1
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
2
|
Niasse A, Louis K, Lenoir O, Schwarz C, Xu X, Couturier A, Dobosziewicz H, Corchia A, Placier S, Vandermeersch S, Hennighausen L, Frère P, Galichon P, Surin B, Ouchelouche S, Louedec L, Migeon T, Verpont MC, Yousfi N, Buob D, Xu-Dubois YC, François H, Rondeau E, Mesnard L, Hadchouel J, Luque Y. Protective Role of the Podocyte IL-15 / STAT5 Pathway in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1093-1106. [PMID: 38765560 PMCID: PMC11101713 DOI: 10.1016/j.ekir.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells. Methods We describe STAT5 expression in human kidney biopsies from patients with focal segmental glomerulosclerosis (FSGS) and studied mice with a podocyte-specific Stat5 deletion in experimental glomerular diseases. Results Here, we show, for the first time, that STAT5 is activated in human podocytes in FSGS. In addition, podocyte-specific Stat5 inactivation aggravates the structural and functional alterations in a mouse model of FSGS. This could be due, at least in part, to an inhibition of autophagic flux. Finally, interleukin 15 (IL-15), a classical activator of STAT5 in immune cells, increases STAT5 phosphorylation in human podocytes, and its administration alleviates glomerular injury in vivo by maintaining autophagic flux in podocytes. Conclusion Activating podocyte STAT5 with commercially available IL-15 represents a potential new therapeutic avenue for FSGS.
Collapse
Affiliation(s)
- Aïssata Niasse
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Kevin Louis
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Olivia Lenoir
- Université Paris-Cité, INSERM, PARIS - Centre de recherche cardiovasculaire, Paris, France
| | - Chloé Schwarz
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Xiaoli Xu
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Aymeric Couturier
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Hélène Dobosziewicz
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Anthony Corchia
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Sandrine Placier
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Sophie Vandermeersch
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Perrine Frère
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Pierre Galichon
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Service Médico-Chirurgical de Transplantation Rénale, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Brigitte Surin
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Souhila Ouchelouche
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Liliane Louedec
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Tiffany Migeon
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Marie-Christine Verpont
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Nadir Yousfi
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - David Buob
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Anatomie et Cytologie Pathologiques, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Yi-Chun Xu-Dubois
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Hélène François
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Eric Rondeau
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Laurent Mesnard
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Juliette Hadchouel
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Yosu Luque
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| |
Collapse
|
3
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
4
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Interleukin 15 in Cell-Based Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms23137311. [PMID: 35806311 PMCID: PMC9266896 DOI: 10.3390/ijms23137311] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.
Collapse
|
6
|
Messersmith E, Branine M, Genther-Schroeder O, McGill J, Hansen S. Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers. Animals (Basel) 2021; 11:ani11092753. [PMID: 34573719 PMCID: PMC8465330 DOI: 10.3390/ani11092753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Beta agonists are commonly used in the United States beef industry, offering improved performance in the days leading up to harvest by influencing energy metabolism. Copper has been shown to regulate the biological pathway leading to increased lipid mobilization. However, this connection has not been evaluated in cattle. Therefore, the objective of this study was to determine how Cu influences beta agonist-induced performance, energy metabolism and inflammation in feedlot cattle. Supplementation of Cu resulted in increased liver Cu concentrations, while cattle performance, lipolysis, and some markers of inflammation responded to Cu supplementation differently, depending on whether or not cattle were fed a beta agonist. Therefore, strategic supplementation of Cu may help optimize growth of cattle receiving a beta agonist. Abstract Ninety-three Angus-crossbred steers (470 ± 35 kg) were assigned to a 3 × 2 factorial to determine the effects of Cu status and beta agonist (BA) on performance, carcass characteristics, lipolytic rate, and muscle inflammation. Factors included Cu supplementation (mg Cu/kg dry matter (DM)) at: 0 (LO), 10 (MED), or 20 (HI) from Cu amino acid complex (Availa Cu; Zinpro) with no BA (NoRAC) or 300 mg·steer−1·day−1 of ractopamine hydrochloride (RAC; Optaflexx; Elanco) for final 28 days of 88-day trial. Linear and quadratic effects of Cu status within BA treatment were tested. Pre-BA gain was not affected by Cu supplementation (p ≥ 0.57), although day 53 liver Cu quadratically increased (p = 0.01). Average daily gain and muscle IL-8 gene expression quadratically increased (p ≤ 0.01), with MED having greatest gain and gene expression. Ribeye area tended to quadratically increase with Cu supplementation within RAC (p = 0.08). In vitro basal lipolytic rate tended to quadratically increase with Cu supplementation within RAC (p = 0.11), while stimulated lipolytic rate tended to linearly increase within NoRAC (p = 0.10). These data suggest lipolysis and the BA response of steers are influenced by dietary and liver Cu concentrations.
Collapse
Affiliation(s)
- Elizabeth Messersmith
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (E.M.); (O.G.-S.)
| | - Mark Branine
- Zinpro Corporation, Eden Prairie, MN 55344, USA;
| | | | - Jodi McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Stephanie Hansen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (E.M.); (O.G.-S.)
- Correspondence:
| |
Collapse
|
7
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
8
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
10
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
11
|
Reche PA. The tertiary structure of γc cytokines dictates receptor sharing. Cytokine 2019; 116:161-168. [PMID: 30716660 DOI: 10.1016/j.cyto.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/30/2022]
Abstract
The γc family of cytokines comprising interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-2 is an important group of 4-helix bundle cytokines that signals through receptors incorporating the common gamma chain (γc). These cytokines are involved in lymphocyte biology and their specific functions are contingent on binding to cognate receptor chains. Here, we examined the structural relationships between γc cytokines, aiming to understand the basis for receptor chain usage and sharing. To that end, we obtained tertiary structures of human and mouse γc cytokines plus two other related cytokines, IL-13 and TSLP, which share receptors with IL-4 and IL-7, respectively. Subsequently, we compared the cytokine 3D-structures introducing a structural similarity score that grouped γc cytokines in a manner that mirrored the relationships dictated by receptor sharing. Unlike previously thought, we identified that IL-9 is more closely related to IL-2 and IL-15 than to IL-7, which is actually the most distant member of the γc family of cytokines. Moreover, we found that all the members of the γc family of cytokines share the topology of short-chain 4-helix bundle cytokines but IL-7 that with TSLP has the topology of long-chain 4-helix bundle cytokines. We also carried out Maximun-Likehood and Bayesian phylogenetic analyses that supported these results at the amino acid sequence level. Overall, our findings are of paramount relevance to understand receptor sharing among γc cytokines and can lead to the discovery of new cytokine receptor partners.
Collapse
Affiliation(s)
- Pedro A Reche
- Laboratory of Immunomedicine, School of Medicine, Department of Immunology & O2, Universidad Complutense de Madrid, Ave Complutense S/N, Madrid 28040, Spain.
| |
Collapse
|
12
|
Islam SMS, Sohn S. HSV-Induced Systemic Inflammation as an Animal Model for Behçet's Disease and Therapeutic Applications. Viruses 2018; 10:v10090511. [PMID: 30235840 PMCID: PMC6163530 DOI: 10.3390/v10090511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023] Open
Abstract
Behçet’s disease (BD) affects multiple organs. It is mainly characterized by recurrent oral, skin, and genital aphthous ulcers, and eye involvement. Successful management of BD is increasing, although its etiology remains unclear. A number of etiologies have been proposed, including environmental, genetic, viral, and immunological factors. To understand its complex etiology and improve its management, animal models of BD have been used to enable more effective therapeutic applications with increased clinical significance. An herpes simplex virus (HSV) type 1-induced BD mouse model has shown disease characteristics similar to those seen in BD patients. An HSV-induced BD animal model has been used to test various therapeutic modalities. The applied modalities are several materials that are derived from natural products, conventional therapeutics, and possible biologics. In this review, we provided how they regulate inflammation in an HSV-induced BD model.
Collapse
Affiliation(s)
- S M Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
13
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
14
|
Anderson BG, Quinn LS. Free IL-15 Is More Abundant Than IL-15 Complexed With Soluble IL-15 Receptor-α in Murine Serum: Implications for the Mechanism of IL-15 Secretion. Endocrinology 2016; 157:1315-20. [PMID: 26812159 DOI: 10.1210/en.2015-1746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 is a cytokine that is part of the innate immune system, as well as a proposed myokine released from skeletal muscle during physical exercise that mediates many of the positive physiological effects of exercise. Many of the immune functions of IL-15 are mediated by juxtacrine signaling via externalized IL-15 bound to membrane-associated IL-15 receptor-α (IL-15Rα). Serum and plasma samples also contain measurable concentrations of IL-15, believed to arise from proteolytic cleavage of membrane-associated IL-15/IL-15Rα complexes to generate soluble IL-15/IL-15Rα species. Here, we validate commercial assays that can distinguish the free form of IL-15 and IL-15/IL-15Rα complexes. These assays showed that most (86%) IL-15 in mouse serum resides in the free state, with a minor proportion (14%) residing in complex with IL-15Rα. Given the much shorter half-life of free IL-15 compared with IL-15/IL-15Rα complexes, these findings cast doubt on the currently accepted model for IL-15 secretion from cleavage of membrane-bound IL-15/IL-15Rα and suggest that IL-15 is released as a free molecule by an unknown mechanism.
Collapse
Affiliation(s)
- Barbara G Anderson
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| | - LeBris S Quinn
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
15
|
Abstract
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.
Collapse
Affiliation(s)
- Geok Choo Sim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laszlo Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Lion Biotechnologies, Woodland Hills, CA 91367, USA.
| |
Collapse
|
16
|
Increasing the biological activity of IL-2 and IL-15 through complexing with anti-IL-2 mAbs and IL-15Rα-Fc chimera. Immunol Lett 2014; 159:1-10. [PMID: 24512738 DOI: 10.1016/j.imlet.2014.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/22/2022]
Abstract
IL-2 and IL-15 are structurally relative cytokines that share two receptor subunits, CD132 (γ(c) chain) and CD122 (β chain). However, the expression pattern and physiological role of IL-2 and IL-15 private receptor α chains CD25 and IL-15Rα, respectively, are strikingly different. CD25, together with CD122 and CD132, forms a trimeric high affinity IL-2 receptor that is expressed and functions on cells acquiring an IL-2 signal. Conversely, IL-15Rα is expressed and binds IL-15 with high affinity per se already in the endoplasmic reticulum of the IL-15 producing cells and it presents IL-15 to cells expressing CD122/CD132 dimeric receptor in trans. Thus, while IL-2 is secreted almost exclusively by activated T cells and acts as a free molecule, IL-15 is expressed mostly by myeloid cells and works as a cell surface-associated cytokine. Interestingly, the in vivo biological activity of IL-2 can be dramatically increased through complexing with certain anti-IL-2 mAbs; such IL-2/anti-IL-2 mAbs immunocomplexes selectively stimulate the proliferation of a distinct population of immune cells, depending on the clone of the anti-IL-2 mAb used. IL-2/S4B6 mAb immunocomplexes are highly stimulatory for CD122(high) populations (memory CD8(+) T and NK cells) and intermediately also for CD25(high) populations (Treg and activated T cells), while IL-2/JES6-1 mAb immunocomplexes enormously expand only CD25(high) cells. Although IL-2 immunocomplexes are much more potent than IL-2 in vivo, they show comparable to slightly lower activity in vitro. The in vivo biological activity of IL-15 can be dramatically increased through complexing with recombinant IL-15Rα-Fc chimera; however, IL-15/IL-15Rα-Fc complexes are significantly more potent than IL-15 both in vivo and in vitro. In this review we summarize and discuss the features and biological relevance of IL-2/anti-IL-2 mAbs and IL-15/IL-15Rα-Fc complexes, and try to foreshadow their potential in immunological research and immunotherapy.
Collapse
|
17
|
Marrero B, Shirley S, Heller R. Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival. Technol Cancer Res Treat 2013; 13:551-60. [PMID: 24000979 PMCID: PMC4527479 DOI: 10.7785/tcrtexpress.2013.600252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electroporation (EP) is a method used to physically deliver therapeutic molecules such as plasmid DNA directly to tissues. It has been used safely and successfully in clinical studies and preclinical cancer models to deliver genes to a variety of tissues. In cancer research cytokine therapy is emerging as a promising tool that can be used to boost the host response to tumor antigens. The delivery of cytokines as recombinant proteins can result in toxicity and other adverse effects; however the delivery of cytokine genes using EP has been shown to be safe and effective. Interleukin 15 (IL-15) is a cytokine that promotes the innate as well as the adaptive immune response to cancer cells and bacterial pathogens. In this study we used EP to deliver a human IL-15 plasmid (phIL-15) directly to tumors to examine its anti-cancer effects. B16.F10 melanoma tumors were induced in C57BL/6J mice and phIL-15 was delivered three times over the course of a week. Expression of the transgene, tumor volume, long-term survival and resistance to challenge were monitored in these animals. Delivery of IL-15 plasmid by EP resulted in increased IL-15 expression within the tumor compared to the injection only control. This expression peaked at 12 to 18 hours after the first delivery and was sustained at lower levels after the second and third deliveries. The delivery of the phIL-15 resulted in tumor regression, long-term survival and greater protection against tumor recurrence when cancer cells were reintroduced compared to control plasmid. From these results we can conclude that the delivery of IL-15 plasmid to tumors using EP is a promising avenue to investigate for its anti-tumor effects, however more work needs to be done to increase the stability of the gene once it is delivered and to elucidate the anti-tumor mechanism.
Collapse
Affiliation(s)
- Bernadette Marrero
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33613, USA.
| | | | | |
Collapse
|
18
|
Ouyang S, Hsuchou H, Kastin AJ, Pan W. TNF stimulates nuclear export and secretion of IL-15 by acting on CRM1 and ARF6. PLoS One 2013; 8:e69356. [PMID: 23950892 PMCID: PMC3737262 DOI: 10.1371/journal.pone.0069356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 12/03/2022] Open
Abstract
Interleukin (IL)-15 is a ubiquitously expressed cytokine that in the basal state is mainly localized intracellularly, including the nucleus. Unexpectedly, tumor necrosis factor-α (TNF) time-dependently induced nuclear export of IL-15Rα and IL15. This process was inhibited by leptomycine B (LMB), a specific inhibitor of nuclear export receptor chromosomal region maintenance 1 (CRM1). In the presence of TNF, LMB co-treatment led to accumulation of both IL-15Rα and IL-15 in the nucleus of HeLa cells, suggesting that CRM1 facilitates nuclear export and that TNF enhances CRM1 activity. Once in the cytoplasm, IL-15 showed partial co-localization with late endosomes but very little with other organelles tested 4 h after TNF treatment. IL-15Rα showed co-localization with both early and late endosomes, and to a lesser extent with endoplasmic reticulum and Golgi. This indicates different kinetics and possibly different trafficking routes of IL-15 from its specific receptor. The TNF-induced secretion of IL-15 was attenuated by pretreatment of cells by brefeldin A that inhibits ER-to-Golgi transport, or by use of domain negative ADP-ribosylation factor 6 (ARF6) that interferes with exocytotic sorting. We conclude that TNF abolishes nuclear localization of IL-15 and IL-15Rα by acting on CRM1, and it facilitates exocytosis of IL-15 with the involvement of ARF6.
Collapse
Affiliation(s)
- Suidong Ouyang
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Abba J. Kastin
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, Louisana, United States of America
| |
Collapse
|
19
|
Choi J, Lee ES, Choi B, Sohn S. Therapeutic potency of Poly I:C in HSV-induced inflammation through up-regulation of IL-15 receptor alpha. Immunobiology 2013; 218:1119-30. [PMID: 23618691 DOI: 10.1016/j.imbio.2013.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
Abstract
Interleukin-15 receptor alpha (IL-15Rα) forms stable complex with IL-15 on the cell surface of activated monocytes and mediates the proliferation of memory CD8+ T cells. Recent studies informed that polyinosinic:polycytidylic acid (Poly I:C) is an immunostimulant which boosts the generation of memory T cells through induction of IL-15Rα. The aim of this study is to evaluate the relevance of IL-15Rα in Herpes simplex virus (HSV)-induced Behçet's disease (BD) mouse model and BD patients. The frequencies of IL-15Rα expression in PBMCs of BD patients and BD-like symptomatic mice were analyzed by flow cytometry. In addition, Poly I:C supplementation could reduce inflammation through the up-regulation of memory T cells and IL-15Rα+ cells accompany with down-regulation of pro-inflammatory cytokine, IL-17A in BD mice. In BD patients, the frequencies of IL-15Rα expression in PBMCs were also significantly different between the inactive and active disease states. These results suggest that IL-15Rα is a relevant factor in BD.
Collapse
Affiliation(s)
- Juyoung Choi
- Laboratory of Cell Biology, Institute for Medical Sciences, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Liver gene transfer of interkeukin-15 constructs that become part of circulating high density lipoproteins for immunotherapy. PLoS One 2012; 7:e52370. [PMID: 23285013 PMCID: PMC3528770 DOI: 10.1371/journal.pone.0052370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein A-I (Apo A-I) is a major component of high density lipoproteins (HDL) that transport cholesterol in circulation. We have constructed an expression plasmid encoding a chimeric molecule encompassing interleukin-15 (IL-15) and Apo A-I (pApo-hIL15) that was tested by hydrodynamic injections into mice and was co-administered with a plasmid encoding the sushi domain of IL-15Rα (pSushi) in order to enhance IL-15 trans-presentation and thereby bioactivity. The pharmacokinetics of the Apo A-I chimeric protein were much longer than non-stabilized IL-15 and its bioactivity was enhanced in combination with IL-15Rα Sushi. Importantly, the APO-IL-15 fusion protein was incorporated in part into circulating HDL. Liver gene transfer of these constructs increased NK and memory-phenotype CD8 lymphocyte numbers in peripheral blood, spleen and liver as a result of proliferation documented by CFSE dilution and BrdU incorporation. Moreover, the gene transfer procedure partly rescued the NK and memory T-cell deficiency observed in IL-15Rα−/− mice. pApo-hIL15+ pSushi gene transfer to the liver showed a modest therapeutic activity against subcutaneously transplanted MC38 colon carcinoma tumors, that was more evident when tumors were set up as liver metastases. The improved pharmacokinetic profile and the strong biological activity of APO-IL-15 fusion protein holds promise for further development in combination with other immunotherapies.
Collapse
|
21
|
Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F. Novel identified receptors on mast cells. Front Immunol 2012; 3:238. [PMID: 22876248 PMCID: PMC3410575 DOI: 10.3389/fimmu.2012.00238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MC) are major participants in the allergic reaction. In addition they possess immunomodulatory roles in the innate and adaptive immune reactions. Their functions are modulated through a number of activating and inhibitory receptors expressed on their surface. This review deals with some of the most recently described receptors, their expression patterns, ligand(s), signal transduction mechanisms, possible cross-talk with other receptors and, last but not least, regulatory functions that the MC can perform based on their receptor expression in health or in disease. Where the receptor role on MC is still not clear, evidences from other hematopoietic cells expressing them is provided as a possible insight for their function on MC. Suggested strategies to modulate these receptors’ activity for the purpose of therapeutic intervention are also discussed.
Collapse
Affiliation(s)
- Helena Migalovich-Sheikhet
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Kermer V, Baum V, Hornig N, Kontermann RE, Müller D. An antibody fusion protein for cancer immunotherapy mimicking IL-15 trans-presentation at the tumor site. Mol Cancer Ther 2012; 11:1279-88. [PMID: 22491823 DOI: 10.1158/1535-7163.mct-12-0019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytokines driving the immune response are powerful tools for cancer immunotherapy, but their application is generally limited by severe systemic toxicity. Targeted approaches by means of antibody-cytokine fusion proteins might enable focus on the cytokine activity to the tumor site, thereby reducing unwanted side effects. Here, we investigated the possibility to improve the efficiency of interleukin (IL)-15 presentation in a targeted approach by the incorporation of an IL-15Rα chain fragment, mimicking physiologic trans-presentation. Therefore, an antibody cytokine fusion protein (scFv_RD_IL-15) composed of an antibody moiety targeting the tumor stromal fibroblast activation protein (FAP), an extended IL-15Rαsushi domain (RD) and IL-15 was generated, exhibiting antibody-mediated specific binding and cytokine activity in soluble and targeted form. Comparative analysis with a corresponding antibody fusion protein devoid of RD (scFv_IL-15) showed for scFv_RD_IL-15 in solution enhanced stimulatory activity on Mo7e (IL-15Rβγ) cells and reduced proliferation response on CTLL-2 (IL-15Rαβγ) cells, while in FAP-targeted, that is, membrane-bound form, comparable proliferation of CTLL-2 (IL-15Rαβγ) cells was obtained. In addition, scFv_RD_IL-15 achieved in its soluble and target-bound form stronger proliferation and cytotoxicity on unstimulated and activated T cells, respectively. Furthermore, in vivo analysis in a lung metastasis tumor mouse model revealed a superior antitumor effect for scFv_RD_IL-15 in comparison with that obtained by an untargeted or RD missing version of IL-15 fusion protein. Thus, tumor-directed trans-presentation of IL-15 in association with RD in form of an antibody fusion protein seems to be a promising approach to further improve the antitumor effect of IL-15.
Collapse
Affiliation(s)
- Vanessa Kermer
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
23
|
Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel) 2011; 3:3856-93. [PMID: 24213115 PMCID: PMC3763400 DOI: 10.3390/cancers3043856] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 02/06/2023] Open
Abstract
Cytokines are molecular messengers that allow the cells of the immune system to communicate with one another to generate a coordinated, robust, but self-limited response to a target antigen. The growing interest over the past two decades in harnessing the immune system to eradicate cancer has been accompanied by heightened efforts to characterize cytokines and exploit their vast signaling networks to develop cancer treatments. The goal of this paper is to review the major cytokines involved in cancer immunotherapy and discuss their basic biology and clinical applications. The paper will also describe new cytokines in pre-clinical development, combinations of biological agents, novel delivery mechanisms, and potential directions for future investigation using cytokines.
Collapse
Affiliation(s)
- Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kim Margolin
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; E-Mail:
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Viral Interleukin-6: Structure, pathophysiology and strategies of neutralization. Eur J Cell Biol 2011; 90:495-504. [DOI: 10.1016/j.ejcb.2010.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022] Open
|
25
|
The pro- and anti-inflammatory properties of the cytokine interleukin-6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:878-88. [PMID: 21296109 DOI: 10.1016/j.bbamcr.2011.01.034] [Citation(s) in RCA: 2235] [Impact Index Per Article: 159.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Interleukin-6 is a cytokine not only involved in inflammation and infection responses but also in the regulation of metabolic, regenerative, and neural processes. In classic signaling, interleukin-6 stimulates target cells via a membrane bound interleukin-6 receptor, which upon ligand binding associates with the signaling receptor protein gp130. Gp130 dimerizes, leading to the activation of Janus kinases and subsequent phosphorylation of tyrosine residues within the cytoplasmic portion of gp130. This leads to the engagement of phosphatase Src homology domains containing tyrosin phosphatase-2 (SHP-2) and activation of the ras/raf/Mitogen-activated protein (MAP) kinase (MAPK) pathway. In addition, signal transducer and activator of transcription factors are recruited, which are phosphorylated, and consequently dimerize whereupon they translocate into the nucleus and activate target genes. Interestingly, only few cells express membrane bound interleukin-6 receptor whereas all cells display gp130 on the cell surface. While cells, which only express gp130, are not responsive to interleukin-6 alone, they can respond to a complex of interleukin-6 bound to a naturally occurring soluble form of the interleukin-6 receptor. Therefore, the generation of soluble form of the interleukin-6 receptor dramatically enlarges the spectrum of interleukin-6 target cells. This process has been named trans-signaling. Here, we review the involvement of both signaling modes in the biology of interleukin-6. It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interleukin-6 are rather mediated by trans-signaling. This is important since therapeutic blockade of interleukin-6 by the neutralizing anti-interleukin-6 receptor monoclonal antibody tocilizumab has recently been approved for the treatment of inflammatory diseases. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
26
|
Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation 2011; 90:1401-8. [PMID: 21085059 DOI: 10.1097/tp.0b013e3182000085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acute rejection (AR) is associated with worse renal allograft outcomes. Therefore, this study investigated single-nucleotide polymorphisms (SNPs) to identify genetic variants associated with AR, accounting for center variation, in a multicenter, prospective, observation study. METHODS We enrolled patients from six transplant centers, five in the United States and one in Canada. A total of 2724 SNPs were genotyped. We accounted for center variation in AR rates by stratifying by transplant center and using novel knowledge discovery methods. RESULTS There was significant center variation in AR rates across the six transplant sites (P<0.0001). Accounting for this difference and clinical factors independently associated with AR, we identified 15 novel SNPs associated with AR with stratification by transplant center (P<0.05). We also identified 15 novel SNPs associated with severity of tubulitis scores, after adjusting for transplant center and other clinical factors independently associated with severity of tubulitis (P<0.05). There was some overlap with one SNP associated with AR and also associated with severity of tubulitis, among the top 15 SNPs. CONCLUSION Center-to-center variation is a major challenge to genomic studies focused on AR. The SNPs associated with AR and severity of tubulitis in this study will need to be validated in independent cohort of kidney transplant recipients.
Collapse
|
27
|
Suthaus J, Tillmann A, Lorenzen I, Bulanova E, Rose-John S, Scheller J. Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. Mol Biol Cell 2010; 21:2797-807. [PMID: 20554759 PMCID: PMC2912364 DOI: 10.1091/mbc.e10-03-0240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a novel strategy to enforce cytokine-independent, constitutive signaling of heterodimeric gp130 receptor complexes. Replacing the extracellular domain of gp130-type receptors by IL-15/IL-15R is sufficient to heterodimerize gp130-like receptors and as a consequence leading to sustained cytokine-independent receptor activation. Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15Rα-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR, and OSMR and of OSMR with GPL led to constitutive, ligand-independent STAT1 and/or STAT3 and ERK1/2 phosphorylation. Moreover, these receptor combinations induced transcription of the STAT3 target genes c-myc and Pim-1 and factor-independent growth of stably transduced Ba/F3-gp130 cells. Here, we establish the IL-15/IL-15Rα-sushi system as a new system to mimic constitutive and ligand-independent activation of homo- and heterodimeric receptor complexes, which might be applicable to other heterodimeric receptor families. A mutated IL-15 protein, which was still able to bind the IL-15Rα-sushi domain, but not to β- and γ-receptor chains, in combination with the 2A peptide technology may be used to translate our in vitro data into the in vivo situation to assess the tumorigenic potential of gp130-heterodimeric receptor complexes.
Collapse
Affiliation(s)
- Jan Suthaus
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Eini H, Tejman-Yarden N, Lewis EC, Chaimovitz C, Zlotnik M, Douvdevani A. Association Between Renal Injury and Reduced Interleukin-15 and Interleukin-15 Receptor Levels in Acute Kidney Injury. J Interferon Cytokine Res 2010; 30:1-8. [DOI: 10.1089/jir.2009.0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hadar Eini
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Tejman-Yarden
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C. Lewis
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Cidio Chaimovitz
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| | - Moshe Zlotnik
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| | - Amos Douvdevani
- Clinical Biochemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Nephrology Department, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
29
|
Stonier SW, Schluns KS. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett 2009; 127:85-92. [PMID: 19818367 DOI: 10.1016/j.imlet.2009.09.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-15 is a cytokine that acts on a wide range of cell types but is most crucial for the development, homeostasis, and function of a specific group of immune cells that includes CD8 T cells, NK cells, NKT cells, and CD8 alpha alpha intraepithelial lymphocytes. IL-15 signals are transmitted through the IL-2/15R beta and common gamma (gamma C) chains; however, it is the delivery of IL-15 to these signaling components that is quite unique. As opposed to other cytokines that are secreted, IL-15 primarily exists bound to the high affinity IL-15R alpha. When IL-15/IL-15R alpha complexes are shuttled to the cell surface, they can stimulate opposing cells through the beta/gamma C receptor complex. This novel mechanism of IL-15 delivery has been called trans-presentation. This review discusses how the theory of trans-presentation came to be, evidence that it is the major mechanism of action, the current understanding of the cell types thought to mediate trans-presentation, and possible alternatives for IL-15 delivery.
Collapse
Affiliation(s)
- Spencer W Stonier
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Abstract
Recent structural information for complexes of cytokine receptor ectodomains bound to their ligands has significantly expanded our understanding of the macromolecular topology and ligand recognition mechanisms used by our three principal shared cytokine signaling receptors-gp130, gamma(c), and beta(c). The gp130 family receptors intricately coordinate three structurally unique cytokine-binding sites on their four-helix bundle cytokine ligands to assemble multimeric signaling complexes. These organizing principles serve as topological blueprints for the entire gp130 family of cytokines. Novel structures of gamma(c) and beta(c) complexes show us new twists, such as the use of a nonstandard sushi-type alpha receptors for IL-2 and IL-15 in assembling quaternary gamma(c) signaling complexes and an antiparallel interlocked dimer in the GM-CSF signaling complex with beta(c). Unlike gp130, which appears to recognize vastly different cytokine surfaces in chemically unique fashions for each ligand, the gamma(c)-dependent cytokines appear to seek out some semblance of a knobs-in-holes shape recognition code in order to engage gamma(c) in related fashions. We discuss the structural similarities and differences between these three shared cytokine receptors, as well as the implications for transmembrane signaling.
Collapse
Affiliation(s)
- Xinquan Wang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
31
|
Bo H, Wei XQ, Dong H, Zhang Y, Lv P, Liu W, Koutoulaki A, Gao XM. Elevated expression of transmembrane IL-15 in immune cells correlates with the development of murine lupus: a potential target for immunotherapy against SLE. Scand J Immunol 2009; 69:119-29. [PMID: 19170964 DOI: 10.1111/j.1365-3083.2008.02197.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presentation in trans by the Interleukin-15 receptor alpha chain (IL-15Ralpha) has been suggested as the main mechanism for IL-15 anchoring to the cell surface, but it is also evident that IL-15 can exist as a transmembrane protein. We herein demonstrate that replacement of the first 41 residues of human IL-15 (hIL-15) with Igkappa chain leader sequence resulted in secretion of most of the recombinant hIL-15 expressed in transfectant cells, thus identifying the transmembrane region of IL-15. A fusion protein (hIL-15Ralpha-Fc) between the extracellular domain of hIL-15Ralpha and the Fc fragment of IgG1 was prepared and shown to be able to bind with transmembrane IL-15 (tmIL-15). The level of tmIL-15 expression in macrophages, activated T cells and B cells from 6-month-old BXSB male mice, an animal model for systemic lupus erythematosus (SLE), was significantly increased compared with that from BXSB females or young males. In addition, hIL-15Ralpha-Fc was able to block the T cell stimulating and anti-apoptotic effect of the tmIL-15-positive BXSB macrophages in vitro. Intravenous administration of hIL-15Ralpha-Fc reduced the titre of autoantibodies against dsDNA and also proteinuria in aged BXSB males, implying that neutralization of IL-15 activity in vivo may be an effective way of treating SLE.
Collapse
Affiliation(s)
- H Bo
- Department of Immunology, Peking University Health Science Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol Cell Biol 2008; 28:4851-61. [PMID: 18505820 DOI: 10.1128/mcb.02178-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that receptors for secreted cytokines transmit ligand-induced signals, little is known about additional roles for cytokine receptor components in the control of ligand transport and secretion. Here, we show that interleukin-15 (IL-15) translocation into the endoplasmic reticulum occurs independently of the presence of IL-15 receptor alpha (IL-15R alpha). Subsequently, however, IL-15 is transported through the Golgi apparatus only in association with IL-15R alpha and then is secreted. This intracellular IL-15/IL-15R alpha complex already is formed in the endoplasmic reticulum and, thus, enables the further trafficking of complexed IL-15 through the secretory pathway. Just transfecting IL-15R alpha in cells, which transcribe but normally do not secrete IL-15, suffices to induce IL-15 secretion. Thus, we provide the first evidence of how a cytokine is chaperoned through the secretory pathway by complexing with its own high-affinity receptor and show that IL-15/IL-15R alpha offers an excellent model system for the further exploration of this novel mechanism for the control of cytokine secretion.
Collapse
|
33
|
Carroll HP, Paunovic V, Gadina M. Signalling, inflammation and arthritis: Crossed signals: the role of interleukin-15 and -18 in autoimmunity. Rheumatology (Oxford) 2008; 47:1269-77. [DOI: 10.1093/rheumatology/ken257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
A biophysical approach to IL-2 and IL-15 receptor function: localization, conformation and interactions. Immunol Lett 2008; 116:117-25. [PMID: 18280585 DOI: 10.1016/j.imlet.2007.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 12/30/2007] [Indexed: 12/25/2022]
Abstract
Interleukin-2 and interleukin-15 (IL-2, IL-15) are key participants in T and NK cell activation and function. Sharing the beta and gamma receptor subunits results in several common functions: e.g. the promotion of T cell proliferation. On the other hand, due to their distinct alpha receptor subunits, they also play opposing roles in immune processes such as activation induced cell death and immunological memory. Divergence of signaling pathways must ensue already at the plasma membrane where the cytokines interact with their receptors. Therefore understanding molecular details of receptor organization and mapping interactions with other membrane proteins that might influence receptor conformation and function, are of key importance. Biophysical/advanced microscopic methods (fluorescence resonance energy transfer (FRET), fluorescence crosscorrelation spectroscopy (FCCS), near-field scanning optical microscopy (NSOM), X-ray crystallography, surface plasmon resonance, NMR spectroscopy) have been instrumental in clarifying the details of receptor structure and organization from the atomic level to the assembly and dynamics of supramolecular clusters. In this short review some important contributions shaping our current view of IL-2 and IL-15 receptors are presented.
Collapse
|
35
|
Olsen SK, Ota N, Kishishita S, Kukimoto-Niino M, Murayama K, Uchiyama H, Toyama M, Terada T, Shirouzu M, Kanagawa O, Yokoyama S. Crystal Structure of the interleukin-15.interleukin-15 receptor alpha complex: insights into trans and cis presentation. J Biol Chem 2007; 282:37191-204. [PMID: 17947230 DOI: 10.1074/jbc.m706150200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-15 is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is unique among cytokines due to its participation in a trans signaling mechanism in which IL-15 receptor alpha (IL-15Ralpha) from one subset of cells presents IL-15 to neighboring IL-2Rbeta/gammac-expressing cells. Here we present the crystal structure of IL-15 in complex with the sushi domain of IL-15Ralpha. The structure reveals that the alpha receptor-binding epitope of IL-15 adopts a unique conformation, which, together with amino acid substitutions, permits specific interactions with IL-15Ralpha that account for the exceptionally high affinity of the IL-15.IL-15Ralpha complex. Interestingly, analysis of the topology of IL-15 and IL-15Ralpha at the IL-15.IL-15Ralpha interface suggests that IL-15 should be capable of participating in a cis signaling mechanism similar to that of the related cytokine IL-2. Indeed, we present biochemical data demonstrating that IL-15 is capable of efficiently signaling in cis through IL-15Ralpha and IL-2Rbeta/gammac expressed on the surface of a single cell. Based on our data we propose that cis presentation of IL-15 may be important in certain biological contexts and that flexibility of IL-15Ralpha permits IL-15 and its three receptor components to be assembled identically at the ligand-receptor interface whether IL-15 is presented in cis or trans. Finally, we have gained insights into IL-15.IL-15Ralpha.IL-2Rbeta.gammac quaternary complex assembly through the use of molecular modeling.
Collapse
Affiliation(s)
- Shaun K Olsen
- RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hanick NA, Rickert M, Varani L, Bankovich AJ, Cochran JR, Kim DM, Surh CD, Garcia KC. Elucidation of the interleukin-15 binding site on its alpha receptor by NMR. Biochemistry 2007; 46:9453-61. [PMID: 17655329 DOI: 10.1021/bi700652f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytokine interleukin-15 (IL-15) signals through the formation of a quaternary receptor complex composed of an IL-15-specific alpha receptor, together with beta and gammac receptors that are shared with interleukin-2 (IL-2). The initiating step in the formation of this signaling complex is the interaction between IL-15 and IL-15Ralpha, which is a single sushi domain bearing strong structural homology to one of the two sushi domains of IL-2Ralpha. The crystal structure of the IL2-Ralpha/IL-2 complex has been determined, however little is known about the analogous IL-15Ralpha/IL-15 binding interaction. Here we show that recombinant IL-15 can be overexpressed as a stable complex in the presence of its high affinity receptor, IL-15Ralpha. We find that this complex is 10-fold more active than IL-15 alone in stimulating proliferation and survival of memory phenotype CD8 T cells. To probe the ligand/receptor interface, we used solution NMR to map chemical shifts on 15N-labeled IL-15Ralpha in complex with unlabeled IL-15. Our results predict that the binding surface on IL-15Ralpha involves strands C and D, similar to IL-2Ralpha. The interface, as predicted here, leaves open the possibility of trans-presentation of IL-15 by IL-15Ralpha on an opposing cell.
Collapse
Affiliation(s)
- Nicole A Hanick
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chirifu M, Hayashi C, Nakamura T, Toma S, Shuto T, Kai H, Yamagata Y, Davis SJ, Ikemizu S. Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat Immunol 2007; 8:1001-7. [PMID: 17643103 DOI: 10.1038/ni1492] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 06/20/2007] [Indexed: 12/11/2022]
Abstract
Interleukin 15 (IL-15) and IL-2, which promote the survival of memory CD8(+) T cells and regulatory T cells, respectively, bind receptor complexes that share beta- and gamma-signaling subunits. Receptor specificity is provided by unique, nonsignaling alpha-subunits. Whereas IL-2 receptor-alpha (IL-2Ralpha) is expressed together in cis with the beta- and gamma-subunits on T cells and B cells, IL-15Ralpha is expressed in trans on antigen-presenting cells. Here we present a 1.85-A crystal structure of the human IL-15-IL-15Ralpha complex. The structure provides insight into the molecular basis of the specificity of cytokine recognition and emphasizes the importance of water in generating this very high-affinity complex. Despite very low IL-15-IL-2 sequence homology and distinct receptor architecture, the topologies of the IL-15-IL-15Ralpha and IL-2-IL-2Ralpha complexes are very similar. Our data raise the possibility that IL-2, like IL-15, might be capable of being presented in trans in the context of its unique receptor alpha-chain.
Collapse
Affiliation(s)
- Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 2007; 6:1899-916. [PMID: 17391015 PMCID: PMC2588346 DOI: 10.1021/pr060393m] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.
Collapse
Affiliation(s)
- Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- CORRESPONDING AUTHOR FOOTNOTE: Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
39
|
Rafei M, Wu JH, Annabi B, Lejeune L, François M, Galipeau J. A GMCSF and IL-15 fusokine leads to paradoxical immunosuppression in vivo via asymmetrical JAK/STAT signaling through the IL-15 receptor complex. Blood 2006; 109:2234-42. [PMID: 17082320 DOI: 10.1182/blood-2006-07-037473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AbstractWe hypothesized that a granulocyte macrophage colony-stimulating factor (GMCSF) and interleukin 15 (IL-15) fusokine (GIFT15) would possess greater immune-stimulatory properties than their combined use. Unexpectedly, tumor cells engineered to secrete GIFT15 protein led to suppression of natural killer (NK) and NKT-cell recruitment in vivo, suggesting an unanticipated immune-suppressive effect. We found GIFT15 to have pleiotropic effects on an array of immune-competent cells. Among these, macrophages treated with GIFT15 secrete de novo the tissue inhibitor of metalloproteinase-2 (TIMP-2); activated matrix metalloproteinase-2 (MMP-2); transforming growth factor-β (TGF-β); as well as vascular endothelial growth factor (VEGF). We show that the GIFT15 fusokine has increased affinity for the α chain component of the IL-15R, leading to aberrant signaling through the β chain manifested by the hyperphosphorylation of STAT3 both in macrophages and splenocytes. Suppression of common γ chain–mediated STAT5 phosphorylation and blockade of the IL-15–dependent IFN-γ response in mouse splenocytes were also observed. We tested GIFT15 as an immunosuppressor and demonstrated that it allowed engraftment of allogeneic B16F0 and human xenograft U87GM glioma cells in immunocompetent mice. Thus, GIFT15 defines a new class of fusokine that mediates proangiogenic and immunosuppressive effects via aberrant signaling by the IL-15R in lymphomyeloid cells.
Collapse
Affiliation(s)
- Moutih Rafei
- Montreal Centre for Experimental Therapeutics in Cancer, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Hecht O, Dingley AJ, Schwanter A, Ozbek S, Rose-John S, Grötzinger J. The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor. Biol Chem 2006; 387:1255-9. [PMID: 16972794 DOI: 10.1515/bc.2006.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate α-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.
Collapse
Affiliation(s)
- Oliver Hecht
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci U S A 2006; 103:9166-71. [PMID: 16757567 PMCID: PMC1482584 DOI: 10.1073/pnas.0600240103] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IL-15 is normally presented in vivo as a cell-associated cytokine bound to IL-15Ralpha. We show here that the biological activity of soluble IL-15 is much improved after interaction with recombinant soluble IL-15Ralpha; after injection, soluble IL-15/IL-15Ralpha complexes rapidly induce strong and selective expansion of memory-phenotype CD8(+) cells and natural killer cells. These findings imply that binding of IL-15Ralpha to IL-15 may create a conformational change that potentiates IL-15 recognition by the betagamma(c) receptor on T cells. The enhancing effect of IL-15Ralpha binding may explain why IL-15 normally functions as a cell-associated cytokine. Significantly, the results with IL-2, a soluble cytokine, are quite different; thus, IL-2 function is markedly inhibited by binding to soluble IL-2Ralpha.
Collapse
Affiliation(s)
- Mark P. Rubinstein
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Marek Kovar
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jared F. Purton
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jae-Ho Cho
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia; and
| | - Onur Boyman
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Charles D. Surh
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jonathan Sprent
- *Department of Immunology, IMM4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|