weight and litter size (P < 0.05) and increased full litter resorptions (33% vs. 0%), were observed in undernourished dams compared to adequately fed rats given the same dose of EtOH, while undernutrition alone did not produce any fetal toxicity. Undernutrition led to impairment of EtOH metabolism, increased blood EtOH concentrations (160%), and decreased maternal hepatic ADH1 mRNA, protein, and activity. Microarray analyses of maternal hepatic gene expression on GD15 revealed that 369 genes were altered by EtOH in the presence of undernutrition, as compared to only 37 genes by EtOH per se (+/-2-fold, P < 0.05). Hierarchical clustering and gene ontology analysis revealed that stress and external stimulus responses, transcriptional regulation, cellular homeostasis, and protein metabolism were affected uniquely in the EtOH-under-nutrition group, but not by EtOH alone. Microarray data were confirmed using real-time RT-PCR. Undernourished EtOH-fed animals had 2-fold lower IGF-1 mRNA and 10-fold lower serum IGF-1 protein levels compared to undernourished controls (P < 0.0005). Examination of maternal GH signaling via STAT5a and -5b revealed significant reduction in both gene and protein expression produced by both EtOH and undernutrition. However, despite significantly elevated fetal BECs, fetal IGF-1 mRNA and protein were not affected by EtOH or EtOH-undernutrition combinations. Our data suggest that undernutrition potentiates the fetal toxicity of EtOH in part by disrupting maternal GH-IGF-1, signaling thereby decreasing maternal uterine capacity and placental growth.
Collapse
Affiliation(s)
- Kartik Shankar
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
He L, Simmen FA, Mehendale HM, Ronis MJJ, Badger TM. Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 2006; 281:11126-34. [PMID: 16452480 DOI: 10.1074/jbc.m510724200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic and excessive alcohol consumption is an important and modifiable risk factor for type 2 diabetes. We previously reported elevations in hepatic Class 1 alcohol dehydrogenase (ADH) expression in ethanol-fed rats correspondent with reduced levels of mature, nuclear sterol-regulatory element-binding protein-1 (SREBP-1), an insulin-induced transcriptional repressor of the ADH gene. In this report, we have studied the effects of insulin and ethanol on ADH gene expression in a highly differentiated rat hepatoma cell line (FGC-4), as well as the in vivo effects of chronic intake of an ethanol-containing diet on hepatic insulin signaling. Insulin inhibited ADH gene expression, and this was abolished by LY294002 (a phosphatidylinositol 3-kinase inhibitor) and small interfering RNA knockdown of SREBP-1. Chronic ethanol intake led to decreased phosphorylation of Akt (protein kinase B) at Thr308, increased phosphorylation of Akt at Ser473, and decreased phosphorylation of glycogen synthase kinase-3beta (a downstream effector of Akt). Hepatic membrane-associated Akt content was decreased and cytosolic Akt content was increased in rats fed an ethanol-containing diet. Thus, disruptive effects of ethanol on insulin signaling occurred via impaired phosphorylation of Akt at Thr308. TRB3, a negative regulator of Akt, was induced in liver of ethanol-fed rats. In ethanol-treated FGC-4 cells, small interfering RNA knockdown of TRB3 increased membrane-associated Akt and the phosphorylation of Akt at Thr308. Our results suggest that ethanol induces TRB3, which, through binding to the pleckstrin homology domain of Akt, prevents its plasma membrane association, Akt-Thr308 phosphorylation, and subsequent Akt-mediated signaling. Ethanol inhibition of insulin signaling reduces nuclear SREBP accumulation and results in disinhibition of Class 1 ADH transcription.
Collapse
MESH Headings
- Alcohol Dehydrogenase/metabolism
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Differentiation
- Cell Line, Tumor
- Cell Membrane/metabolism
- Chromones/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Ethanol/chemistry
- Ethanol/pharmacology
- Gene Expression Regulation, Enzymologic
- Green Fluorescent Proteins/metabolism
- Immunoprecipitation
- Insulin/metabolism
- Liver/metabolism
- Male
- Models, Biological
- Molecular Sequence Data
- Morpholines/pharmacology
- Phosphorylation
- Plasmids/metabolism
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Threonine/chemistry
- Transcription, Genetic
Collapse
Affiliation(s)
- Ling He
- Arkansas Children's Nutrition Center and the Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | |
Collapse
|
25
|
The Pathogenesis and Significance of the Urinary Alcohol Cycle in Rats Fed Ethanol Intragastrically. Alcohol Clin Exp Res 2005. [DOI: 10.1097/01.alc.0000189282.91730.c8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
French BA, Dedes J, Bardag-Gorce F, Li J, Wilson L, Fu P, Nan L, French SW. Microarray analysis of gene expression in the liver during the urinary ethanol cycle in rats fed ethanol intragastrically at a constant rate. Exp Mol Pathol 2005; 79:87-94. [PMID: 16098508 DOI: 10.1016/j.yexmp.2005.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
The regulation of gene expression in the liver of ethanol fed rats was studied using microarray analysis. The changes in gene expression were compared between pair-fed controls and rats fed ethanol intragastrically at a constant rate for 1 month. The rats fed ethanol were sacrificed at low and high urinary ethanol levels (UAL) during the UAL cycle in order to compare the effects of high and low blood alcohol levels (BAL). The results of the microarray analysis indicated that the pattern of gene expression was very different when the controls, high UAL, and low UAL livers were compared. Many of the gene expression changes reflected nonparenchymal cell alterations such as neuroendocrine or muscle related gene expression. When the results of protein levels and gene expression were compared for individual genes, correlations were variable indicating that post-translational factors modified the effects of the changes in gene expression. This was further emphasized by the fact that activation of proteins by phosphorylation as the result of signaling kinase cascades, was not reflected in the microarray analysis results. For instance, the importance of blood alcohol levels at the time that the assays were performed, profoundly changed the gene expression, protein level, and protein phosphorylation level profiles.
Collapse
Affiliation(s)
- Barbara A French
- Department of Pathology, Harbor-UCLA Medical Center and LABioMed Research Institute, 1000 W. Carson St., Torrance, CA 90509, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Badger TM, Hidestrand M, Shankar K, McGuinn WD, Ronis MJ. The effects of pregnancy on ethanol clearance. Life Sci 2005; 77:2111-26. [PMID: 15925387 DOI: 10.1016/j.lfs.2005.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 02/28/2005] [Indexed: 11/24/2022]
Abstract
We have studied the effects of pregnancy on ethanol clearance rates and on blood and urine ethanol concentrations (BECs and UECs) in adult Sprague-Dawley rats infused with ethanol intragastrically. Pregnant rats had greater ethanol clearance following an intragastric or intravenous ethanol bolus (3 or 0.75 g/kg, respectively) relative to non-pregnant rats (p<0.05). Pregnant rats infused with ethanol-containing diets for several days had lower (p<0.05) UECs than non-pregnant rats when given the same dose of ethanol. Non-pregnant rats infused ethanol-containing diets at two levels of calories (the higher caloric intake required by pregnant rats [220 kca/kg75/d] or the normal calories required for non-pregnant rats [187 kcal/kg75/d]) had statistically equal UECs, suggesting that increased caloric intake was not responsible for the effect of pregnancy. While the activity of hepatic alcohol dehydrogenase (ADH) did not differ with pregnancy, gastric ADH activity was increased (p<0.001). Furthermore, total hepatic aldehyde dehydrogenase (ALDH) and hepatic mitrochrondrial protein were increased (p<0.05) and hepatic CYP2E1 activity was suppressed (p<0.05). The results suggest that pregnancy increases ethanol elimination in pregnant rats by: 1) induction of gastric ADH; 2) elevated hepatic ALDH activity; and 3) increased mitochondrial respiration. The greater ethanol clearance results in lower tissue ethanol concentrations achieved during pregnancy for a given dose, and this may have clinical significance as a mechanism to protect the growing fetus from ethanol toxicity.
Collapse
Affiliation(s)
- Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | | | | | |
Collapse
|
28
|
Saito M, Saito M, Cooper TB, Vadasz C. Ethanol-Induced Changes in the Content of Triglycerides, Ceramides, and Glucosylceramides in Cultured Neurons. Alcohol Clin Exp Res 2005; 29:1374-83. [PMID: 16131844 DOI: 10.1097/01.alc.0000175011.22307.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ethanol induces apoptosis in cultured neurons. To assess the involvement of sphingolipids and neutral lipids in the apoptotic process, ethanol-induced alterations in lipid content and metabolism were examined by using primary cultured rat cerebellar granule neurons (CGNs), human neuroblastoma SK-N-SH cells, and mouse neuroblastoma Neuro2a cells. Ethanol treatment conditions that induced apoptosis in CGNs and SK-N-SH cells but not in Neuro2a cells were used for these experiments. METHODS Cultured neurons were treated with and without 100 mM ethanol for one to three days, and the amounts of cellular sphingolipids [ceramide, glucosylceramide (GlcCer), and sphingomyelin] and neutral lipids [cholesterol, triglyceride (TG), and cholesterol ester (ChE)] were analyzed by high-performance thin-layer chromatography, using a Coomassie brilliant blue staining method. The incorporation of [C] acetate into each lipid fraction was measured in CGNs treated with and without ethanol. Also, the effect of delipidated serum, sterols, myriocin (a serine-palmitoyltransferase inhibitor), and desipramine (an acid sphingomyelinase inhibitor) on ethanol-induced lipid changes was studied by using Neuro2a cells. RESULTS The most prominent change common to CGN, SK-N-SH, and Neuro2a cells was ethanol-induced TG accumulation. Higher incorporation of radioactivity into TG was also observed in ethanol-treated cultures when cellular lipids were metabolically labeled with [C] acetate in CGNs. In addition, ethanol elevated ceramide levels in all these neurons. However, ethanol induced decreases in GlcCer along with the reduction of cell viability in SK-N-SH cells and CGNs, whereas it increased GlcCer in Neuro2a cells that remained viable. Myriocin, which reduced ceramide levels, attenuated ethanol-induced cell death in SK-N-SH cells. Ethanol-induced accumulation of TG was sterol-independent, whereas changes in ceramide and GlcCer were affected in Neuro2a cells by the presence of sterols in the medium. Staurosporine, which induced cell death in SK-N-SH cells, increased levels of TG, ChE, and ceramides and reduced the level of GlcCer. CONCLUSIONS The results showing that ethanol induces accumulation of TG and ceramide in cultured neurons suggest that ethanol enhances lipogenesis and/or reduces fatty acid degradation in neurons, as previously observed in other cell types. Further, ethanol-induced changes in lipid metabolism, specifically those of ceramide and GlcCer, may be related to the ethanol-induced apoptotic pathway.
Collapse
Affiliation(s)
- Mariko Saito
- Laboratory of Neurobehavior Genetics and the Division of Analytical Psychopharmacology, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
29
|
Esfandiari F, Villanueva JA, Wong DH, French SW, Halsted CH. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol 2005; 289:G54-63. [PMID: 15705656 DOI: 10.1152/ajpgi.00542.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we showed that feeding micropigs ethanol with a folate-deficient diet promoted the development of hepatic injury while increasing hepatic levels of homocysteine and S-adenosylhomocysteine (SAH) and reducing the level of S-adenosylmethionine (SAM) and the SAM-to-SAH ratio. Our present goals were to evaluate mechanisms for hepatic injury using liver specimens from the same micropigs. The effects of ethanol feeding or folate-deficient diets, singly or in combination, on cytochrome P-450 2E1 (CYP2E1) and signal pathways for apoptosis and steatosis were analyzed using microarray, real-time PCR, and immunoblotting techniques. Apoptosis was increased maximally by the combination of ethanol feeding and folate deficiency and was correlated positively to liver homocysteine and SAH. Liver CYP2E1 and the endoplasmic reticulum stress signals glucose-regulated protein 78 (GRP78), caspase 12, and sterol regulatory element binding protein-1c (SREBP-1c) were each activated in pigs fed folate-deficient or ethanol diets singly or in combination. Liver mRNA levels of CYP2E1, GRP78, and SREBP-1c, and protein levels of CYP2E1, GRP78, nuclear SREBP, and activated caspase 12 each correlated positively to liver levels of SAH and/or homocysteine and negatively to the SAM-to-SAH ratio. The transcripts of the lipogenic enzymes fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase were elevated in the ethanol-fed groups, and each was positively correlated to liver homocysteine levels. The induction of abnormal hepatic methionine metabolism through the combination of ethanol feeding with folate deficiency is associated with the activation of CYP2E1 and enhances endoplasmic reticulum stress signals that promote steatosis and apoptosis.
Collapse
Affiliation(s)
- Farah Esfandiari
- Department of Internal Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|