1
|
Wu Z, Gao J, Wang X, Wang C, Zhang C, Li X, Zhang J, Sun Y. Soluble trehalase responds to heavy metal stimulation by regulating apoptosis in Neocaridina denticulata sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117072. [PMID: 39303639 DOI: 10.1016/j.ecoenv.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Trehalase plays an important role in insect metabolism and development by hydrolyzing blood sugar trehalose, but it seems to perform primarily an immunomodulatory function in crustaceans whose blood sugar is glucose. Metal ions as pollutants seriously affecting crustacean health, but studies on trehalase in metal immunity are still limited. In this study, a soluble trehalase (NdTre1) that could bind to multiple metals was identified from Neocaridina denticulata sinensis for investigating metal resistance. Expression profiling revealed that NdTre1 was mainly expressed in the gill and was significantly decreased following stimulation with copper (Cu²⁺) and cadmium (Cd²⁺). Transcriptomic analysis of gills revealed an increase in ecdysone synthesis after interference with NdTre1. Increased ecdysone activated the endogenous mitochondrial pathway and the mitogen activated protein kinase (MAPK) pathway to further induced apoptosis. In vitro, Escherichia coli overexpressing recombinant NdTre1 had higher survival and faster growth rates to better adapted the metal-containing medium. Overall, NdTre1 exercises an important immune function in shrimp resistance to metal stimulation by regulating apoptosis and molting. Further investigation can further explore specific response mechanisms of NdTre1 to multiple metals.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiyin Gao
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Cong Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiao Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Long S, Cao W, Qiu Y, Deng R, Liu J, Zhang L, Dong R, Liu F, Li S, Zhao H, Li N, Li K. The appearance of cytoplasmic cytochrome C precedes apoptosis during Drosophila salivary gland degradation. INSECT SCIENCE 2024; 31:157-172. [PMID: 37370257 DOI: 10.1111/1744-7917.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.
Collapse
Affiliation(s)
- Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenxin Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongyu Qiu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruohan Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Renke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengxin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd, Jiangmen, Guangdong Province, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| |
Collapse
|
4
|
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-hydroxyecdysone Upregulates Ecdysone Receptor (ECR) Gene to Promote Pupation in the Honeybee, Apis mellifera Ligustica. Integr Comp Biol 2023; 63:288-303. [PMID: 37365683 DOI: 10.1093/icb/icad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
5
|
Zhang J, Zhang W, Wei L, Zhang L, Liu J, Huang S, Li S, Yang W, Li K. E93 promotes transcription of RHG genes to initiate apoptosis during Drosophila salivary gland metamorphosis. INSECT SCIENCE 2023; 30:588-598. [PMID: 36281570 DOI: 10.1111/1744-7917.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/15/2023]
Abstract
20-hydroxyecdysone (20E) induced transcription factor E93 is important for larval-adult transition, which functions in programmed cell death of larval obsolete tissues, and the formation of adult new tissues. However, the apoptosis-related genes directly regulated by E93 are still ambiguous. In this study, an E93 mutation fly strain was obtained by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated long exon deletion to investigate whether and how E93 induces apoptosis during larval tissues metamorphosis. The transcriptional profile of E93 was consistent with 3 RHG (rpr, hid, and grim) genes and the effector caspase gene drice, and all their expressions peaked at the initiation of apoptosis during the degradation of salivary glands. The transcription expression of 3 RHG genes decreased and apoptosis was blocked in E93 mutation salivary gland during metamorphosis. In contrast, E93 overexpression promoted the transcription of 3 RHG genes, and induced advanced apoptosis in the salivary gland. Moreover, E93 not only enhance the promoter activities of the 3 RHG genes in Drosophila Kc cells in vitro, but also in the salivary gland in vivo. Our results demonstrated that 20E induced E93 promotes the transcription of RHG genes to trigger apoptosis during obsolete tissues degradation at metamorphosis in Drosophila.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Zhang
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shumin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Weike Yang
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661100, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| |
Collapse
|
6
|
Liu G, Lv Z, Wu Q, Zhou Z, Zhang G, Wan F, Yan Y. The Bactrocera dorsalis caspase-1 gene is expressed throughout development and required for female fertility. PEST MANAGEMENT SCIENCE 2020; 76:4104-4111. [PMID: 32578366 DOI: 10.1002/ps.5966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis is one of the most destructive pests of fruits and vegetables. The sterile insect technique (SIT) is an effective and environmentally friendly approach to the control of tephritid fruit flies. The pro-apoptotic gene head involution defective (hid) has been used as an effective lethal effector in SIT. It initiates an interaction cascade including activation of caspase-like proteases. However, the biological role of caspase activity in tephritid fruit flies has yet to be explored. RESULTS In this study, the B. dorsalis caspase-1 gene (Bdcp-1) was cloned and characterized. Sequence comparison showed that Bdcp-1 protein shared highly homology with Drosophila effector caspases Drice and Dcp-1. It is predicted to contain a short pro-domain because two proteolytic cleavage sites (Asp16 and Asp223 ) are present. Expression patterns indicated that Bdcp-1 is highly transcribed in embryos and expression was upregulated during metamorphosis and upon ultraviolet irradiation. RNA interference showed that Bdcp-1 is essential for ovarian development and female fertility. For example, knockdown of Bdcp-1 caused transcriptional downregulation of expression of the yolk protein-1 gene (Bdyp-1) and delayed ovarian development. The percentage of spawning females and female fecundity were significantly reduced. CONCLUSION This study illustrates the function of the Bdcp-1 gene and provides an attractive method to develop a biological way to control the oriental fruit fly through the control of caspases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, P. R. China
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhichuang Lv
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Wu
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
| | - Zhongshi Zhou
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guifen Zhang
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fanghao Wan
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Ying Yan
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
7
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
8
|
Tan XY, Wang X, Liu QS, Xie XQ, Li Y, Li BQ, Li ZQ, Xia QY, Zhao P. Inhibition of silkworm vacuolar-type ATPase activity by its inhibitor Bafilomycin A1 induces caspase-dependent apoptosis in an embryonic cell line of silkworm. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21507. [PMID: 30246413 DOI: 10.1002/arch.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vacuolar-type ATPase (V-ATPase) is a type of hydrogen ion transporter located in the vesicular membrane-like system, which mediates active transport and intracellular acidification in various compartments. In mammals, V-ATPase has been reported to play a key role in cell proliferation and apoptosis. The studies of V-ATPase in silkworm mainly focus on the acidification regulation of midgut and silk gland and immune resistance. However, there are few reports about the function of silkworm V-ATPase on cell proliferation, autophagy, and apoptosis. Thus, the function of V-ATPase in a cell line of Bombyx mori (BmE) was investigated by treating the cell line with bafilomycin A1, a specific inhibitor of V-ATPase. Cell counting kit 8 (CCK8) and flow cytometry analysis showed that bafilomycin A1 treatment decreased the cell proliferation activity, affected the cell cycle progression and induced cell apoptosis. LysoTracker Red staining showed that the target of bafilomycin A1 is lysosome. The expression of all autophagy-related genes ( BmATG5, BmATG6, and BmATG8) decreased, indicating that cell autophagy was inhibited. The analysis of the apoptosis pathway demonstrated that inhibiting the activity of V-ATPase of BmE cells could promote mitochondria to release cytochrome C, inhibit the expression of BmIAP, and activate the caspase cascade to induce apoptosis. All these findings systematically illustrate the effects of V-ATPase on the proliferation, autophagy, and apoptosis in BmE cells, and provide new ideas and a theoretical basis for further study on the function of V-ATPase in BmE.
Collapse
Affiliation(s)
- Xiao-Yin Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-Song Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Qian Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bing-Qian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhi-Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Vishal K, Bawa S, Brooks D, Bauman K, Geisbrecht ER. Thin is required for cell death in the Drosophila abdominal muscles by targeting DIAP1. Cell Death Dis 2018; 9:740. [PMID: 29970915 PMCID: PMC6030163 DOI: 10.1038/s41419-018-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
In holometabolous insects, developmentally controlled programmed cell death (PCD) is a conserved process that destroys a subset of larval tissues for the eventual creation of new adult structures. This process of histolysis is relatively well studied in salivary gland and midgut tissues, while knowledge concerning larval muscle destruction is limited. Here, we have examined the histolysis of a group of Drosophila larval abdominal muscles called the dorsal external oblique muscles (DEOMs). Previous studies have defined apoptosis as the primary mediator of DEOM breakdown, whose timing is controlled by ecdysone signaling. However, very little is known about other factors that contribute to DEOM destruction. In this paper, we examine the role of thin (tn), which encodes for the Drosophila homolog of mammalian TRIM32, in the regulation of DEOM histolysis. We find that loss of Tn blocks DEOM degradation independent of ecdysone signaling. Instead, tn genetically functions in a pathway with the death-associated inhibitor of apoptosis (DIAP1), Dronc, and death-associated APAF1-related killer (Dark) to regulate apoptosis. Importantly, blocking Tn results in the absence of active Caspase-3 immunostaining, upregulation of DIAP1 protein levels, and inhibition of Dronc activation. DIAP1 and Dronc mRNA levels are not altered in tn mutants, showing that Tn acts post-transcriptionally on DIAP1 to regulate apoptosis. Herein, we also find that the RING domain of Tn is required for DEOM histolysis as loss of this domain results in higher DIAP1 levels. Together, our results suggest that the direct control of DIAP1 levels, likely through the E3 ubiquitin ligase activity of Tn, provides a mechanism to regulate caspase activity and to facilitate muscle cell death.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kenneth Bauman
- Department of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
10
|
Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 2017. [PMID: 28644437 PMCID: PMC5520460 DOI: 10.1038/cdd.2017.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
11
|
Yang C, Lin XW, Xu WH. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:21-30. [PMID: 28153644 DOI: 10.1016/j.ibmb.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Abstract
Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. This atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.
Collapse
|
13
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
14
|
Cell death in development: Signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39:12-9. [PMID: 25668151 DOI: 10.1016/j.semcdb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
Abstract
Programmed cell death eliminates unneeded and dangerous cells in a timely and effective manner during development. In this review, we examine the role cell death plays during development in worms, flies and mammals. We discuss signaling pathways that regulate developmental cell death, and describe how they communicate with the core cell death pathways. In most organisms, the majority of developmental cell death is seen in the nervous system. Therefore we focus on what is known about the regulation of developmental cell death in this tissue. Understanding how the cell death is regulated during development may provide insight into how this process can be manipulated in the treatment of disease.
Collapse
|
15
|
Denton D, Aung-Htut MT, Lorensuhewa N, Nicolson S, Zhu W, Mills K, Cakouros D, Bergmann A, Kumar S. UTX coordinates steroid hormone-mediated autophagy and cell death. Nat Commun 2014; 4:2916. [PMID: 24336022 DOI: 10.1038/ncomms3916] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023] Open
Abstract
Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development.
Collapse
Affiliation(s)
- Donna Denton
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - May T Aung-Htut
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Nirmal Lorensuhewa
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Wenying Zhu
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Kathryn Mills
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Dimitrios Cakouros
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Andreas Bergmann
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sharad Kumar
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia [3] Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development. Dev Biol 2013; 386:34-41. [PMID: 24333635 DOI: 10.1016/j.ydbio.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
Abstract
Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development.
Collapse
|
17
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
18
|
Upregulation of the expression of prodeath serine/threonine protein kinase for programmed cell death by steroid hormone 20-hydroxyecdysone. Apoptosis 2013. [PMID: 23203537 DOI: 10.1007/s10495-012-0784-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serine/threonine protein kinases phosphorylate protein substrates to initiate further cellular events. Different serine/threonine protein kinases have varied functions despite their highly conserved homology. We propose prodeath-S/TK, a prodeath serine/threonine protein kinase from the lepidopteran insect Helicoverpa armigera, promotes programmed cell death (PCD) during metamorphosis. Prodeath-S/TK is expressed in various tissues with a high expression level during molting and metamorphosis by 20-hydroxyecdysone (20E) induction. Prodeath-S/TK is localized in the larval midgut during metamorphosis. Prodeath-S/TK knockdown by injecting dsRNA into larval hemocoel suppresses the 20E-induced metamorphosis and PCD, as well as downregulates a set of genes involved in the PCD and 20E signaling pathway. 20E upregulates prodeath-S/TK expression through its nuclear receptor EcR-B1 and USP1. Prodeath-S/TK overexpression in the epidermal cell line leads to PCD with DNA fragmentation and the activation of caspases 3 and 7. Prodeath-S/TK plays role in the cytoplasm. The N-terminal and C-terminal sequences of prodeath-S/TK determine its subcellular location. These data indicate that prodeath-S/TK participates in PCD by regulating gene expression in the 20E signaling pathway.
Collapse
|
19
|
Lu MX, Du YZ, Cao SS, Liu P, Li J. Molecular cloning and characterization of the first caspase in the Striped Stem Borer, Chilo suppressalis. Int J Mol Sci 2013; 14:10229-41. [PMID: 23676354 PMCID: PMC3676837 DOI: 10.3390/ijms140510229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/17/2013] [Accepted: 05/03/2013] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is executed through the activity of the caspases that are aspartyl-specific proteases. In this study, we isolated the caspase gene (Cscaspase-1) of Chilo suppressalis (one of the leading pests responsible for destruction of rice crops). It possesses the open reading frame (ORF) of 295 amino acids including prodomain, large subunit and small subunits, and two cleavage sites (Asp23 and Asp194) were found to be located among them. In addition to these profiles, Cscaspase-1 contains two active sites (His134 and Cys176). Genomic analysis demonstrated there was no intron in the genome of Cscaspase-1. The Cscaspase-1 transcripts were found in all tissues of the fifth instar larvae, and higher levels were found in the midgut, hindgut and Malpighian tubules. Examination of Cscaspase-1 expression in different developmental stages indicated low constitutive levels in the eggs and early larvae stages, and higher abundances were exhibited in the last larvae and pupae stages. The relative mRNA levels of Cscaspase-1 were induced by heat and cold temperatures. For example, the highest increase of Cscaspase-1 transcription was at −3 °C and 36 °C respectively. In a word, Cscaspase-1 plays a role of effector in the apoptosis of C. suppressalis. It also correlates with development, metamorphosis and thermotolerance of C. suppreassalis.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, Jiangsu, China; E-Mails: (M.-X.L.); (S.-S.C.)
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; E-Mail:
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, Jiangsu, China; E-Mails: (M.-X.L.); (S.-S.C.)
- Authors to whom correspondence should be addressed; E-Mails: (Y.-Z.D.); (J.L.); Tel./Fax: +86-514-8797-1854 (Y.-Z.D.); Tel.: +1-540-231-1182 (J.L.); Fax: +1-540-231-9070 (J.L.)
| | - Shuang-Shuang Cao
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, Jiangsu, China; E-Mails: (M.-X.L.); (S.-S.C.)
| | - Pingyang Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; E-Mail:
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Y.-Z.D.); (J.L.); Tel./Fax: +86-514-8797-1854 (Y.-Z.D.); Tel.: +1-540-231-1182 (J.L.); Fax: +1-540-231-9070 (J.L.)
| |
Collapse
|
20
|
Berthelet J, Dubrez L. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2013; 2:163-87. [PMID: 24709650 PMCID: PMC3972657 DOI: 10.3390/cells2010163] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.
Collapse
Affiliation(s)
- Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
21
|
Tian L, Liu S, Liu H, Li S. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 79:207-219. [PMID: 22517444 DOI: 10.1002/arch.20457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During insect metamorphosis, obsolete larval tissues are removed by programed cell death (PCD), mainly apoptosis and autophagy, which is directed by the molting hormone, 20-hydroxyecdysone (20E) and the 20E-triggered transcriptional cascade. Here, we investigated how 20E regulates apoptosis at the transcriptional level in the fat body of the silkworm, Bombyx mori. As detected by TdT-mediated dUTP Nick-End Labeling (TUNEL), apoptosis weakly occurred during the fourth larval molting, decreased to undetected levels during the early fifth instar, and gradually increased from day 4 of fifth instar to the wandering stage to the prepupal stage. Meanwhile, as determined by quantitative real-time PCR, eight genes involved in apoptosis, including Apaf-1, Nedd2 like1, Nedd2 like2, ICE1, ICE3, ICE5, Arp, and IAP, were highly expressed during molting and pupation, when the 20E titer is high. Injection of 20E into day 2 of fifth instar larvae significantly induced apoptosis and upregulated apoptotic genes after 6 h of treatment, and in vitro treatment of larval fat body tissues with 20E upregulated all the eight apoptotic genes. Moreover, RNAi knockdown of USP, a component of the 20E receptor complex EcR-USP, at the early-wandering stage reduced apoptosis and downregulated apoptotic genes after 24 h of treatment. Taken together, we infer that 20E upregulates apoptotic genes and thus induces apoptosis in the Bombyx fat body during larval molting and the larval-pupal transition.
Collapse
Affiliation(s)
- Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | |
Collapse
|
22
|
Abdou MA, He Q, Wen D, Zyaan O, Wang J, Xu J, Baumann AA, Joseph J, Wilson TG, Li S, Wang J. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:938-945. [PMID: 21968404 DOI: 10.1016/j.ibmb.2011.09.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The Drosophila Methoprene-tolerant (Met) and Germ cell-expressed (Gce) bHLH-PAS transcription factors are products of two paralogous genes. Both proteins potentially mediate the effect of juvenile hormone (JH) as candidate JH receptors. Here we report that Met and Gce are partially redundant in transducing JH action. Both Met and gce null single mutants are fully viable, but the Met gce double mutant, Met(27) gce(2.5k), dies during the larval-pupal transition. Precocious and enhanced caspase-dependent programmed cell death (PCD) appears in fat body cells of Met(27) gce(2.5k) during the early larval stages. Expression of Kr-h1, a JH response gene that inhibits 20-hydroxyecdysone (20E)-induced broad (br) expression, is abolished in Met(27) gce(2.5k) during larval molts. Consequently, expression of br occurs precociously in Met(27) gce(2.5k), which may cause precocious caspase-dependent PCD during the early larval stages. Defective phenotypes and gene expression changes in Met(27) gce(2.5k) double mutants are similar to those found in JH-deficient animals. Importantly, exogenous application of JH agonists rescued the JH-deficient animals but not the Met(27) gce(2.5k) mutants. Our data suggest a model in which Drosophila Met and Gce redundantly transduce JH action to prevent 20E-induced caspase-dependent PCD during larval molts by induction of Kr-h1 expression and inhibition of br expression.
Collapse
Affiliation(s)
- Mohamed A Abdou
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.
Collapse
|
24
|
Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet 2011; 7:e1002261. [PMID: 21909282 PMCID: PMC3164697 DOI: 10.1371/journal.pgen.1002261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. The Drosophila inhibitor of apoptosis 1 (DIAP1) readily promotes ubiquitylation of the CASPASE-9–like initiator caspase DRONC in vitro and in vivo. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by effector caspase inhibition—producing so-called “undead” cells—it has been proposed that DIAP1-mediated ubiquitylation would target full-length DRONC for proteasomal degradation, ensuring survival of normal cells. However, this has never been tested rigorously in vivo. By examining loss and gain of diap1 function, we show that DIAP1-mediated ubiquitylation does not trigger degradation of full-length DRONC. Our analysis demonstrates that DIAP1-mediated ubiquitylation controls DRONC processing and activation in a non-proteolytic manner. Interestingly, once DRONC is processed and activated, it has reduced protein stability. We also demonstrate that “undead” cells induce transcription of dronc, explaining increased protein levels of DRONC in these cells. This study re-defines the mechanism by which IAP-mediated ubiquitylation regulates caspase activity.
Collapse
|
25
|
Shukla A, Tapadia MG. Differential localization and processing of apoptotic proteins in Malpighian tubules of Drosophila during metamorphosis. Eur J Cell Biol 2011; 90:72-80. [DOI: 10.1016/j.ejcb.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/13/2010] [Accepted: 08/26/2010] [Indexed: 01/11/2023] Open
|
26
|
Filipiak M, Bilska E, Tylko G, Pyza E. Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:383-390. [PMID: 19941868 DOI: 10.1016/j.jinsphys.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn(2+), an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn(2+), and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn(2+) increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn(2+) also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.
Collapse
Affiliation(s)
- Marta Filipiak
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | |
Collapse
|
27
|
Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell Death Differ 2010; 17:1266-76. [PMID: 20150917 PMCID: PMC2902690 DOI: 10.1038/cdd.2010.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most of the 131 cells that die during the development of a C. elegans hermaphrodite do so ~30 min after being generated. Furthermore, in these cells, the pro-caspase proCED-3 is inherited from progenitors and the transcriptional upregulation of the BH3-only gene egl-1 is thought to be sufficient for apoptosis induction. In contrast, the four CEM neurons, which die in hermaphrodites, but not males, die ~150 min after being generated. We found that in the CEMs, the transcriptional activation of both the egl-1 and ced-3 gene is necessary for apoptosis induction. In addition, we show that the Bar homeodomain transcription factor CEH-30 represses egl-1 and ced-3 transcription in the CEMs, thereby permitting their survival. Furthermore, we identified three genes, unc-86, lrs-1 and unc-132, which encode a POU homeodomain transcription factor, a leucyl-tRNA synthetase and a novel protein with limited sequence similarity to the mammalian proto-oncoprotein and kinase PIM-1, respectively, that promote the expression of the ceh-30 gene in the CEMs. Based on these results, we propose that egl-1 and ced-3 transcription are co-regulated in the CEMs to compensate for limiting proCED-3 levels, which most probably are a result of proCED-3 turn over. Similar co-regulatory mechanisms for BH3-only proteins and pro-caspases may function in higher organisms to allow efficient apoptosis induction during development. Finally, we present evidence that the timing of the death of the CEMs is controlled by TRA-1 Gli, the terminal global regulator of somatic sexual fate in C. elegans.
Collapse
|
28
|
Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 2009; 19:1741-6. [PMID: 19818615 DOI: 10.1016/j.cub.2009.08.042] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/22/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Most developmentally programmed cell death in metazoans is mediated by caspases. During Drosophila metamorphosis, obsolete tissues, including the midgut and salivary glands, are removed by programmed cell death [1]. The initiator caspase Dronc and its activator Ark are required for the death of salivary glands, but not for midgut removal [2, 3]. In addition to caspases, complete removal of salivary glands requires autophagy [4]. However, the contribution of autophagy to midgut cell death has not been explored. Examination of combined mutants of the main initiator and effector caspases revealed that the canonical apoptotic pathway is not required for midgut cell death. Further analyses revealed that the caspase Decay is responsible for most of the caspase activity in dying midguts, yet inhibition of this activity has no effect on midgut removal. By contrast, midgut degradation was severely delayed by inhibition of autophagy, and this occurred without a decrease in caspase activity. Surprisingly, the combined inhibition of caspases and autophagy did not result in an additional delay in midgut removal. Together, our results indicate that autophagy, not caspases, is essential for midgut programmed cell death, providing the first in vivo evidence of caspase-independent programmed cell death that requires autophagy despite the presence of high caspase activity.
Collapse
Affiliation(s)
- Donna Denton
- Department of Haematology, Centre for Cancer Biology, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Sheng Z, Liu H, Wen D, He Q, Wang S, Shao W, Jiang RJ, An S, Sun Y, Bendena WG, Wang J, Gilbert LI, Wilson TG, Song Q, Li S. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development 2009; 136:2015-25. [DOI: 10.1242/dev.033712] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of the Drosophilaring gland (the JH source) resulted in JH deficiency, pupal lethality and precocious and enhanced programmed cell death (PCD) of the larval fat body. In the fat body of the JH-deficient animals, Dronc and Drice,two caspase genes that are crucial for PCD induced by the molting hormone 20-hydroxyecdysone (20E), were significantly upregulated. These results demonstrated that JH antagonizes 20E-induced PCD by restricting the mRNA levels of Dronc and Drice. The antagonizing effect of JH on 20E-induced PCD in the fat body was further confirmed in the JH-deficient animals by 20E treatment and RNA interference of the 20E receptor EcR. Moreover, MET and GCE, the bHLH-PAS transcription factors involved in JH action, were shown to induce PCD by upregulating Droncand Drice. In the Met- and gce-deficient animals, Dronc and Drice were downregulated, whereas in the Met-overexpression fat body, Dronc and Drice were significantly upregulated leading to precocious and enhanced PCD, and this upregulation could be suppressed by application of the JH agonist methoprene. For the first time, we demonstrate that JH counteracts MET and GCE to prevent caspase-dependent PCD in controlling fat body remodeling and larval-pupal metamorphosis in Drosophila.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Sheng
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanhan Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Di Wen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qianyu He
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Shao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rong-Jing Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiheng An
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211,USA
| | - Yaning Sun
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211,USA
| | - William G. Bendena
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6,Canada
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742,USA
| | - Lawrence I. Gilbert
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599,USA
| | - Thomas G. Wilson
- Department of Entomology, Ohio State University, Columbus, OH 43210,USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211,USA
| | - Sheng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
|
31
|
Chittaranjan S, McConechy M, Hou YCC, Freeman JD, DeVorkin L, Gorski SM. Steroid hormone control of cell death and cell survival: molecular insights using RNAi. PLoS Genet 2009; 5:e1000379. [PMID: 19214204 PMCID: PMC2632862 DOI: 10.1371/journal.pgen.1000379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022] Open
Abstract
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.
Collapse
Affiliation(s)
| | - Melissa McConechy
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ying-Chen Claire Hou
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - J. Douglas Freeman
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Lindsay DeVorkin
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
32
|
Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A. Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 2009; 3:78-90. [PMID: 19182545 DOI: 10.4161/fly.3.1.7800] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death, or apoptosis, is a highly conserved cellular process that has been intensively investigated in nematodes, flies and mammals. The genetic conservation, the low redundancy, the feasibility for high-throughput genetic screens and the identification of temporally and spatially regulated apoptotic responses make Drosophila melanogaster a great model for the study of apoptosis. Here, we review the key players of the cell death pathway in Drosophila and discuss their roles in apoptotic and non-apoptotic processes.
Collapse
Affiliation(s)
- Dongbin Xu
- The University of Texas MD Anderson Cancer Center, The Genes and Development Graduate Program, Department of Biochemistry and Molecular Biology, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The elimination of unwanted cells by programmed cell death is a common feature of animal development. Genetic studies in the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have not only revealed the molecular machineries that cause the programmed demise of specific cells, but have also allowed us to get a glimpse of the types of pathways that regulate these machineries during development. Rather than serving as a broad overview of programmed cell death during development, this review focuses on recent advances in our understanding of the regulation of specific programmed cell death events during nematode, fly, and mouse development. Recent studies have revealed that many of the regulatory pathways involved play additional important roles in development, which confirms that the programmed cell death fate is an integral aspect of animal development.
Collapse
Affiliation(s)
- Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
34
|
Kimura S, Sawatsubashi S, Ito S, Kouzmenko A, Suzuki E, Zhao Y, Yamagata K, Tanabe M, Ueda T, Fujiyama S, Murata T, Matsukawa H, Takeyama KI, Yaegashi N, Kato S. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor. Biochem Biophys Res Commun 2008; 371:889-93. [PMID: 18468516 DOI: 10.1016/j.bbrc.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.
Collapse
Affiliation(s)
- Shuhei Kimura
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Siaussat D, Bozzolan F, Porcheron P, Debernard S. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:529-539. [PMID: 18405831 DOI: 10.1016/j.ibmb.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 05/26/2023]
Abstract
The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.
Collapse
Affiliation(s)
- David Siaussat
- UMR 1272A Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | |
Collapse
|
36
|
Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C. Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci 2007; 362:1469-87. [PMID: 17569639 PMCID: PMC2440409 DOI: 10.1098/rstb.2007.2129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell (EC) apoptosis may play an important role in blood vessel development, homeostasis and remodelling. In support of this concept, EC apoptosis has been detected within remodelling vessels in vivo, and inactivation of EC apoptosis regulators has caused dramatic vascular phenotypes. EC apoptosis has also been associated with cardiovascular pathologies. Therefore, understanding the regulation of EC apoptosis, with the goal of intervening in this process, has become a current research focus. The protein-based signalling and cleavage cascades that regulate EC apoptosis are well known. However, the possibility that programmed transcriptome and glycome changes contribute to EC apoptosis has only recently been explored. Traditional bioinformatic techniques have allowed simultaneous study of thousands of molecular signals during the process of EC apoptosis. However, to progress further, we now need to understand the complex cause and effect relationships among these signals. In this article, we will first review current knowledge about the function and regulation of EC apoptosis including the roles of the proteome transcriptome and glycome. Then, we assess the potential for further bioinformatic analysis to advance our understanding of EC apoptosis, including the limitations of current technologies and the potential of emerging technologies such as gene regulatory networks.
Collapse
Affiliation(s)
- Muna Affara
- Department of Pathology, Cambridge UniversityTennis Court Road, Cambridge CB2 1QP, UK
| | - Benjamin Dunmore
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
| | - Christopher Savoie
- GNI Ltd. Kasumigaseki IHF Building 3-5-1Kasumigaseki, Chiyoda-ku, 100-0013 Toyko, Japan
| | - Seiya Imoto
- Human Genome Centre, Institute of Medical Science, University of Tokyo4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshinori Tamada
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
- Bioinformatics Centre, Institute for Chemical Research, Kyoto UniversityGokasho, Uji, Kyoto 611-0011, Japan
| | - Hiromitsu Araki
- GNI Ltd. Kasumigaseki IHF Building 3-5-1Kasumigaseki, Chiyoda-ku, 100-0013 Toyko, Japan
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
| | - Satoru Miyano
- Human Genome Centre, Institute of Medical Science, University of Tokyo4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Cristin Print
- Department of Molecular Medicine and Pathology, University of Auckland85 Park Road, Private Bag 92019, Auckland, New Zealand
- Author for correspondence ()
| |
Collapse
|
37
|
Domingos PM, Steller H. Pathways regulating apoptosis during patterning and development. Curr Opin Genet Dev 2007; 17:294-9. [PMID: 17629474 PMCID: PMC1989756 DOI: 10.1016/j.gde.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 12/19/2022]
Abstract
The patterning and development of multicellular organisms require a precisely controlled balance between cell proliferation, differentiation and death. The regulation of apoptosis is an important aspect to achieve this balance, by eliminating unnecessary or mis-specified cells which, otherwise, may have harmful effects on the whole organism. Apoptosis is also important for the morphogenetic processes that occur during development and that lead to the sculpting of organs and other body structures. Here, we review recent progress in understanding how apoptosis is regulated during development, focusing on studies using Drosophila or Caenorhabditis elegans as model organisms.
Collapse
Affiliation(s)
- Pedro M Domingos
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Yang D, Chai L, Wang J, Zhao X. Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 2007; 35:405-12. [PMID: 17541728 DOI: 10.1007/s11033-007-9100-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Members of the caspase family play a central and evolutionary role in programmed cell death (PCD), which removes unwanted, damaged and dangerous cells during development to maintain homeostasis. In this paper, we describe the cloning and characterization of a caspase from the cotton bollworm, Helicoverpa armigera, named Hearm caspase-1. The 1,350 bp full-length cDNA contains an 885 bp open reading frame (ORF) that encodes a Hearm caspase-1 proenzyme of 294 amino acids. The deduced protein is highly homologous to Spodoptera frugiperda Sf caspase-1 and Drosophila melanogaster ICE and has the highly conserved pentapeptide QACQG, the recognized catalytic site of caspases, suggesting that it is an effector caspase of the cotton bollworm. Northern blot and RT-PCR analyses demonstrate that Hearm caspase-1 is expressed in embryos and the fat body, midgut and haemocytes of feeding and wandering larvae. Expression of Hearm caspase-1 in the haemocytes appears to be correlated with the pulse of ecdysone, and it is up-regulated by ecdysone agonist RH-2485, implying that Hearm caspase-1 activation is regulated by ecdysone.
Collapse
Affiliation(s)
- Dantong Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
39
|
Goyal G, Fell B, Sarin A, Youle RJ, Sriram V. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 2007; 12:807-16. [PMID: 17488630 PMCID: PMC1885957 DOI: 10.1016/j.devcel.2007.02.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/24/2006] [Accepted: 02/05/2007] [Indexed: 01/11/2023]
Abstract
The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila.
Collapse
Affiliation(s)
- Gaurav Goyal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| | - Brennan Fell
- Biochemistry Section, Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apurva Sarin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - V. Sriram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
40
|
Primrose DA, Chaudhry S, Johnson AGD, Hrdlicka A, Schindler A, Tran D, Foley E. Interactions of DNR1 with the apoptotic machinery of Drosophila melanogaster. J Cell Sci 2007; 120:1189-99. [PMID: 17341581 DOI: 10.1242/jcs.03417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Caspases are crucial activators of apoptosis and NF-kappaB signaling in vertebrates and invertebrates. In Drosophila, the caspase-9 counterpart Dronc is essential for most apoptotic death, whereas the caspase-8 homolog Dredd activates NF-kappaB signaling in response to gram-negative bacterial infection. The mechanics of caspase regulation are conserved and include the activities of a family of inhibitor of apoptosis (IAP) proteins. The RING-domain-bearing protein Defense repressor 1 (Dnr1), blocks ectopic Dredd-mediated induction of an NF-kappaB reporter in the Drosophila S2 cell line. In this study, we present novel data indicating that Dnr1 impacts on Dronc-dependent regulation of the apoptotic program. We show that depletion of Dnr1 results in elevated Dronc protein levels, which translates to increased caspase activation and activity upon induction of apoptosis. Conversely, we demonstrate that overexpression of Dnr1 blocks apoptotic caspase activity and prevents induction of apoptosis in tissue culture assays. Furthermore, we show that Dnr1 overexpression significantly reduces Dronc protein levels and identify the domains of Dnr1 necessary for these effects. From these data, we propose that Dnr1 inhibits initiator caspases in S2 cells.
Collapse
Affiliation(s)
- David A Primrose
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2S2, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Maurer CW, Chiorazzi M, Shaham S. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 2007; 134:1357-68. [PMID: 17329362 DOI: 10.1242/dev.02818] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temporal control of programmed cell death is necessary to ensure that cells die at only the right time during animal development. How such temporal regulation is achieved remains poorly understood. In some Caenorhabditis elegans somatic cells, transcription of the egl-1/BH3-only gene promotes cell-specific death. The EGL-1 protein inhibits the CED-9/Bcl-2 protein, resulting in the release of the caspase activator CED-4/Apaf-1. Subsequent activation of the CED-3 caspase by CED-4 leads to cell death. Despite the important role of egl-1 transcription in promoting CED-3 activity in cells destined to die, it remains unclear whether the temporal control of cell death is mediated by egl-1 expression. Here, we show that egl-1 and ced-9 play only minor roles in the death of the C. elegans tail-spike cell, demonstrating that temporal control of tail-spike cell death can be achieved in the absence of egl-1. We go on to show that the timing of the onset of tail-spike cell death is controlled by transcriptional induction of the ced-3 caspase. We characterized the developmental expression pattern of ced-3, and show that, in the tail-spike cell, ced-3 expression is induced shortly before the cell dies, and this induction is sufficient to promote the demise of the cell. Both ced-3 expression and cell death are dependent on the transcription factor PAL-1, the C. elegans homolog of the mammalian tumor suppressor gene Cdx2. PAL-1 can bind to the ced-3 promoter sites that are crucial for tail-spike cell death, suggesting that it promotes cell death by directly activating ced-3 transcription. Our results highlight a role that has not been described previously for the transcriptional regulation of caspases in controlling the timing of cell death onset during animal development.
Collapse
Affiliation(s)
- Carine W Maurer
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Iga M, Iwami M, Sakurai S. Nongenomic action of an insect steroid hormone in steroid-induced programmed cell death. Mol Cell Endocrinol 2007; 263:18-28. [PMID: 17045392 DOI: 10.1016/j.mce.2006.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/08/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
Programmed cell death (PCD) of the silkworm silk glands is triggered by the insect steroid hormone, 20-hydroxyecdysone (20E), and proceeds sequentially through cell shrinkage, nuclear condensation, DNA fragmentation, nuclear fragmentation and apoptotic body formation. A protein synthesis inhibitor, cycloheximide (CHX, 2 mM) induced a cell death that exhibited only nuclear and DNA fragmentation. A concentration of 0.2 mM CHX was ineffective at inducing the cell death when added alone, but in the presence of 20E, a cell death similar to that induced by 2 mM CHX was resulted with accompanying nuclear condensation. Since 2 and 0.2 mM CHX inhibited protein synthesis equally, the DNA and nuclear fragmentation appear to be mediated by a nongenomic action of 20E. In addition, we show a possible involvement of Ca2+-PKC-caspase-3 like protease pathway in the nongenomic action. The data suggest that 20E-induced PCD is accomplished through the integration of genomic and nongenomic actions.
Collapse
Affiliation(s)
- Masatoshi Iga
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
43
|
Parthasarathy R, Palli SR. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 2007; 124:23-34. [PMID: 17107775 DOI: 10.1016/j.mod.2006.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/12/2006] [Accepted: 09/16/2006] [Indexed: 11/22/2022]
Abstract
Midgut tissue undergoes remodeling during metamorphosis in insects belonging to orders Lepidoptera and Diptera. We investigated the developmental and hormonal regulation of these remodeling events in lepidopteran insect, Heliothis virescens. In H. virescens, programmed cell death (PCD) of larval midgut cells as well as proliferation and differentiation of imaginal cells began at 108 h after ecdysis to the final larval instar (AEFL) and proceeded through the pupal stages. Expression patterns of pro- cell death factors (caspase-1 and ICE) and anti-cell death factor, Inhibitor of Apoptosis (IAP) were studied in midguts during last larval and pupal stages. IAP, Caspase-1 and ICE mRNAs showed peaks at 48 h AEFL, 96 h AEFL and in newly formed pupae, respectively. Immunohistochemical analysis substantiated high caspase-3 activity in midgut at 108 h AEFL. Application of methoprene, a juvenile hormone analog (JHA) blocked PCD by maintaining high levels of IAP, downregulating the expression of caspase-1, ICE and inhibiting an increase in caspase-3 protein levels in midgut tissue. Also, the differentiation of imaginal cells was impaired by methoprene treatment. These studies demonstrate that presence of JHA during final instar larvae affects both midgut remodeling and larval-pupal metamorphosis leading to larval/pupal deformities in lepidopteran insects, a mechanism that is different from that in mosquito, Ae. aegypti where JHA uncouples midgut remodeling from metamorphosis.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
44
|
Abstract
The first proapoptotic caspase, CED-3, was cloned from Caenorhabditis elegans in 1993 and shown to be essential for the developmental death of all somatic cells. Following the discovery of CED-3, caspases have been cloned from several vertebrate and invertebrate species. As reviewed in other articles in this issue of Cell Death and Differentiation, many caspases function in nonapoptotic pathways. However, as is clear from the worm studies, the evolutionarily conserved role of caspases is to execute programmed cell death. In this article, I will specifically focus on caspases that function primarily in cell death execution. In particular, the physiological function of caspases in apoptosis is discussed using examples from the worm, fly and mammals.
Collapse
Affiliation(s)
- S Kumar
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, SA, Australia.
| |
Collapse
|
45
|
Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 2006; 123:530-47. [PMID: 16829058 DOI: 10.1016/j.mod.2006.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/17/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.
Collapse
Affiliation(s)
- Yu Wu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
46
|
Yang XM, Hou LJ, Dong DJ, Shao HL, Wang JX, Zhao XF. Cathepsin B-like proteinase is involved in the decomposition of the adult fat body of Helicoverpa armigera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:1-10. [PMID: 16612807 DOI: 10.1002/arch.20115] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cathepsin B-like proteinase (HCB, EC 3.4.22.1) is expressed in Helicoverpa armigera oocytes and adult fat bodies. Previous work has revealed that HCB plays a key role in the degradation of yolk proteins during embryogenesis. This study investigated the function and regulatory activation of HCB in adult fat bodies during aging and oogenesis. The HCB transcript was detected at all stages from larval to adult fat bodies with Northern blot analysis. Pro-HCB was also detected in fat bodies at these stages with an immunoblot assay using a monoclonal antibody against HCB. However, mature HCB and its activity were only detected in fat bodies of pre-adults and adults. This evidence suggested that HCB is regulated post-translationally by activation of the pro-enzyme during the pupa-adult metamorphosis. The activation of HCB was coupled with the expression of hormone receptor 3 (HHR3), and was up-regulated by the ecdysteroid agonist, RH-2485, suggesting that HCB activation is related to the ecdysone regulatory system. The decomposition of the adult fat bodies during aging and oogenesis was found to occur via programmed cell death, in which HCB took part.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
47
|
Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 2006; 13:1697-706. [PMID: 16645642 PMCID: PMC2519037 DOI: 10.1038/sj.cdd.4401920] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caspases are essential components of the apoptotic machinery in both vertebrates and invertebrates. Here, we report the isolation of a mutant allele of the Drosophila effector caspase drICE as a strong suppressor of hid- (head involution defective-) induced apoptosis. This mutant was used to determine the apoptotic role of drICE. Our data are consistent with an important function of drICE for developmental and irradiation-induced cell death. Epistatic analysis suggests that drICE acts genetically downstream of Drosophila inhibitor of apoptosis protein 1 (Diap1). However, although cell death is significantly reduced in drICE mutants in all assays, it is not completely blocked. A double-mutant analysis between drICE and death caspase-1 (dcp-1), another effector caspase, reveals that some cells (type I) strictly require drICE for apoptosis, whereas other cells (type II) require either drICE or dcp-1. Thus, these data demonstrate a barely appreciated complexity in the apoptotic pathway, and are consistent with current models about effector caspase regulation in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- D Xu
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1000, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D, Zachariou A, Pichaud F, Ueda R, Meier P. Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 2006; 13:1663-74. [PMID: 16485033 DOI: 10.1038/sj.cdd.4401868] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Despite the identification of numerous key players of the cell death machinery, little is known about their physiological role. Using RNA interference (RNAi) in vivo, we have studied the requirement of all Drosophila caspases and caspase-adaptors in different paradigms of apoptosis. Of the seven caspases, Dronc, drICE, Strica and Decay are rate limiting for apoptosis. Surprisingly, Hid-mediated apoptosis requires a broader range of caspases than apoptosis initiated by loss of the caspase inhibitor DIAP1, suggesting that Hid causes apoptosis not only by antagonizing DIAP1 but also by activating DIAP1-independent caspase cascades. While Hid killing requires Strica, Decay, Dronc/Dark and drICE, apoptosis triggered by DIAP1 depletion merely relied upon Dronc/Dark and drICE. Furthermore, we found that overexpression of DIAP2 can rescue diap1-RNAi-mediated apoptosis, suggesting that DIAP2 regulates caspases directly. Consistently, we show that DIAP2 binds active drICE. Since DIAP2 associates with Hid, we propose a model whereby Hid co-ordinately targets both DIAP1 and DIAP2 to unleash drICE.
Collapse
Affiliation(s)
- F Leulier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Waldhuber M, Emoto K, Petritsch C. The Drosophila caspase DRONC is required for metamorphosis and cell death in response to irradiation and developmental signals. Mech Dev 2005; 122:914-27. [PMID: 15922568 DOI: 10.1016/j.mod.2005.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 03/22/2005] [Accepted: 04/06/2005] [Indexed: 12/28/2022]
Abstract
Cell death is essential for eliminating excess cells during development as well as removing damaged cells. While multiple conserved apoptosis pathways involving different cascades of caspases, which are cysteine proteases, have been identified, their regulation in the context of a developing organism is not very well understood. Expression of the Drosophila caspase-9 homolog, DRONC, can be induced by ecdysone, a steroid hormone, which induces metamorphosis. To elucidate the functional role of DRONC during metamorphosis and for cell death during development we have generated and analyzed two loss-of-function alleles of DRONC. We report that DRONC is required for developmentally induced neuroblast cell death and apoptosis in response to X irradiation. DRONC mutants show reduced pupariation even in the presence of high levels of ecdysone and impaired cell death of larval midgut. The levels of ecdysone-inducible transcripts such as E75A and Reaper (Rpr) are normal in the absence of DRONC, suggesting that DRONC acts downstream of these genes. In addition, Reaper and Grim, but not Hid induced apoptosis is sensitive to a reduction of DRONC levels. Our study places DRONC at a central point of convergence for multiple cell death pathways and for the ecdysone pathway regulating metamorphosis.
Collapse
Affiliation(s)
- Markus Waldhuber
- Laboratory for Molecular Biology, Gene Center, Ludwig-Maximilian-University Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | | | | |
Collapse
|