1
|
Nehus E, Mitsnefes M. Kidney consequences of obesity. Pediatr Nephrol 2025; 40:1879-1893. [PMID: 39680134 DOI: 10.1007/s00467-024-06623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Herein, we review the devastating consequences of the worldwide obesity epidemic on kidney health and outcomes. We submit that the obesity epidemic is the most pressing public health crisis facing the nephrology community today. A historical approach has been undertaken, wherein major breakthroughs in the recognition and understanding of obesity-related kidney disease (ORKD) are highlighted. We begin with a description of the worldwide obesity epidemic followed by an account of the discovery and characterization of ORKD. A detailed summary of the pathophysiology of ORKD disease is presented, wherein we set forth the following two propositions: first, ORKD is due to a maladaptive response to caloric surplus; and second, this maladaptive response causes kidney damage via hemodynamic (hyperfiltration), hormonal (adipokine dysregulation), and lipotoxic pathways. Each of these pathways is described, with particular emphasis on the relatively recent discovery that the final stage of cellular injury in ORKD is mitochondrial oxidative damage. The prevention and treatment of ORKD are then discussed, including environmental, behavioral, pharmacologic, and surgical options. Finally, we conclude with suggestions for future research to improve early recognition and treatment of ORKD.
Collapse
Affiliation(s)
- Edward Nehus
- Department of Pediatrics, West Virginia University School of Medicine Charleston Campus, Charleston, WV, 25314, USA.
- Institute for Academic Medicine, Charleston Area Medical Center, Charleston, WV, USA.
| | - Mark Mitsnefes
- Division of Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Lois Q Balugo JL, Samuels JD, Milstein JL, Jansen MA, Harris TE, Culver SA. Quantifying renal lipid accumulation in obese murine models using Magnetic Resonance Imaging (MRI). Biochem Biophys Res Commun 2025; 762:151765. [PMID: 40209503 DOI: 10.1016/j.bbrc.2025.151765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Renal cortical lipid content is increased in obesity and contributes to obesity-related kidney dysfunction. Studying this phenomenon requires reliable tools to quantitate renal cortical lipid in preclinical models. However, most current preclinical methods require euthanizing the model. MRI has been used to measure lipid content in other organ systems but, to our knowledge, has not been employed in quantifying kidney lipid in mice. Eleven-week old male C57BL/6 mice were fed either standard chow (ND) (12 % fat) or high fat diet (HFD) (45 % fat) for 12 weeks. At the end of this period, a 9.4 T Bruker MRI was utilized to perform fat-water separation imaging based on the Dixon method. These images were utilized to calculate a proton-density fat fraction for regions of interest within the renal cortex. For validation, frozen kidney sections underwent immunofluorescent LipidSpot™ staining for quantitation of lipid droplet area. After 12 weeks on diet, the average body weight of HFD fed mice was 34.63g compared to 27.84g in ND controls (p < 0.001). Consistent with prior studies, MRI demonstrated increased hepatic fat content of 13.34 % in HFD fed mice compared to 8.3 % in ND controls (p < 0.05). Renal cortical lipid measured by MRI averaged 7.35 % in HFD fed mice compared to 4.75 % in ND controls (p < 0.05). On histologic analysis, HFD fed mice had a ratio of lipid droplet area to DAPI of 0.866 compared to 0.221 in ND fed mice (p < 0.05). These results demonstrate that MRI can be used effectively to measure changes in renal cortical lipid content in mice.
Collapse
Affiliation(s)
- Jamie Lynne Lois Q Balugo
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, 450 Ray C. Hunt Dr, Charlottesville, VA, 22903, USA.
| | - Joshua D Samuels
- Department of Neuroscience, University of Virginia Health System, 409 Lane Rd, Charlottesville, VA, 22908, USA.
| | - Joshua L Milstein
- Department of Neuroscience, University of Virginia Health System, 409 Lane Rd, Charlottesville, VA, 22908, USA.
| | - Maurits A Jansen
- Molecular Imaging Core and Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C. Hunt Dr, Charlottesville, VA, 22903, USA.
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, 1340 Jefferson Park Ave, Charlottesville, VA, 22903, USA.
| | - Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, 450 Ray C. Hunt Dr, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Ihara J, Huang Y, Takami Y, Nozato Y, Takahashi T, Kakino A, Wang C, Wang Z, Guo Y, Liu W, Yin N, Ohara R, Fujimoto T, Yoshida S, Hongyo K, Koriyama H, Akasaka H, Takeshita H, Sakai S, Inoue K, Isaka Y, Rakugi H, Sawamura T, Yamamoto K. Oxidized low-density lipoprotein potentiates angiotensin II-induced Gq activation through the AT1-LOX1 receptor complex. eLife 2025; 13:RP98766. [PMID: 40131218 PMCID: PMC11936421 DOI: 10.7554/elife.98766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Chronic kidney disease (CKD) and atherosclerotic heart disease, frequently associated with dyslipidemia and hypertension, represent significant health concerns. We investigated the interplay among these conditions, focusing on the role of oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) in renal injury via G protein αq subunit (Gq) signaling. We hypothesized that oxLDL enhances Ang II-induced Gq signaling via the AT1 (Ang II type 1 receptor)-LOX1 (lectin-like oxLDL receptor) complex. Based on CHO and renal cell model experiments, oxLDL alone did not activate Gq signaling. However, when combined with Ang II, it significantly potentiated Gq-mediated inositol phosphate 1 production and calcium influx in cells expressing both LOX-1 and AT1 but not in AT1-expressing cells. This suggests a critical synergistic interaction between oxLDL and Ang II in the AT1-LOX1 complex. Conformational studies using AT1 biosensors have indicated a unique receptor conformational change due to the oxLDL-Ang II combination. In vivo, wild-type mice fed a high-fat diet with Ang II infusion presented exacerbated renal dysfunction, whereas LOX-1 knockout mice did not, underscoring the pathophysiological relevance of the AT1-LOX1 interaction in renal damage. These findings highlight a novel mechanism of renal dysfunction in CKD driven by dyslipidemia and hypertension and suggest the therapeutic potential of AT1-LOX1 receptor complex in patients with these comorbidities.
Collapse
MESH Headings
- Animals
- Scavenger Receptors, Class E/metabolism
- Scavenger Receptors, Class E/genetics
- Lipoproteins, LDL/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Angiotensin II/metabolism
- Mice
- Humans
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- Cricetulus
- CHO Cells
- Signal Transduction
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Jittoku Ihara
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
- Department of Medicine, University of TorontoTorontoCanada
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University Graduate School of MedicineMatsumotoJapan
| | - Cheng Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Ziwei Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yu Guo
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Weidong Liu
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Nanxiang Yin
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Ryoichi Ohara
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiroshi Koriyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University Graduate School of MedicineMatsumotoJapan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
4
|
Yang G, Ma C, Chen Y, Xiang J, Li L, Li Y, Kang L, Liang Z, Yang S. HSPA8 dampens SCAP/INSIG split and SREBP activation by reducing PKR-mediated INSIG phosphorylation. Cell Rep 2025; 44:115339. [PMID: 39977267 DOI: 10.1016/j.celrep.2025.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/29/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Lipid accumulation in renal tubules is a major determinant of diabetic kidney disease (DKD), and activation of SREBPs plays a central role in this process. Our study aims to explore whether HSPA8, a molecular chaperone, is the master regulator of INSIG/SREBPs function in DKD. Here, we show that tubular epithelial cell (TEC)-specific knockout of HSPA8 upregulates the phosphorylation of INSIG1 and INSIG2, which disrupts the interaction between INSIG proteins and SCAP, leading to SREBP activation. TEC-specific overexpression of HSPA8 restrains these changes. INSIG1/2 can be phosphorylated by protein kinase R (PKR), while HSPA8 recognizes PKR and recruits the E3 ubiquitin ligase to promote PKR ubiquitination and degradation. Under temporary hyperglycemic stimulation, SREBP1 transcriptionally activates HSPA8 expression. Conversely, persistent hyperglycemia reduces HSPA8 levels via promoting NF-κB-mediated transcriptional inhibition of HSPA8. Collectively, these findings indicate that the molecular chaperone HSPA8 serves as a negative feedback regulator of SREBPs, lipogenesis, and DKD development.
Collapse
Affiliation(s)
- Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Lixing Li
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Yanchun Li
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
| | - Zhen Liang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
| | - Shu Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
| |
Collapse
|
5
|
Li WR, Zhang C, Wang J. PPARs: modulating lipotoxicity and thus inhibiting fibrosis. Hormones (Athens) 2025; 24:85-97. [PMID: 39500811 DOI: 10.1007/s42000-024-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 03/18/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family of ligand-activated receptors and are known for their roles as key factors in the regulation of lipid metabolism. In the more than three decades since their discovery, most reports on PPARs have focused on their roles in lipid metabolism, and a portion of the new research has also focused on the relationship between PPARs and fibrosis. Interestingly, lipid metabolism disorders and fibrosis are also inextricably linked. This implies that PPARs, lipid metabolism and fibrosis are interrelated. On this basis, we have summarized the molecular mechanisms of PPARs regulating fibrosis through lipid metabolism and PPARγ directly regulating fibrosis, and pointed out the contradictions and enigmas that need to be further explored in the processes of PPARs regulating lipid metabolism and fibrosis. The aim of the present review is to provide new ideas for PPARs for the treatment of lipid metabolism disorders and fibrosis.
Collapse
Affiliation(s)
- Wen-Rui Li
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jing Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Zheng Z, Wang Y, Xie J, Chen Z, Jiang B, Xu Y. The association between serum lipids at diagnosis and renal outcome in microscopic polyangiitis patients. PeerJ 2025; 13:e18839. [PMID: 39950045 PMCID: PMC11823655 DOI: 10.7717/peerj.18839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/18/2024] [Indexed: 02/16/2025] Open
Abstract
Objectives Microscopic polyangiitis (MPA) is a subgroup of ANCA-associated vasculitis (AAV), which is characterized by vascular endothelial cell damage caused by abnormally activated neutrophils. Dyslipidemia is associated with vascular endothelial cell injury, and the relationship between blood lipid levels and renal prognosis in MPA patients is not clear. We aim to investigate the correlation between blood lipid levels at diagnosis and renal prognosis in MPA patients. Methods Firstly, we retrospectively included 110 patients diagnosed with MPA and the primary endpoint was the occurrence of end stage renal disease (ESRD). The association between blood lipids at diagnosis and renal outcome was evaluated with Cox regression analysis and survival analysis. Secondly, we explored the potential underlying mechanism of poor renal prognosis in patients with high triglycerides (TG) levels at diagnosis using data independent acquisition (DIA) quantitative proteomics. Results During a median follow-up period of 23 months, 44 out of 110 patients (40%) developed ESRD. High serum TG at diagnosis was associated with ESRD development after adjusting for several confounding factors including age, gender, body mass index (BMI), hypertension, diabetes mellitus, estimated glomerular filtration rate (eGFR) and Birmingham Vasculitis Activity Score (BVAS). Serum very low-density lipoprotein (VLDL) demonstrated a marginal trend towards association with ESRD development. MPA patients with TG >1.45 mmol/L or VLDL > 0.66 mmol/L had significantly higher risk of ESRD development than those with TG ≤ 1.45 mmol/L or VLDL ≤ 0.66 mmol/L. DIA quantitative proteomics analysis suggested that patients with elevated TG levels and severe MPA had an upregulation of profibrotic pathways, inflammatory signaling, and complement and coagulation cascades, in contrast to those with lower TG levels and milder disease severity. Conclusions In MPA patients, high TG or VLDL at diagnosis is associated with an increased risk of ESRD development. The potential mechanisms may be associated with the upregulation of profibrotic and inflammatory signaling pathways, and the activation of complement and coagulation cascades.
Collapse
Affiliation(s)
- Zigui Zheng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Bingjing Jiang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Lascelles BDX, Ponnala R, Kamerling SG, Williams T. Proteomic profiling of serum in cats with naturally occurring degenerative joint disease and co-morbid conditions. FRONTIERS IN PAIN RESEARCH 2025; 6:1501932. [PMID: 39968160 PMCID: PMC11832531 DOI: 10.3389/fpain.2025.1501932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Degenerative joint disease (DJD) occurs very commonly in cats and can be associated with pain. Almost 70% of cats with DJD-associated pain suffer the co-morbidity of chronic kidney disease (CKD). There are currently very limited treatment or management options. A greater understanding of the systems biology of DJD, DJD-associated pain, and CKD may contribute to identifying disease specific biomarkers and relevant targets for the development of therapeutics for the control of these conditions in cats, and help inform human pain therapeutic development. Methods Using mass spectrometry-based proteomic profiling of the serum of 200 highly phenotyped cats with varying burdens of DJD, pain, and CKD, we identified significant individual proteins and pathways. Results Functional pathway analysis, based on differentially abundant proteins across individual disease states (DJD, pain, CKD), identified pathways playing a role in DJD and DJD-associated pain including acute phase response signaling, LXR/RXR and FXR/RXR activation and the complement system. With the added co-morbidity of CKD, similar pathways were identified, with the addition of IL-12 signaling and production in macrophages. Discussion We identified differentially abundant proteins associated with DJD, pain and CKD and future work should evaluate these proteins as potential biomarkers of disease (individually or as clusters). Further, these data could be leveraged to identify novel therapeutic targets to address the gap in our ability to manage DJD, pain, and CKD in cats. Given that our work was in cats with naturally occurring DJD, these results may have translational applicability to human health.
Collapse
Affiliation(s)
- B. Duncan X. Lascelles
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, United States
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Rakesh Ponnala
- Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| | - Steven G. Kamerling
- Veterinary Pharmacology Consultant, Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| |
Collapse
|
8
|
Pati P, De Miguel C, Paul JR, Zhang D, Colson J, Allan JM, Edell CJ, Rhoads MK, Dunaway LS, Biswal SN, Zhong Y, Sedaka R, Millender-Swain T, Bailey SM, Gamble KL, Pollock DM, Pollock JS. Time-restricted feeding reduces cardiovascular disease risk in obese mice. JCI Insight 2025; 10:e160257. [PMID: 39812779 PMCID: PMC11949066 DOI: 10.1172/jci.insight.160257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Disrupted feeding and fasting cycles as well as chronic high-fat diet-induced (HFD-induced) obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether 2 weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity. ND or HFD mice were continued on ad libitum diet or subjected to TRF (limiting food availability to 12 hours only during the dark phase) during the final 2 weeks of the feeding protocol. TRF improved whole-body metabolic diurnal rhythms without a change in body weight. HFD mice showed reduced blood pressure dipping compared with ND, which was restored by TRF. Further, TRF reduced aortic wall thickness, decreased aortic stiffness, as well as increased kidney tubular brush border integrity, decreased renal medullary fibrosis, and reduced renal medullary T cell inflammation in HFD mice. These findings indicate that TRF may be an effective intervention for improving vascular and kidney health in a model of established diet-induced obesity.
Collapse
Affiliation(s)
- Paramita Pati
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jodi R. Paul
- Division of Behavioral Neurobiology, Department of Psychiatry; and
| | - Dingguo Zhang
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jackson Colson
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - John Miller Allan
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Claudia J. Edell
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Megan K. Rhoads
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Luke S. Dunaway
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Sara N. Biswal
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Yihan Zhong
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Randee Sedaka
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Telisha Millender-Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shannon M. Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L. Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry; and
| | - David M. Pollock
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| |
Collapse
|
9
|
Zhang Y, Wang F, Zhang C, Yao F, Zhang B, Zhang Y, Sun X. FGF21 ameliorates diabetic nephropathy through CDK1-dependently regulating the cell cycle. Front Pharmacol 2025; 15:1500458. [PMID: 39830349 PMCID: PMC11739279 DOI: 10.3389/fphar.2024.1500458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent global renal illness and one of the main causes of end-stage renal disease (ESRD). FGF21 has been shown to ameliorate diabetic nephropathy, and in addition FGF-21-treated mice impeded mitogenicity, whereas it is unclear whether FGF21 can influence DN progression by regulating the cell cycle in diabetic nephropathy. Methods In order to create a diabetic model, STZ injections were given to C57BL/6J mice for this investigation. Then, FGF21 was administered, and renal tissue examination and pathological observation were combined with an assessment of glomerular injury, inflammation, oxidative stress, and the fibrinogen system in mice following the administration of the intervention. Furthermore, we used db/db mice and FGF21 direct therapy for 8 weeks to investigate changes in fasting glucose and creatinine expression as well as pathological changes in glomeruli glycogen deposition, fibrosis, and nephrin expression. To investigate the mechanism of action of FGF21 in the treatment of glycolytic kidney, transcriptome sequencing of renal tissues and KEGG pathway enrichment analysis of differential genes were performed. Results The study's findings demonstrated that FGF21 intervention increased clotting time, decreased oxidative stress and inflammation, and avoided thrombosis in addition to considerably improving glomerular filtration damage. After 8 weeks of FGF21 treatment, glomerular glycogen deposition, fibrosis, and renin expression decreased in db/db mice. Moreover, there was a notable reduction of creatinine and fasting blood glucose levels. Additionally, the CDK1 gene, a key player in controlling the cell cycle, was discovered through examination of the transcriptome sequencing data. It was also shown that FGF21 dramatically reduces the expression of CDK1, which may help diabetic nephropathy by averting mitotic catastrophe and changing the renal cell cycle. Conclusion In short, FGF21 improved the development of diabetic nephropathy in diabetic nephropathy-affected animals by reducing glomerular filtration damage, inflammation, and oxidative stress, inhibiting the formation of thrombus, and controlling the cell cycle through CDK1.
Collapse
Affiliation(s)
- Yudie Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chongyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Pereira PR, Almeida M, Braga P, Pereira J, Pereira S, Nora M, Guimarães M, Malheiro J, Martins LS, Monteiro MP, Rodrigues A. Obesity-Related Kidney Disease in Bariatric Surgery Candidates. Obes Surg 2025; 35:181-188. [PMID: 39636519 PMCID: PMC11717886 DOI: 10.1007/s11695-024-07602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Obesity has a negative impact in kidney health. However, the hallmarks of kidney dysfunction in bariatric surgery candidates are poorly characterized. To address this knowledge gap, we used a propensity score-matched analysis to compare kidney lesion biomarkers in bariatric surgery candidates and living kidney donors. METHODS Bariatric surgery candidates attending a single center for obesity treatment were pair-matched for sex and age to potential living kidney transplant donors (PLKD) using a 1:1 nearest-neighbor approach (N = 400, n = 200/group). A 24-h urine collection was used to analyze proteinuria and creatinine clearance. RESULTS Patients with obesity (PWO) had higher creatinine clearance when compared to PLKD (143.35 ± 45.50 mL/min vs 133.99 ± 39.06 mL/min, p = 0.03), which was underestimated when correction for body surface area (BSA) was used (creatinine clearance corrected for BSA of 115.25 ± 33.63 mL/min/1.73 m2 in PWO vs 135.47 ± 35.56 mL/min/1.73 m2 in PLKD). Proteinuria was also higher in PWO compared to PLKD (139.82 ± 353.258 mg/day vs 136.35 ± 62.24 mg/day, p < 0.0001). Regression analysis showed that creatinine clearance was strongly correlated with proteinuria in PWO (HR 1.522, p = 0.005), but it was less evident in PLKD (HR 0.376, p = 0.001). CONCLUSION Hyperfiltration and disproportionate proteinuria are frequent in patients with obesity. Since hyperfiltration can be underestimated by adjusting creatinine clearance for BSA, this should not be used when evaluating kidney function in bariatric surgery candidates.
Collapse
Affiliation(s)
- Pedro Reis Pereira
- Department of Nephrology, Unidade Local de Saúde de Santo António, (ULS Santo António), Porto, Portugal.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Manuela Almeida
- Department of Nephrology, Unidade Local de Saúde de Santo António, (ULS Santo António), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Patrícia Braga
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - João Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Sofia Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Mário Nora
- General Surgery Department and CRI for the surgical Treatment of Obesity and Metabolic Diseases, ULS Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Marta Guimarães
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- General Surgery Department and CRI for the surgical Treatment of Obesity and Metabolic Diseases, ULS Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Jorge Malheiro
- Department of Nephrology, Unidade Local de Saúde de Santo António, (ULS Santo António), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - La Salete Martins
- Department of Nephrology, Unidade Local de Saúde de Santo António, (ULS Santo António), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Anabela Rodrigues
- Department of Nephrology, Unidade Local de Saúde de Santo António, (ULS Santo António), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
11
|
Jang KW, Hur J, Lee DW, Kim SR. Metabolic Syndrome, Kidney-Related Adiposity, and Kidney Microcirculation: Unraveling the Damage. Biomedicines 2024; 12:2706. [PMID: 39767613 PMCID: PMC11673429 DOI: 10.3390/biomedicines12122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated risk factors, including insulin resistance, hypertension, dyslipidemia, and visceral adiposity, all of which contribute to kidney microvascular injury and the progression of chronic kidney disease (CKD). However, the specific impact of each component of MetS on kidney microcirculation remains unclear. Given the increasing prevalence of obesity, understanding how visceral fat-particularly fat surrounding the kidneys-affects kidney microcirculation is critical. This review examines the consequences of visceral obesity and other components of MetS on renal microcirculation. These kidney-related fat deposits can contribute to the mechanical compression of renal vasculature, promote inflammation and oxidative stress, and induce endothelial dysfunction, all of which accelerate kidney damage. Each factor of MetS initiates a series of hemodynamic and metabolic disturbances that impair kidney microcirculation, leading to vascular remodeling and microvascular rarefaction. The review concludes by discussing therapeutic strategies targeting the individual components of MetS, which have shown promise in alleviating inflammation and oxidative stress. Integrated approaches that address both of the components of MetS and kidney-related adiposity may improve renal outcomes and slow the progression of CKD.
Collapse
Affiliation(s)
- Kyu Won Jang
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
| | - Jin Hur
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dong Won Lee
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seo Rin Kim
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
12
|
Ozbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, Covic A, Kanbay M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1668. [PMID: 39459455 PMCID: PMC11509396 DOI: 10.3390/medicina60101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Obesity poses a significant and growing risk factor for chronic kidney disease (CKD), requiring comprehensive evaluation and management strategies. This review explores the intricate relationship between obesity and CKD, emphasizing the diverse phenotypes of obesity, including sarcopenic obesity and metabolically healthy versus unhealthy obesity, and their differential impact on kidney function. We discuss the epidemiological evidence linking elevated body mass index (BMI) with CKD risk while also addressing the paradoxical survival benefits observed in obese CKD patients. Various measures of obesity, such as BMI, waist circumference, and visceral fat assessment, are evaluated in the context of CKD progression and outcomes. Mechanistic insights into how obesity promotes renal dysfunction through lipid metabolism, inflammation, and altered renal hemodynamics are elucidated, underscoring the role of adipokines and the renin-angiotensin-aldosterone system. Furthermore, the review examines current strategies for assessing kidney function in obese individuals, including the strengths and limitations of filtration markers and predictive equations. The management of obesity and associated comorbidities like arterial hypertension, type 2 diabetes mellitus, and non-alcoholic fatty liver disease in CKD patients is discussed. Finally, gaps in the current literature and future research directions aimed at optimizing the management of obesity-related CKD are highlighted, emphasizing the need for personalized therapeutic approaches to mitigate the growing burden of this intertwined epidemic.
Collapse
Affiliation(s)
- Lasin Ozbek
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Nephrology Clinic, Dialysis, and Renal Transplant Center “C.I. Parhon” University Hospital, 700503 Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
13
|
Culver SA, Hargett SR, Balugo JLLQ, Gildea JJ, Harris TE, Siragy HM. Nephron specific ATP6AP2 knockout increases urinary excretion of fatty acids and decreases renal cortical megalin expression. Sci Rep 2024; 14:18724. [PMID: 39134597 PMCID: PMC11319469 DOI: 10.1038/s41598-024-69749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
ATP6AP2 knockout in the renal nephron impairs receptor-mediated endocytosis, increasing urinary albumin and glucose excretion and impairing weight gain. Nonesterified fatty acids (NEFA) in urine are bound to albumin and reabsorbed in the proximal tubule through receptor-mediated endocytosis by the megalin-cubilin complex. We hypothesized that ATP6AP2 knockout increases urinary NEFA excretion through a reduction in megalin. Ten-week-old male C57BL/6 mice with nephron specific inducible ATP6AP2 knockout and noninduced controls were fed either normal diet (ND 12% fat) or high fat diet (HFD 45% fat) for 6 months. ATP6AP2 knockout significantly increased urine albumin:creatinine ratio in both ND and HFD fed mice while normalized urine NEFA concentration increased 489% and 259% in ND and HFD knockout mice compared to respective controls. Knockout decreased renal cortical megalin mRNA by 47% on ND and 49% on HFD while megalin protein expression decreased by 36% and 44% respectively. At the same time, markers of mTOR activity were increased while autophagy was impaired. Our results indicate that nephron specific ATP6AP2 knockout increases urinary NEFA excretion in the setting of impaired receptor-mediated endocytosis. Further investigation should determine whether ATP6AP2 contributes to obesity related ectopic lipid deposition in the proximal tubule.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22908-1409, USA.
| | - Stefan R Hargett
- Department of Pharmacology, University of Virginia Health System, Charlottesville, USA
| | - Jamie L L Q Balugo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22908-1409, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, USA
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22908-1409, USA
| |
Collapse
|
14
|
Chen Y, Liu X, Ma J, Wang W, Li Z, Wu H, Lu Z, Zhang D, Zhang X, Zhang Y, Zhang S. Hydrangea paniculata coumarins alleviate adriamycin-induced renal lipotoxicity through activating AMPK and inhibiting C/EBPβ. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118156. [PMID: 38583729 DOI: 10.1016/j.jep.2024.118156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPβ) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPβ.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhanxi Lu
- Beijing No. 80 High School International Department, Beijing, 100102, PR China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiaoying Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yu Zhang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, Sichuan Province, 610041, PR China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
15
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Kuang DD, Li XY, Qian XP, Zhang T, Deng YY, Li QM, Luo JP, Zha XQ. Tea Polysaccharide Ameliorates High-Fat Diet-Induced Renal Tubular Ectopic Lipid Deposition via Regulating the Dynamic Balance of Lipogenesis and Lipolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12582-12595. [PMID: 38788215 DOI: 10.1021/acs.jafc.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xin-Ping Qian
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ting Zhang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
17
|
Ali MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol 2024; 36:100341. [PMID: 38616864 PMCID: PMC11015524 DOI: 10.1016/j.jcte.2024.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.
Collapse
Affiliation(s)
- Mariam M. Ali
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Sanober Parveen
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Vanessa Williams
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Robert Dons
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Gabriel I. Uwaifo
- Section of Endocrinology, Dept of Medicine, SIU School of Medicine, 751 N Rutledge St, Moy Building, Suite 1700, Room #1813, Springfield, Il 62702, United States
| |
Collapse
|
18
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Lee H, Bae J, Park KW, Kim M. Ethyl acetate fraction of oregano seed protects non-alcoholic fatty liver in high-fat diet-induced obese mice through modulation of Srebp-1c. Food Sci Nutr 2024; 12:2578-2587. [PMID: 38628197 PMCID: PMC11016382 DOI: 10.1002/fsn3.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 04/19/2024] Open
Abstract
Oregano (Origanum vulgare) seed is used as spices and is known to have anti-inflammatory, antibacterial, and antioxidant effects. The anti-fatty liver effects of oregano seed ethyl acetate (OSEA) were evaluated in high-fat diet (HFD)-induced obese mice. OSEA was orally administered with HFD for 10 weeks. The body weight, aspartate aminotransferase, alanine aminotransferase, cholesterol, triglyceride, and low-density lipoprotein levels in the HFD with 100 mg/kg of OSEA significantly decreased by approximately 1.21-, 1.44-, 2.12-, 1.12-, 1.05, and 1.59 times, respectively, while high-density lipoprotein levels increased by approximately 1.05 times compared to those in the HFD group (p < .05). In addition, the distribution of liver fat in the HFD with 100 mg/kg OSEA (OSEA 100) group decreased significantly (p < .05). Therefore, OSEA supplementation can ameliorate fatty liver disease and reduce the accumulation of triglycerides in adipose tissue. The expression of genes involved in liver fat accumulation, such as sterol regulatory element-binding protein-1c (Srebp-1c), fatty acid synthase (Fas), stearoyl-CoA desaturase-1 (Scd1), and acetyl-CoA carboxylase 1 (Acc1), significantly decreased in OSEA 100 by approximately 2.6-, 1.74-, 1.89-, and 1.56-times, respectively (p < .05). Therefore, OSEA may modify obesity and liver fat accumulation by regulating the expression of genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Hyun‐Jong Lee
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| | - Ji‐Yun Bae
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| | - Kye Won Park
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| | - Mi‐Ja Kim
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| |
Collapse
|
20
|
Fernandes MF, Aristizabal-Henao JJ, Marvyn PM, M'Hiri I, Wiens MA, Hoang M, Sebastian M, Nachbar R, St-Pierre P, Diaguarachchige De Silva K, Wood GA, Joseph JW, Doucette CA, Marette A, Stark KD, Duncan RE. Renal tubule-specific Atgl deletion links kidney lipid metabolism to glucagon-like peptide 1 and insulin secretion independent of renal inflammation or lipotoxicity. Mol Metab 2024; 81:101887. [PMID: 38280449 PMCID: PMC10850971 DOI: 10.1016/j.molmet.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
OBJECTIVE Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Maria F Fernandes
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | | | - Phillip M Marvyn
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Iman M'Hiri
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Meghan A Wiens
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Manuel Sebastian
- Max Rady College of Medicine, University of Manitoba, Manitoba, Canada
| | - Renato Nachbar
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Philippe St-Pierre
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | | | - Geoffrey A Wood
- Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jamie W Joseph
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | | | - André Marette
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada.
| |
Collapse
|
21
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
22
|
Li QL, Zheng H, Luo Z, Wu LX, Xu PC, Guo JC, Song YF, Tan XY. Characterization and expression analysis of seven lipid metabolism-related genes in yellow catfish Pelteobagrus fulvidraco fed high fat and bile acid diet. Gene 2024; 894:147972. [PMID: 37944648 DOI: 10.1016/j.gene.2023.147972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
SREBPs, such as SREBP1 and SREBP2, were the key transcriptional factors regulating lipid metabolism. The processing of SREBPs involved many genes, such as scap, s1p, s2p, cideb. Here, we deciphered the full-length cDNA sequences of scap, srebp1, srebp2, s1p, s2p, cideb and cidec from yellow catfish Pelteobagrus fulvidraco. Their full-length cDNA sequences ranged from 1587 to 3884 bp, and their ORF length from 1191 to 2979 bp, encoding 396-992 amino acids. Some conservative domains were predicted, including the multiple transmembrane domains in SCAP, the bHLH-ZIP domain in SREBP1 and SREBP2, the ApoB binding region, ER targeting region and LD targeting region in CIDEb, the LD targeting region in the CIDEc, the conserved catalytic site and processing site in S1P, and the transmembrane helix domain in S2P. Their mRNA expression could be observed in the heart, spleen, liver, kidney, brain, muscle, intestine and adipose, but varied with tissues. The changes of their mRNA expression in responses to high-fat (HFD) and bile acid (BA) diets were also investigated in the brain, heart, intestine, kidney and spleen tissues. In the brain, HFD significantly increased the mRNA expression of seven genes (scap, srebp1, srebp2, s1p, s2p, cideb and cidec), and the BA attenuated the increase of scap, srebp1, srebp2, s1p, s2p, cideb and cidec mRNA expression induced by HFD. In the heart, HFD significantly increased the mRNA abundances of six genes (srebp1, srebp2, scap, s2p, cideb and cidec), and BA attenuated the increase of their mRNA abundances induced by HFD. In the intestine, HFD increased the cideb, s1p and s2p mRNA abundances, and BA attenuated the HFD-induced increment of their mRNA abundances. In the kidney, HFD significantly increased the scap, cidec and s1p mRNA expression, and BA diet attenuated the increment of their mRNA expression. In the spleen, HFD treatment increased the scap, srebp2, s1p and s2p mRNA expression, and BA diet attenuated HFD-induced increment of their mRNA expression. Taken together, our study elucidated the characterization, expression profiles and transcriptional response of seven lipid metabolic genes, which would serve as the good basis for the further exploration into their function and regulatory mechanism in fish.
Collapse
Affiliation(s)
- Qing-Lin Li
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Xiang Wu
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng-Cheng Xu
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Cheng Guo
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Zhu X, Si F, Hao R, Zheng J, Zhang C. Nuciferine Protects against Obesity-Induced Nephrotoxicity through Its Hypolipidemic, Anti-Inflammatory, and Antioxidant Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18769-18779. [PMID: 38006352 DOI: 10.1021/acs.jafc.3c05735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
High-fat diets (HFD) could cause obesity, trigger lipid accumulation, and induce oxidative stress and inflammation, leading to kidney damage. This study aimed to elucidate the protective effects of nuciferine on HFD-caused nephrotoxicity and explore the underlying mechanisms in Kunming mice and palmitic acid-exposed HK-2 cells. In obese mice, nuciferine notably alleviated HFD-induced chronic renal dysfunction and delayed renal fibrosis progression and podocyte apoptosis, as evidenced by the increased expressions of renal function factors BUN, CRE, and UA and the decreased expressions of key protein factors TGF-β1, p-Samd3, Wnt-1, and β-catenin. Nuciferine also effectively attenuated HFD-induced renal lipid accumulation via the AMPK-mediated regulation of FAS and HSL expressions and suppressed inflammation and oxidative stress via the AMPK-mediated Nrf-2/HO-1 and TLR4/MyD88/NF-κB pathways. In addition, consistent with the results of animal experiments, nuciferine remarkably reversed cell damage and attenuated lipid accumulation, inflammation, and oxidative stress in palmitic acid-exposed HK-2 cells through the AMPK-mediated signaling pathway. Therefore, nuciferine could be a new food-derived protective agent to offset obesity and correlative kidney damage.
Collapse
Affiliation(s)
- Xiangyang Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Fan Si
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Jingjie Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| |
Collapse
|
24
|
Sawie HG, Khadrawy YA, El-Gizawy MM, Mourad HH, Omara EA, Hosny EN. Effect of alpha-lipoic acid and caffeine-loaded chitosan nanoparticles on obesity and its complications in liver and kidney in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3017-3031. [PMID: 37306714 PMCID: PMC10567965 DOI: 10.1007/s00210-023-02507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023]
Abstract
The present work investigated the effect of α-lipoic acid (ALA) and caffeine-loaded chitosan nanoparticles (CAF-CS NPs) on obesity and its hepatic and renal complications in rats. Rats were divided into control, rat model of obesity induced by high fat diet (HFD), and obese rats treated with ALA and/or CAF-CS NPs. At the end of the experiment, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and the levels of urea, creatinine, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined in the sera of animals. In addition, malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were measured in hepatic and renal tissues. Renal Na+, K+-ATPase was assessed. The histopathological changes were examined in the hepatic and renal tissues. Obese rats showed a significant increase in AST, ALT, ALP, urea, and creatinine. This was associated with a significant increase in IL-1β, TNF-α, MDA, and NO. A significant decrease in hepatic and renal GSH and renal Na+, K+-ATPase activity was recorded in obese rats. Obese rats also showed histopathological alterations in hepatic and renal tissues. Treatment with ALA and/or CAF-CS NPs reduced the weight of obese rats and ameliorated almost all the hepatic and renal biochemical and histopathological changes induced in obese rats. In conclusion, the present findings indicate that ALA and/or CAF-CS NPs offered an effective therapy against obesity induced by HFD and its hepatic and renal complications. The therapeutic effect of ALA and CAF-CS NPs could be mediated through their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Hagar H Mourad
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt.
| |
Collapse
|
25
|
Zhu W, Chen M, Wang Y, Chen Y, Zhang Y, Wang Y, Liu P, Li P. Regulation of renal lipid deposition in diabetic nephropathy on morroniside via inhibition of NF-KB/TNF-a/SREBP1c signaling pathway. Chem Biol Interact 2023; 385:110711. [PMID: 37769864 DOI: 10.1016/j.cbi.2023.110711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Morroniside (MOR), a cyclic enol ether terpene glycoside isolated from Cornus officinalis, has been shown to inhibit lipid accumulation, although the mechanism of action is uncertain. The aim of this study was to investigate the potential pathways by which MOR affects renal lipid deposition in diabetic nephropathy (DN). In vitro and in vivo experiments were performed using the PA-induced HK-2 cell model and a KKAy animal model, respectively. Network pharmacological analysis was used to identify potential MOR signaling pathways for DN therapy, with results verified via Western blotting and immunofluorescence experiments. The effect of MOR on lipid metabolism was investigated using BODIPY 493/503 staining. Our results indicate that MOR significantly reduces lipid accumulation both in vitro and in vivo. According to network pharmacology studies, the NF-κB/TNF-α/SREBP1c signaling pathway may be the mechanism of action of MOR in DN. MOR was found to inhibit this pathway by reducing the phosphorylation of NF-κB p65 and the expression of TNF-α and SREBP1c, similar to the effects of Bay11-7082. Additionally, MOR significantly inhibited the expression of lipid factors such as ACC, FAS, and SCD1. In conclusion, MOR can regulate the disruption of lipid metabolism in DN and reduce renal lipid deposition via suppression of the NF-κB/TNF-α/SREBP1c signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
26
|
Onodera T, Wang MY, Rutkowski JM, Deja S, Chen S, Balzer MS, Kim DS, Sun X, An YA, Field BC, Lee C, Matsuo EI, Mizerska M, Sanjana I, Fujiwara N, Kusminski CM, Gordillo R, Gautron L, Marciano DK, Hu MC, Burgess SC, Susztak K, Moe OW, Scherer PE. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat Commun 2023; 14:6531. [PMID: 37848446 PMCID: PMC10582045 DOI: 10.1038/s41467-023-42188-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.
Collapse
Affiliation(s)
- Toshiharu Onodera
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - May-Yun Wang
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Nephrology and Medical Intensive Care, Charité, Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10117, Berlin, Germany
| | - Dae-Seok Kim
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Xuenan Sun
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
- Department of Anesthesiology, Critical Care and Pain Medicine, UT Health Science Center at Houston, Houston, TX, USA
| | - Bianca C Field
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ei-Ichi Matsuo
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Ina Sanjana
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Ruth Gordillo
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US.
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Juszczak F, Pierre L, Decarnoncle M, Jadot I, Martin B, Botton O, Caron N, Dehairs J, Swinnen JV, Declèves AE. Sex differences in obesity-induced renal lipid accumulation revealed by lipidomics: a role of adiponectin/AMPK axis. Biol Sex Differ 2023; 14:63. [PMID: 37770988 PMCID: PMC10537536 DOI: 10.1186/s13293-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium.
| | - Louise Pierre
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
29
|
Chan CW, Lin BF. Folate Deficiency Enhanced Inflammation and Exacerbated Renal Fibrosis in High-Fat High-Fructose Diet-Fed Mice. Nutrients 2023; 15:3616. [PMID: 37630806 PMCID: PMC10458828 DOI: 10.3390/nu15163616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of obesity and chronic kidney disease (CKD) is increasing simultaneously and rapidly worldwide. Our previous study showed that folate deficiency increased lipid accumulation and leptin production of adipocytes. Whether folate plays a role in CKD, particularly obesity-related nephropathy remains unclear. To investigate the effects of folate deficiency on CKD in diet-induced obese mice, four groups of male C57BL/6 mice were fed either a normal-fat diet (NF) with folate (NF+f); NF without folate (NF-f); high-fat high-fructose diet (HFF) with folate (HFF+f); or HFF without folate (HFF-f) for 12 months during the study. The results showed that HFF increased not only body weight, fasting blood glucose, total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and blood pressure, but also cytokines levels, such as interleukin (IL)-2, interferon (IFN)-γ, IL-17A/F, IL-6, monocyte chemoattractant protein (MCP)-1, and transforming growth factor (TGF)-β1. The indicators of kidney failure including urinary protein, neutrophil gelatinase-associated lipocalin (NGAL), renal type I and IV collagen deposits and leptin content, and serum creatinine were also increased by HFF. Folate-deficient diets further elevated serum TC, LDL-cholesterol, IL-6, tumor necrosis factor (TNF)-α, MCP-1, TGF-β1, and leptin, but decreased IL-10 level, and thus exacerbated renal fibrosis. To investigate the possible mechanisms of folate deficiency on renal injury, phosphorylation of pro-fibrosis signaling molecules, including signal transducer and activator of transcription (STAT)3 and small mothers against decapentaplegic (Smad)2/3, were assayed. Both HFF and folate deficiency significantly increased the phosphorylation of STAT3 and Smad2/3, suggesting synergistic effects of HFF-f on chronic renal inflammation and fibrosis. In conclusion, the results demonstrated that folate deficiency might aggravate inflammatory status and enhance renal fibrosis.
Collapse
Affiliation(s)
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
30
|
Romualdo GR, de Souza JLH, Valente LC, Barbisan LF. Assessment of the impact of glyphosate and 2,4-D herbicides on the kidney injury and transcriptome changes in obese mice fed a Western diet. Toxicol Lett 2023; 385:1-11. [PMID: 37567420 DOI: 10.1016/j.toxlet.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The development of chronic kidney disease has been associated with comorbidities resulting from the consumption of Westernized dietary (WD) patterns, including obesity and other metabolic dysfunctions. Kidneys also have a crucial role in the metabolism and excretion of xenobiotics, including herbicides. There is limited knowledge regarding the simultaneous exposure to WD and glyphosate (glypho) and 2,4-D, the most used herbicides globally. Thus, this study examined whether exposure to glypho and/or 2,4-D, either individually or in mixed, could impact the early effects of WD intake on kidney histology and gene expression in a rodent model. Male C57BL6J mice were fed a WD containing 20% lard, 0.2% cholesterol, 20% sucrose, and high sugar solution with 23.1 and 18.9 g/L of D-fructose and D-glucose for six months. During this period, the mice also received glypho (0.05 or 5 mg/kg/day), 2,4-D (0.02 or 2 mg/kg/day), or a mixture of both (0.05 +0.02, 5 +2 mg/kg/day) via intragastric administration five times per week. The doses were within or below the established regulatory limits. While single or mixed exposures did not alter WD-induced obesity, tubular lipid vacuolation, or increased serum creatinine levels; the exposure to higher doses of the mixture (5 +2) reduced the mesangial matrix area and tubular cell proliferation, while increasing the density of F4/80 macrophages in the renal interstitium. In terms of transcriptomic analysis, the herbicide mixture altered the expression of 415 genes in the kidney, which were found to be associated with immune response processes, particularly those related to phagocyte activity. While discrete, findings indicate that herbicide mixtures, rather than single exposures, might induce minor deleterious effects on the kidneys of obese mice under WD intake.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil
| | - Jéssica Luri Hisano de Souza
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil.
| |
Collapse
|
31
|
Song D, Zhang A, Hu X, Zeng M, Zhou H. Wen-Shen-Jian-Pi-Hua-Tan decoction protects against early obesity-related glomerulopathy by improving renal bile acid composition and suppressing lipogenesis, inflammation, and fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154861. [PMID: 37167823 DOI: 10.1016/j.phymed.2023.154861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Obesity is an independent predictor of chronic kidney disease (CKD) development and may directly lead to kidney lesions such as obesity-related glomerulopathy (ORG) which might play a vital pathogenic role in obese patients with CKD. Wen-Shen-Jian-Pi-Hua-Tan decoction (WSHT) has been clinically used for the treatment of obesity and obesity-related metabolic diseases for years. However, the renoprotective effects and potential mechanism of action of WSHT against ORG remain unknown. PURPOSE This study aimed to explore the potential effect of WSHT on ORG and reveal its mechanisms in high-fat diet (HFD)-induced obese rats. METHODS An animal model of early stage ORG was established using HFD-induced obese rats. After treatment with WSHT for 6 weeks, an integrated metabolomics and molecular biology strategy was utilized to illustrate the effects and mechanism of WSHT on ORG. First, UPLC-ESI-MS/MS-based targeted metabolomics was used to analyze renal bile acid (BA) levels. Biochemical, histological, and immunofluorescence assays; electron microscopy; and western blotting were performed to evaluate the efficacy of WSHT against ORG and its underlying mechanisms in vivo. RESULTS Our results showed that an HFD led to hyperlipidemia, proteinuria, renal lipid deposition, effacement of podocyte foot processes, and increased expression of proinflammatory factors and profibrotic growth factors in ORG rats. In addition, an HFD decreased the levels of renal BAs such as cholic acid, chenodeoxycholic acid, and lithocholic acid. After 6 weeks of treatment, WSHT markedly attenuated dyslipidemia and reduced body, kidney and epididymal fat weights in ORG rats. WSHT also significantly increased BA levels, suggesting that it altered BA composition; the effects of BAs are closely associated with farnesoid X receptor (FXR) activation. WSHT alleviated fat accumulation, podocyte loss and proteinuria, and reduced the expression of proinflammatory cytokines and profibrotic growth factors in the kidneys of ORG rats. Finally, WSHT remarkably upregulated the renal expression of FXR and salt-induced kinase 1 and blocked the renal expression of sterol regulatory element-binding protein-1c and its target genes. CONCLUSION WSHT attenuated early renal lesions in ORG rats by improving renal BA composition and suppressing lipogenesis, inflammation and fibrosis. This study develops a new way to alleviate obesity-induced renal damages.
Collapse
Affiliation(s)
- Daofei Song
- Department of Endocrinology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - Aijie Zhang
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Xu Hu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - MingXing Zeng
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huimin Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
32
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
33
|
Diabetes Mellitus and the Kidneys. Vet Clin North Am Small Anim Pract 2023; 53:565-580. [PMID: 36854633 DOI: 10.1016/j.cvsm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The pathomechanisms implicated in diabetic kidney disease in people are present in dogs and cats and, in theory, could lead to renal complications in companion animals with long-standing diabetes mellitus. However, these renal complications develop during a long period, and there is little to no clinical evidence that they could lead to chronic kidney disease in companion animals.
Collapse
|
34
|
Kim DH, Park JS, Choi HI, Kim CS, Bae EH, Ma SK, Kim SW. The role of the farnesoid X receptor in kidney health and disease: a potential therapeutic target in kidney diseases. Exp Mol Med 2023; 55:304-312. [PMID: 36737665 PMCID: PMC9981614 DOI: 10.1038/s12276-023-00932-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of kidney diseases has been increasing worldwide due to the aging population and has results in an increased socioeconomic burden as well as increased morbidity and mortality. A deep understanding of the mechanisms underlying the physiological regulation of the kidney and the pathogenesis of related diseases can help identify potential therapeutic targets. The farnesoid X receptor (FXR, NR1H4) is a primary nuclear bile acid receptor that transcriptionally regulates bile acid homeostasis as well as glucose and lipid metabolism in multiple tissues. The roles of FXR in tissues other than hepatic and intestinal tissues are poorly understood. In studies over the past decade, FXR has been demonstrated to have a protective effect against kidney diseases through its anti-inflammatory and antifibrotic effects; it also plays roles in glucose and lipid metabolism in the kidney. In this review, we discuss the physiological role of FXR in the kidney and its pathophysiological roles in various kidney diseases, including acute kidney injury and chronic kidney diseases, diabetic nephropathy, and kidney fibrosis. Therefore, the regulatory mechanisms involving nuclear receptors, such as FXR, in the physiology and pathophysiology of the kidney and the development of agonists and antagonists for modulating FXR expression and activation should be elucidated to identify therapeutic targets for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea.
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
35
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Ai ZL, Zhang X, Ge W, Zhong YB, Wang HY, Zuo ZY, Liu DY. Salvia miltiorrhiza extract may exert an anti-obesity effect in rats with high-fat diet-induced obesity by modulating gut microbiome and lipid metabolism. World J Gastroenterol 2022; 28:6131-6156. [PMID: 36483153 PMCID: PMC9724488 DOI: 10.3748/wjg.v28.i43.6131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Studies have shown that a high-fat diet (HFD) can alter gut microbiota (GM) homeostasis and participate in lipid metabolism disorders associated with obesity. Therefore, regulating the construction of GM with the balance of lipid metabolism has become essential for treating obesity. Salvia miltiorrhiza extract (Sal), a common traditional Chinese medicine, has been proven effective against atherosclerosis, hyperlipidemia, obesity, and other dyslipidemia-related diseases. AIM To investigate the anti-obesity effects of Sal in rats with HFD-induced obesity, and explore the underlying mechanism by focusing on GM and lipid metabolism. METHODS Obesity was induced in rats with an HFD for 7 wk, and Sal (0.675 g/1.35 g/2.70 g/kg/d) was administered to treat obese rats for 8 wk. The therapeutic effect was evaluated by body weight, body fat index, waistline, and serum lipid level. Lipid factors (cAMP, PKA, and HSL) in liver and fat homogenates were analyzed by ELISA. The effect of Sal on GM and lipid metabolism was assessed by 16S rRNA-based microbiota analysis and untargeted lipidomic analysis (LC-MS/MS), respectively. RESULTS Sal treatment markedly reduced weight, body fat index, serum triglycerides (TG), total cholesterol (TC), low-density lipoprotein, glucose, free fatty acid, hepatic lipid accumulation, and adipocyte vacuolation, and increased serum high-density lipoprotein (HDL-C) in rats with HFD-induced obesity. These effects were associated with increased concentrations of lipid factors such as cAMP, PKA, and HSL in the liver and adipose tissues, enhanced gut integrity, and improved lipid metabolism. GM analysis revealed that Sal could reverse HFD-induced dysbacteriosis by promoting the abundance of Actinobacteriota and Proteobacteria, and decreasing the growth of Firmicutes and Desulfobacterita. Furthermore, LC-MS/MS analysis indicated that Sal decreased TGs (TG18:2/18:2/20:4, TG16:0/18:2/22:6), DGs (DG14:0/22:6, DG22:6/22:6), CL (18:2/ 18:1/18:1/20:0), and increased ceramides (Cers; Cer d16:0/21:0, Cer d16:1/24:1), (O-acyl)-ω-hydroxy fatty acids (OAHFAs; OAHFA18:0/14:0) in the feces of rats. Spearman's correlation analysis further indicated that TGs, DGs, and CL were negatively related to the abundance of Facklamia and Dubosiella, and positively correlated with Blautia and Quinella, while OAHFAs and Cers were the opposite. CONCLUSION Sal has an anti-obesity effect by regulating the GM and lipid metabolism.
Collapse
Affiliation(s)
- Zi-Li Ai
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xian Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - You-Bao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Yan Wang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Zheng-Yun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
37
|
Das S, Choudhuri D. Dietary calcium regulates the risk renal injury in high fat diet induced obese rats by regulating renal lipid metabolism, oxidative stress and inflammation. Arch Physiol Biochem 2022; 128:1039-1049. [PMID: 32255372 DOI: 10.1080/13813455.2020.1746812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONTEXT The antiobesity effect of dietary calcium by preventing fat accumulation and weight gain was well established from several epidemiological and animal studies. OBJECTIVE To evaluate the effect of dietary calcium against obesity-associated with renal injury in high fat diet induced obese rats. Materials and Methods: Obesity was induced by high fat diet (HFD) and then given either low or high calcium HFD (0.25% and 1.0%) for another 30 days. RESULTS The results showed that 1.0% high calcium group was effective in reducing renal lipogenesis activity, lipid accumulation, fatty acid synthase (FAS) activity, acetyl coenzyme A carboxylase (ACC) expression, oxidative stress, inflammation and increased the adenosine monophosphate kinase (AMPK) expression. DISCUSSION AND CONCLUSION Downregulation of renal lipid accumulation by high calcium diet through AMPK mediated lipogenesis activity, oxidative stress and the inflammatory response seemed to prevent the renal injury in high fat diet (HFD) induced obese rats.
Collapse
Affiliation(s)
- Sandeep Das
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| | - Dipayan Choudhuri
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| |
Collapse
|
38
|
Locatelli M, Macconi D, Corna D, Cerullo D, Rottoli D, Remuzzi G, Benigni A, Zoja C. Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms23158345. [PMID: 35955472 PMCID: PMC9368634 DOI: 10.3390/ijms23158345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3−/− mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3−/− mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3−/− mice. After HFD, kidneys from Sirt3−/− mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.
Collapse
|
39
|
Martínez-Montoro JI, Morales E, Cornejo-Pareja I, Tinahones FJ, Fernández-García JC. Obesity-related glomerulopathy: Current approaches and future perspectives. Obes Rev 2022; 23:e13450. [PMID: 35362662 PMCID: PMC9286698 DOI: 10.1111/obr.13450] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Obesity-related glomerulopathy (ORG) is a silent comorbidity which is increasing in incidence as the obesity epidemic escalates. ORG is associated with serious health consequences including chronic kidney disease, end-stage renal disease (ESRD), and increased mortality. Although the pathogenic mechanisms involved in the development of ORG are not fully understood, glomerular hemodynamic changes, renin-angiotensin-aldosterone system (RAAS) overactivation, insulin-resistance, inflammation and ectopic lipid accumulation seem to play a major role. Despite albuminuria being commonly used for the non-invasive evaluation of ORG, promising biomarkers of early kidney injury that are emerging, as well as new approaches with proteomics and metabolomics, might permit an earlier diagnosis of this disease. In addition, the assessment of ectopic kidney fat by renal imaging could be a useful tool to detect and evaluate the progression of ORG. Weight loss interventions appear to be effective in ORG, although large-scale trials are needed. RAAS blockade has a renoprotective effect in patients with ORG, but even so, a significant proportion of patients with ORG will eventually progress to ESRD despite therapeutic efforts. It is noteworthy that certain antidiabetic agents such as sodium-glucose cotransporter 2 inhibitors (SGLT2i) or glucagon-like peptide-1 receptor agonists (GLP-1 RAs) could be useful in the treatment of ORG through different pleiotropic effects. In this article, we review current approaches and future perspectives in the care and treatment of ORG.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Enrique Morales
- Department of Nephrology, 12 de Octubre University Hospital, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| | - Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Málaga, Spain
| |
Collapse
|
40
|
Kanbay M, Copur S, Demiray A, Sag AA, Covic A, Ortiz A, Tuttle KR. Fatty kidney: A possible future for chronic kidney disease research. Eur J Clin Invest 2022; 52:e13748. [PMID: 35040119 DOI: 10.1111/eci.13748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Metabolic syndrome is a growing twenty-first century pandemic associated with multiple clinical comorbidities ranging from cardiovascular diseases, non-alcoholic fatty liver disease and polycystic ovary syndrome to kidney dysfunction. A novel area of research investigates the concept of fatty kidney in the pathogenesis of chronic kidney disease, especially in patients with diabetes mellitus or metabolic syndrome. AIM To review the most updated literature on fatty kidney and provide future research, diagnostic and therapeutic perspectives on a disease increasingly affecting the contemporary world. MATERIALS AND METHOD We performed an extensive literature search through three databases including Embase (Elsevier) and the Cochrane Central Register of Controlled Trials (Wiley) and PubMed/Medline Web of Science in November 2021 by using the following terms and their combinations: 'fatty kidney', 'ectopic fat', 'chronic kidney disease', 'cardiovascular event', 'cardio-metabolic risk', 'albuminuria' and 'metabolic syndrome'. Each study has been individually assessed by the authors. RESULTS Oxidative stress and inflammation, Klotho deficiency, endoplasmic reticulum stress, mitochondrial dysfunction and disruption of cellular energy balance appear to be the main pathophysiological mechanisms leading to tissue damage following fat accumulation. Despite the lack of large-scale comprehensive studies in this novel field of research, current clinical trials demonstrate fatty kidney as an independent risk factor for the development of chronic kidney disease and cardiovascular events. CONCLUSION The requirement for future studies investigating the pathophysiology, clinical outcomes and therapeutics of fatty kidney is clear.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA
| |
Collapse
|
41
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
42
|
Insights from a high-fat diet fed mouse model with a humanized liver. PLoS One 2022; 17:e0268260. [PMID: 35533183 PMCID: PMC9084523 DOI: 10.1371/journal.pone.0268260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide and is increasing at an alarming rate. NAFLD is strongly associated with obesity and insulin resistance. The use of animal models remains a vital aspect for investigating the molecular mechanisms contributing to metabolic dysregulation and facilitating novel drug target identification. However, some differences exist between mouse and human hepatocyte physiology. Recently, chimeric mice with human liver have been generated, representing a step forward in the development of animal models relevant to human disease. Here we explored the feasibility of using one of these models (cDNA-uPA/SCID) to recapitulate obesity, insulin resistance and NAFLD upon feeding a Western-style diet. Furthermore, given the importance of a proper control diet, we first evaluated whether there are differences between feeding a purified ingredient control diet that matches the composition of the high-fat diet and feeding a grain-based chow diet. We show that mice fed chow have a higher food intake and fed glucose levels than mice that received a low-fat purified ingredient diet, suggesting that the last one represents a better control diet. Upon feeding a high-fat or matched ingredient control diet for 12 weeks, cDNA-uPA/SCID chimeric mice developed extensive macrovesicular steatosis, a feature previously associated with reduced growth hormone action. However, mice were resistant to diet-induced obesity and remained glucose tolerant. Genetic background is fundamental for the development of obesity and insulin resistance. Our data suggests that using a background that favors the development of these traits, such as C57BL/6, may be necessary to establish a humanized mouse model of NAFLD exhibiting the metabolic dysfunction associated with obesity.
Collapse
|
43
|
Hamada S, Takata T, Yamada K, Yamamoto M, Mae Y, Iyama T, Ikeda S, Kanda T, Sugihara T, Isomoto H. Steatosis is involved in the progression of kidney disease in a high-fat-diet-induced non-alcoholic steatohepatitis mouse model. PLoS One 2022; 17:e0265461. [PMID: 35294499 PMCID: PMC8926260 DOI: 10.1371/journal.pone.0265461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH) are major health issues associated with the metabolic syndrome. Although NASH is a known risk factor of CKD, the mechanisms linking these two diseases remain poorly understood. We aimed to investigate alterations in the kidney complicated with dyslipidemia in an established NASH mouse model. Male C57BL6/J mice were fed with control diet or high-fat diet (HFD), containing 40% fat, 22% fructose, and 2% cholesterol for 16 weeks. Metabolic characteristics, histological changes in the kidney, endoplasmic reticulum (ER) stress, apoptosis, and fibrosis were evaluated by histological analysis, immunoblotting, and quantitative reverse transcription-polymerase chain reaction. Levels of serum aspartate aminotransferase, alanine aminotransferase, alkali-phosphatase, total cholesterol, and urinary albumin were significantly higher in mice fed with HFD. Remarkable steatosis, glomerular hypertrophy, and interstitial fibrosis were also shown in in the kidney by leveraging HFD. Furthermore, HFD increased the mRNA expression levels of Casp3, Tgfb1, and Nfe2l2 and the protein level of BiP. We observed the early changes of CKD and speculate that the underlying mechanisms that link CKD and NASH are the induction of ER stress and apoptosis. Further, we observed the activation of Nfe2l2 in the steatosis-induced CKD mouse model. This NASH model holds implications in investigating the mechanisms linking dyslipidemia and CKD.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Kentaro Yamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Marie Yamamoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Suguru Ikeda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
44
|
Li F, Jiang M, Ma M, Chen X, Zhang Y, Zhang Y, Yu Y, Cui Y, Chen J, Zhao H, Sun Z, Dong D. Anthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice. Acta Pharm Sin B 2022; 12:1322-1338. [PMID: 35530137 PMCID: PMC9069401 DOI: 10.1016/j.apsb.2021.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023] Open
Abstract
Lipid metabolism disorders contribute to hyperlipidemia and hepatic steatosis. It is ideal to develop drugs simultaneous improving both hyperlipidemia and hepatic steatosis. Nitazoxanide is an FDA-approved oral antiprotozoal drug with excellent pharmacokinetic and safety profile. We found that nitazoxanide and its metabolite tizoxanide induced mild mitochondrial uncoupling and subsequently activated AMPK in HepG2 cells. Gavage administration of nitazoxanide inhibited high-fat diet (HFD)-induced increases of liver weight, blood and liver lipids, and ameliorated HFD-induced renal lipid accumulation in hamsters. Nitazoxanide significantly improved HFD-induced histopathologic changes of hamster livers. In the hamsters with pre-existing hyperlipidemia and hepatic steatosis, nitazoxanide also showed therapeutic effect. Gavage administration of nitazoxanide improved HFD-induced hepatic steatosis in C57BL/6J mice and western diet (WD)-induced hepatic steatosis in Apoe -/- mice. The present study suggests that repurposing nitazoxanide as a drug for hyperlipidemia and hepatic steatosis treatment is promising.
Collapse
Affiliation(s)
- Fengfeng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Minghui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Xuyang Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yidan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yixin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yuanyuan Yu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yunfeng Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Jiahui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Hui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Deli Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
45
|
Elsayed HRH, El-Gamal R, Rabei MR, Elhadidy MG, Hamed S, Othman BH, Elshaer MMA, Sedky MK, Hassan ATAE, El-Nablaway M. Enhanced Autophagic Flux, Suppressed Apoptosis and Reduced Macrophage Infiltration by Dasatinib in Kidneys of Obese Mice. Cells 2022; 11:cells11040746. [PMID: 35203394 PMCID: PMC8869974 DOI: 10.3390/cells11040746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023] Open
Abstract
Obesity causes renal changes (ORC), characterized by defective renal autophagy, lipogenesis, enhanced macrophage infiltration and apoptosis. We hypothesize that Dasatinib, a tyrosine kinase inhibitor, may ameliorate changes associated with obesity. We the mice with either Obesogenic diet (OD) or a standard basal diet. After 12 weeks, the mice received either vehicle or Dasatinib 4 mg/kg/d for an additional four weeks. We examined serum creatinine, urea, lipid profile and renal cortical mRNA expression for lipogenesis marker SREBP1, inflammatory macrophage marker iNOS and fibrosis markers; TGFβ and PDGFA genes; immunohistochemical (IHC) staining for CD68; inflammatory macrophage marker and ASMA; fibrosis marker, LC3 and SQSTM1/P62; autophagy markers and western blotting (WB) for caspase-3; and, as an apoptosis marker, LC3II/I and SQSTM1/P62 in addition to staining for H&E, PAS, Sirius red and histopathological scoring. Dasatinib attenuated renal cortical mRNA expression for SREBP1, iNOS, PDGFA and TGFβ and IHC staining for CD68, ASMA and SQSTM1/P62 and WB for caspase-3 and SQSTM1/P62, while elevating LC3 expression. Moreover, Dasatinib ameliorated ORC; glomerulosclerosis, glomerular expansion, tubular dilatation, vacuolation and casts; inflammatory cellular infiltration; and fibrosis. Dasatinib is a promising therapy for ORC by correcting autophagy impairment, attenuating lipogenesis, apoptosis and macrophage infiltration by inducing antifibrotic activity.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
- Correspondence: ; Tel.: +20-122-9310-701
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (R.E.-G.); (M.E.-N.)
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.R.R.); (M.G.E.)
- Department of Physiology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Mona G. Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.R.R.); (M.G.E.)
- Department of Medical Physiology, College of Medicine, Al-Baha University, Al-Baha 61008, Saudi Arabia
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Basma H. Othman
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed Mahmoud Abdelraheem Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Mostafa Khaled Sedky
- Department of Surgery, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt; (M.K.S.); (A.T.A.E.H.)
| | - Ahmed Tarek Abd Elbaset Hassan
- Department of Surgery, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt; (M.K.S.); (A.T.A.E.H.)
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (R.E.-G.); (M.E.-N.)
- Department of Medical Biochemistry, College of Medicine, Almaarefa University, Riyadh 71666, Saudi Arabia
| |
Collapse
|
46
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Endothelial ADAM17 Expression in the Progression of Kidney Injury in an Obese Mouse Model of Pre-Diabetes. Int J Mol Sci 2021; 23:ijms23010221. [PMID: 35008648 PMCID: PMC8745741 DOI: 10.3390/ijms23010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Disintegrin and metalloproteinase domain 17 (ADAM17) activates inflammatory and fibrotic processes through the shedding of various molecules such as Tumor Necrosis Factor-α (TNF-α) or Transforming Growht Factor-α (TGF-α). There is a well-recognised link between TNF-α, obesity, inflammation, and diabetes. In physiological situations, ADAM17 is expressed mainly in the distal tubular cell while, in renal damage, its expression increases throughout the kidney including the endothelium. The aim of this study was to characterize, for the first time, an experimental mouse model fed a high-fat diet (HFD) with a specific deletion of Adam17 in endothelial cells and to analyse the effects on different renal structures. Endothelial Adam17 knockout male mice and their controls were fed a high-fat diet, to induce obesity, or standard rodent chow, for 22 weeks. Glucose tolerance, urinary albumin-to-creatinine ratio, renal histology, macrophage infiltration, and galectin-3 levels were evaluated. Results showed that obese mice presented higher blood glucose levels, dysregulated glucose homeostasis, and higher body weight compared to control mice. In addition, obese wild-type mice presented an increased albumin-to-creatinine ratio; greater glomerular size and mesangial matrix expansion; and tubular fibrosis with increased galectin-3 expression. Adam17 deletion decreased the albumin-to-creatinine ratio, glomerular mesangial index, and tubular galectin-3 expression. Moreover, macrophage infiltration in the glomeruli of obese Adam17 knockout mice was reduced as compared to obese wild-type mice. In conclusion, the expression of ADAM17 in endothelial cells impacted renal inflammation, modulating the renal function and histology in an obese pre-diabetic mouse model.
Collapse
|
48
|
Castro BBA, Foresto-Neto O, Saraiva-Camara NO, Sanders-Pinheiro H. Renal lipotoxicity: Insights from experimental models. Clin Exp Pharmacol Physiol 2021; 48:1579-1588. [PMID: 34314523 DOI: 10.1111/1440-1681.13556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, there has been a progressive increase in the prevalence of obesity and chronic kidney disease. Renal lipotoxicity has been associated with obesity. Although lipids play fundamental physiological roles, the accumulation of lipids in kidney cells may cause dysfunction and/or renal fibrosis. Adipose tissue that exceeds their lipid storage capacity begins to release triglycerides into the bloodstream that can get stored in several organs, including the kidneys. The mechanisms underlying renal lipotoxicity involve intracellular lipid accumulation and organelle dysfunction, which trigger oxidative stress and inflammation that consequently result in insulin resistance and albuminuria. However, the specific pathways involved in renal lipotoxicity have not yet been fully understood. We aimed to summarize the current knowledge on the mechanisms by which lipotoxicity affects the renal morphology and function in experimental models of obesity. The accumulation of fatty acids in tubular cells has been described as the main mechanism of lipotoxicity; however, lipids and their metabolism also affect the function and the survival of podocytes. In this review, we presented indication of mitochondrial, lysosomal and endoplasmic reticulum alterations involved in kidney damage caused by obesity. The kidney is vulnerable to lipotoxicity, and studies of the mechanisms underlying renal injury caused by obesity can help identify therapeutic targets to control renal dysfunction.
Collapse
Affiliation(s)
- Barbara Bruna Abreu Castro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| | - Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva-Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
49
|
Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021; 41:318-330. [PMID: 34715962 PMCID: PMC10187996 DOI: 10.1016/j.semnephrol.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.
| |
Collapse
|
50
|
Caus M, Eritja À, Bozic M. Role of microRNAs in Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:ijms222111416. [PMID: 34768854 PMCID: PMC8583993 DOI: 10.3390/ijms222111416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.
Collapse
|