1
|
Drobiazko A, Adams MC, Skutel M, Potekhina K, Kotovskaya O, Trofimova A, Matlashov M, Yatselenko D, Maxwell KL, Blower TR, Severinov K, Ghilarov D, Isaev A. Molecular basis of foreign DNA recognition by BREX anti-phage immunity system. Nat Commun 2025; 16:1825. [PMID: 39979294 PMCID: PMC11842806 DOI: 10.1038/s41467-025-57006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Anti-phage systems of the BREX (BacteRiophage EXclusion) superfamily rely on site-specific epigenetic DNA methylation to discriminate between the host and invading DNA. We demonstrate that in Type I BREX systems, defense and methylation require BREX site DNA binding by the BrxX (PglX) methyltransferase employing S-adenosyl methionine as a cofactor. We determined 2.2-Å cryoEM structure of Escherichia coli BrxX bound to target dsDNA revealing molecular details of BREX DNA recognition. Structure-guided engineering of BrxX expands its DNA specificity and dramatically enhances phage defense. We show that BrxX alone does not methylate DNA, and BREX activity requires an assembly of a supramolecular BrxBCXZ immune complex. Finally, we present a cryoEM structure of BrxX bound to a phage-encoded inhibitor Ocr that sequesters BrxX in an inactive dimeric form. We propose that BrxX-mediated foreign DNA sensing is a necessary first step in activation of BREX defense.
Collapse
Affiliation(s)
- Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Myfanwy C Adams
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Anna Trofimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Waksman Institute of Microbiology, Piscataway, NJ, USA.
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Wang B, Solinski AE, Radle MI, Peduzzi OM, Knox HL, Cui J, Maurya RK, Yennawar NH, Booker SJ. Structural Evidence for DUF512 as a Radical S-Adenosylmethionine Cobalamin-Binding Domain. ACS BIO & MED CHEM AU 2024; 4:319-330. [PMID: 39712206 PMCID: PMC11659888 DOI: 10.1021/acsbiomedchemau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/24/2024]
Abstract
Cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes constitute a large subclass of radical SAM (RS) enzymes that use Cbl to catalyze various types of reactions, the most common of which are methylations. Most Cbl-dependent RS enzymes contain an N-terminal Rossmann fold that aids Cbl binding. Recently, it has been demonstrated that the methanogenesis marker protein 10 (Mmp10) requires Cbl to methylate an arginine residue in the α-subunit of methyl coenzyme M reductase. However, Mmp10 contains a Cbl-binding domain in the C-terminal region of its primary structure that does not share significant sequence similarity with canonical RS Cbl-binding domains. Bioinformatic analysis of Mmp10 identified DUF512 (Domain of Unknown Function 512) as a potential Cbl-binding domain in RS enzymes. In this paper, four randomly selected DUF512-containing proteins from various organisms were overexpressed, purified, and shown to bind Cbl. X-ray crystal structures of DUF512-containing proteins from Clostridium sporogenes and Pyrococcus furiosus were determined, confirming their C-terminal Cbl-binding domains. The structure of the DUF512-containing protein from C. sporogenes is the first of an RS enzyme containing a PDZ domain. Its RS domain has an unprecedented β3α4 core, whereas most RS enzymes adopt a (βα)6 core. The DUF512-containing protein from P. furiosus has no PDZ domain, but its RS domain also has an uncommon (βα)5 core.
Collapse
Affiliation(s)
- Bo Wang
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy E. Solinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew I. Radle
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Olivia M. Peduzzi
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiayuan Cui
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ravi K. Maurya
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neela H. Yennawar
- The
Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Howard
Hughes Medical Institute, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Chaffin TA, Wang W, Chen JG, Chen F. Function and Evolution of the Plant MES Family of Methylesterases. PLANTS (BASEL, SWITZERLAND) 2024; 13:3364. [PMID: 39683156 DOI: 10.3390/plants13233364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Land plant evolution has been marked by numerous genetic innovations, including novel catalytic reactions. Plants produce various carboxyl methyl esters using carboxylic acids as substrates, both of which are involved in diverse biological processes. The biosynthesis of methyl esters is catalyzed by SABATH methyltransferases, and understanding of this family has broadened in recent years. Meanwhile, the enzymes catalyzing demethylation-known as methylesterases (MESs)-have received less attention. Here, we present a comprehensive review of the plant MES family, focusing on known biochemical and biological functions, and evolution in the plant kingdom. Thirty-two MES genes have been biochemically characterized, with substrates including methyl esters of plant hormones and several other specialized metabolites. One characterized member demonstrates non-esterase activity, indicating functional diversity in this family. MES genes regulate biological processes, including biotic and abiotic defense, as well as germination and root development. While MES genes are absent in green algae, they are ubiquitous among the land plants analyzed. Extant MES genes belong to three groups of deep origin, implying ancient gene duplication and functional divergence. Two of these groups have yet to have any characterized members. Much remains to be uncovered about the enzymatic functions, biological roles, and evolution of the MES family.
Collapse
Affiliation(s)
- Timothy A Chaffin
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Weijiao Wang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Hu Z, Chin Y, Yuan C, Ge Y, Hang Y, Wang D, Yao Q, Hu Y. The luxS deletion reduces the spoilage ability of Shewanella putrefaciens: An analysis focusing on quorum sensing and activated methyl cycle. Food Microbiol 2024; 120:104467. [PMID: 38431319 DOI: 10.1016/j.fm.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
The luxS mutant strains of Shewanella putrefaciens (SHP) were constructed to investigate the regulations of gene luxS in spoilage ability. The potential regulations of AI-2 quorum sensing (QS) system and activated methyl cycle (AMC) were studied by analyzing the supplementation roles of key circulating substances mediated via luxS, including S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), homocysteine (Hcy) and 4,5-dihydroxy-2,3-pentanedione (DPD). Growth experiments revealed that the luxS deletion led to certain growth limitations of SHP, which were associated with culture medium and exogenous additives. Meanwhile, the decreased biofilm formation and diminished hydrogen sulfide (H2S) production capacity of SHP were observed after luxS deletion. The relatively lower total volatile base nitrogen (TVB-N) contents and higher sensory scores of fish homogenate with luxS mutant strain inoculation also indicated the weaker spoilage-inducing effects after luxS deletion. However, these deficiencies could be offset with the exogenous supply of circulating substances mentioned above. Our findings suggested that the luxS deletion would reduce the spoilage ability of SHP, which was potentially attributed to the disorder of AMC and AI-2 QS system.
Collapse
Affiliation(s)
- Zhiheng Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China; United Graduate School of Agricultural Sciences, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan
| | - Yingliang Ge
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Yuyu Hang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Dongxue Wang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| |
Collapse
|
8
|
Ji M, Xu Q, Li X. Dietary methionine restriction in cancer development and antitumor immunity. Trends Endocrinol Metab 2024; 35:400-412. [PMID: 38383161 PMCID: PMC11096033 DOI: 10.1016/j.tem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Methionine restriction (MR) has been shown to suppress tumor growth and improve the responses to various anticancer therapies. However, methionine itself is required for the proliferation, activation, and differentiation of T cells that are crucial for antitumor immunity. The dual impact of methionine, that influences both tumor and immune cells, has generated concerns regarding the potential consequences of MR on T cell immunity and its possible role in promoting cancer. In this review we systemically examine current literature on the interactions between dietary methionine, cancer cells, and immune cells. Based on recent findings on MR in immunocompetent animals, we further discuss how tumor stage-specific methionine dependence of immune cells and cancer cells in the tumor microenvironment could ultimately dictate the response of tumors to MR.
Collapse
Affiliation(s)
- Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
9
|
Wang JZ, Lyon WL, MacMillan DWC. Alkene dialkylation by triple radical sorting. Nature 2024; 628:104-109. [PMID: 38350601 PMCID: PMC11474584 DOI: 10.1038/s41586-024-07165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.
Collapse
Affiliation(s)
- Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - William L Lyon
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
10
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
11
|
Zou Y, Yuan Y, Zhou Q, Yue Z, Liu J, Fan L, Xu H, Xin L. The Role of Methionine Restriction in Gastric Cancer: A Summary of Mechanisms and a Discussion on Tumor Heterogeneity. Biomolecules 2024; 14:161. [PMID: 38397398 PMCID: PMC10887009 DOI: 10.3390/biom14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is ranked as the fifth most prevalent cancer globally and has long been a topic of passionate discussion among numerous individuals. However, the incidence of gastric cancer in society has not decreased, but instead has shown a gradual increase in recent years. For more than a decade, the treatment effect of gastric cancer has not been significantly improved. This is attributed to the heterogeneity of cancer, which makes popular targeted therapies ineffective. Methionine is an essential amino acid, and many studies have shown that it is involved in the development of gastric cancer. Our study aimed to review the literature on methionine and gastric cancer, describing its mechanism of action to show that tumor heterogeneity in gastric cancer does not hinder the effectiveness of methionine-restricted therapies. This research also aimed to provide insight into the inhibition of gastric cancer through metabolic reprogramming with methionine-restricted therapies, thereby demonstrating their potential as adjuvant treatments for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang 330006, China; (Y.Z.); (Y.Y.); (Q.Z.); (Z.Y.); (J.L.); (L.F.); (H.X.)
| |
Collapse
|
12
|
Zhang C, Seyedsayamdost MR. Widespread Peptide Surfactants with Post-translational C-methylations Promote Bacterial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576971. [PMID: 38328144 PMCID: PMC10849626 DOI: 10.1101/2024.01.23.576971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2024]
Abstract
Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions, and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein, we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporin is wide-spread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
13
|
Sun M, Peng Z, Shen W, Guo X, Liao Y, Huang Y, Ye P, Hu M, Lin Q, Liu R. Synergism of Fusobacterium periodonticum and N-nitrosamines promote the formation of EMT subtypes in ESCC by modulating Wnt3a palmitoylation. Gut Microbes 2024; 16:2391521. [PMID: 39193618 PMCID: PMC11364064 DOI: 10.1080/19490976.2024.2391521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals F. periodonticum (Fp) as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that Fp potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of β-catenin into the nucleus, further activating Wnt3A/β-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which Fp can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenyan Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Weitao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yang Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ping Ye
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mohan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Poudel PB, Dhakal D, Lee JC, Sohng JK. Functional characterization of a naphthalene-O-methyltransferase from Nocardia sp. CS682. Enzyme Microb Technol 2024; 172:110351. [PMID: 37939423 DOI: 10.1016/j.enzmictec.2023.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Methylation plays important roles in biosynthesis, metabolism, signal transduction, detoxification, protein sorting and repair, and nucleic acid processing. Generally the methyltransferases transfer methyl groups in various natural products using S-adenosyl methionine (SAM) as a cofactor. In this study, we examined and functionally characterized ThnM3 (enzyme), by testing various substrates with different chemical structures. Among the tested substrates, 1,8-dihydroxynaphthalene was the best substrate for methylation. Whole-cell biotransformation was performed using the enzyme in engineered Escherichia coli to produce 8-methoxynaphthalene-1-ol, and 1,8-dimethoxynaphthalene derivatives of 1,8-dihydroxynaphthalene. The products were confirmed using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopic analyses. Therefore, this study is the first to amplify, express the thnM3 (gene), and functionally characterize theThnM3, which exhibits the regioselective modifications of 1,8-dihydroxynaphthalene.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, South Korea
| | - Dipesh Dhakal
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, South Korea
| | - Jong Cheol Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, South Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, South Korea; Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, South Korea.
| |
Collapse
|
15
|
Schaenzer AJ, Rodriguez Hernandez A, Tsai K, Hobson C, Fujimori DG, Wright GD. Angucyclinones rescue PhLOPS A antibiotic activity by inhibiting Cfr-dependent antibiotic resistance. mBio 2023; 14:e0179123. [PMID: 38014974 PMCID: PMC10746278 DOI: 10.1128/mbio.01791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPSA antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance. Our work acts as a foundation for further development of molecules that safeguard the PhLOPSA antibiotics from Cfr.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Annia Rodriguez Hernandez
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Kaitlyn Tsai
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Christian Hobson
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Sankar S, Preeti P, Ravikumar K, Kumar A, Prasad Y, Pal S, Rao DN, Savithri HS, Chandra N. Structural similarities between SAM and ATP recognition motifs and detection of ATP binding in a SAM binding DNA methyltransferase. Curr Res Struct Biol 2023; 6:100108. [PMID: 38106461 PMCID: PMC10724544 DOI: 10.1016/j.crstbi.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
S-adenosylmethionine (SAM) is a ubiquitous co-factor that serves as a donor for methylation reactions and additionally serves as a donor of other functional groups such as amino and ribosyl moieties in a variety of other biochemical reactions. Such versatility in function is enabled by the ability of SAM to be recognized by a wide variety of protein molecules that vary in their sequences and structural folds. To understand what gives rise to specific SAM binding in diverse proteins, we set out to study if there are any structural patterns at their binding sites. A comprehensive analysis of structures of the binding sites of SAM by all-pair comparison and clustering, indicated the presence of 4 different site-types, only one among them being well studied. For each site-type we decipher the common minimum principle involved in SAM recognition by diverse proteins and derive structural motifs that are characteristic of SAM binding. The presence of the structural motifs with precise three-dimensional arrangement of amino acids in SAM sites that appear to have evolved independently, indicates that these are winning arrangements of residues to bring about SAM recognition. Further, we find high similarity between one of the SAM site types and a well known ATP binding site type. We demonstrate using in vitro experiments that a known SAM binding protein, HpyAII.M1, a type 2 methyltransferase can bind and hydrolyse ATP. We find common structural motifs that explain this, further supported through site-directed mutagenesis. Observation of similar motifs for binding two of the most ubiquitous ligands in multiple protein families with diverse sequences and structural folds presents compelling evidence at the molecular level in favour of convergent evolution.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Preeti Preeti
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Kavya Ravikumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Amrendra Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Yedu Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Sukriti Pal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Handanahal S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of BioEngineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
17
|
Fix I, Heidinger L, Friedrich T, Layer G. The Radical SAM Heme Synthase AhbD from Methanosarcina barkeri Contains Two Auxiliary [4Fe-4S] Clusters. Biomolecules 2023; 13:1268. [PMID: 37627333 PMCID: PMC10452713 DOI: 10.3390/biom13081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.
Collapse
Affiliation(s)
- Isabelle Fix
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| | - Lorenz Heidinger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (L.H.); (T.F.)
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (L.H.); (T.F.)
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
19
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Brimberry M, Corrigan P, Silakov A, Lanzilotta WN. Evidence for Porphyrin-Mediated Electron Transfer in the Radical SAM Enzyme HutW. Biochemistry 2023; 62:1191-1196. [PMID: 36877586 PMCID: PMC10035031 DOI: 10.1021/acs.biochem.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Bacteria that infect the human gut must compete for essential nutrients, including iron, under a variety of different metabolic conditions. Several enteric pathogens, including Vibrio cholerae and Escherichia coli O157:H7, have evolved mechanisms to obtain iron from heme in an anaerobic environment. Our laboratory has demonstrated that a radical S-adenosylmethionine (SAM) methyltransferase is responsible for the opening of the heme porphyrin ring and release of iron under anaerobic conditions. Furthermore, the enzyme in V. cholerae, HutW, has recently been shown to accept electrons from NADPH directly when SAM is utilized to initiate the reaction. However, how NADPH, a hydride donor, catalyzes the single electron reduction of a [4Fe-4S] cluster, and/or subsequent electron/proton transfer reactions, was not addressed. In this work, we provide evidence that the substrate, in this case, heme, facilitates electron transfer from NADPH to the [4Fe-4S] cluster. This study uncovers a new electron transfer pathway adopted by radical SAM enzymes and further expands our understanding of these enzymes in bacterial pathogens.
Collapse
Affiliation(s)
- Marley Brimberry
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Corrigan
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - William N. Lanzilotta
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov 2023; 9:26. [PMID: 36878899 PMCID: PMC9988979 DOI: 10.1038/s41421-022-00515-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2022] [Accepted: 12/30/2022] [Indexed: 03/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. However, it is not well known how metabolism affects cancer progression. We identified that metabolic enzyme acyl-CoA oxidase 1 (ACOX1) suppresses colorectal cancer (CRC) progression by regulating palmitic acid (PA) reprogramming. ACOX1 is highly downregulated in CRC, which predicts poor clinical outcome in CRC patients. Functionally, ACOX1 depletion promotes CRC cell proliferation in vitro and colorectal tumorigenesis in mouse models, whereas ACOX1 overexpression inhibits patient-derived xenograft growth. Mechanistically, DUSP14 dephosphorylates ACOX1 at serine 26, promoting its polyubiquitination and proteasomal degradation, thereby leading to an increase of the ACOX1 substrate PA. Accumulated PA promotes β-catenin cysteine 466 palmitoylation, which inhibits CK1- and GSK3-directed phosphorylation of β-catenin and subsequent β-Trcp-mediated proteasomal degradation. In return, stabilized β-catenin directly represses ACOX1 transcription and indirectly activates DUSP14 transcription by upregulating c-Myc, a typical target of β-catenin. Finally, we confirmed that the DUSP14-ACOX1-PA-β-catenin axis is dysregulated in clinical CRC samples. Together, these results identify ACOX1 as a tumor suppressor, the downregulation of which increases PA-mediated β-catenin palmitoylation and stabilization and hyperactivates β-catenin signaling thus promoting CRC progression. Particularly, targeting β-catenin palmitoylation by 2-bromopalmitate (2-BP) can efficiently inhibit β-catenin-dependent tumor growth in vivo, and pharmacological inhibition of DUSP14-ACOX1-β-catenin axis by Nu-7441 reduced the viability of CRC cells. Our results reveal an unexpected role of PA reprogramming induced by dephosphorylation of ACOX1 in activating β-catenin signaling and promoting cancer progression, and propose the inhibition of the dephosphorylation of ACOX1 by DUSP14 or β-catenin palmitoylation as a viable option for CRC treatment.
Collapse
|
22
|
Moreau PL. Regulation of phosphate starvation-specific responses in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972330 DOI: 10.1099/mic.0.001312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/29/2023]
Abstract
Toxic agents added into the medium of rapidly growing Escherichia coli induce specific stress responses through the activation of specialized transcription factors. Each transcription factor and downstream regulon (e.g. SoxR) are linked to a unique stress (e.g. superoxide stress). Cells starved of phosphate induce several specific stress regulons during the transition to stationary phase when the growth rate is steadily declining. Whereas the regulatory cascades leading to the expression of specific stress regulons are well known in rapidly growing cells stressed by toxic products, they are poorly understood in cells starved of phosphate. The intent of this review is to both describe the unique mechanisms of activation of specialized transcription factors and discuss signalling cascades leading to the induction of specific stress regulons in phosphate-starved cells. Finally, I discuss unique defence mechanisms that could be induced in cells starved of ammonium and glucose.
Collapse
Affiliation(s)
- Patrice L Moreau
- Laboratoire Chimie Bactérienne, LCB-UMR 7283, Institut Microbiologie Méditerranée, CNRS/Université Aix-Marseille, Marseille, France
| |
Collapse
|
23
|
Abstract
Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Gutensohn M, Schaefer JK, Maas TJ, Skyllberg U, Björn E. Metabolic turnover of cysteine-related thiol compounds at environmentally relevant concentrations by Geobacter sulfurreducens. Front Microbiol 2023; 13:1085214. [PMID: 36713222 PMCID: PMC9874932 DOI: 10.3389/fmicb.2022.1085214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Low-molecular-mass (LMM) thiol compounds are known to be important for many biological processes in various organisms but LMM thiols are understudied in anaerobic bacteria. In this work, we examined the production and turnover of nanomolar concentrations of LMM thiols with a chemical structure related to cysteine by the model iron-reducing bacterium Geobacter sulfurreducens. Our results show that G. sulfurreducens tightly controls the production, excretion and intracellular concentration of thiols depending on cellular growth state and external conditions. The production and cellular export of endogenous cysteine was coupled to the extracellular supply of Fe(II), suggesting that cysteine excretion may play a role in cellular trafficking to iron proteins. Addition of excess exogenous cysteine resulted in a rapid and extensive conversion of cysteine to penicillamine by the cells. Experiments with added isotopically labeled cysteine confirmed that penicillamine was formed by a dimethylation of the C-3 atom of cysteine and not via indirect metabolic responses to cysteine exposure. This is the first report of de novo metabolic synthesis of this compound. Penicillamine formation increased with external exposure to cysteine but the compound did not accumulate intracellularly, which may suggest that it is part of G. sulfurreducens' metabolic strategy to maintain cysteine homeostasis. Our findings highlight and expand on processes mediating homeostasis of cysteine-like LMM thiols in strict anaerobic bacteria. The formation of penicillamine is particularly noteworthy and this compound warrants more attention in microbial metabolism studies.
Collapse
Affiliation(s)
| | - Jeffra K. Schaefer
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Torben J. Maas
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße, Münster, Germany
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden,*Correspondence: Erik Björn, ✉
| |
Collapse
|
25
|
Ren X, Couture BM, Liu N, Lall MS, Kohrt JT, Fasan R. Enantioselective Single and Dual α-C-H Bond Functionalization of Cyclic Amines via Enzymatic Carbene Transfer. J Am Chem Soc 2022; 145:537-550. [PMID: 36542059 PMCID: PMC9837850 DOI: 10.1021/jacs.2c10775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Cyclic amines are ubiquitous structural motifs found in pharmaceuticals and biologically active natural products, making methods for their elaboration via direct C-H functionalization of considerable synthetic value. Herein, we report the development of an iron-based biocatalytic strategy for enantioselective α-C-H functionalization of pyrrolidines and other saturated N-heterocycles via a carbene transfer reaction with diazoacetone. Currently unreported for organometallic catalysts, this transformation can be accomplished in high yields, high catalytic activity, and high stereoselectivity (up to 99:1 e.r. and 20,350 TON) using engineered variants of cytochrome P450 CYP119 from Sulfolobus solfataricus. This methodology was further extended to enable enantioselective α-C-H functionalization in the presence of ethyl diazoacetate as carbene donor (up to 96:4 e.r. and 18,270 TON), and the two strategies were combined to achieve a one-pot as well as a tandem dual C-H functionalization of a cyclic amine substrate with enzyme-controlled diastereo- and enantiodivergent selectivity. This biocatalytic approach is amenable to gram-scale synthesis and can be applied to drug scaffolds for late-stage C-H functionalization. This work provides an efficient and tunable method for direct asymmetric α-C-H functionalization of saturated N-heterocycles, which should offer new opportunities for the synthesis, discovery, and optimization of bioactive molecules.
Collapse
Affiliation(s)
- Xinkun Ren
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Bo M. Couture
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ningyu Liu
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Manjinder S. Lall
- Pfizer
Inc., Medicine and Design, Groton, Connecticut 06340, United States
| | - Jeffrey T. Kohrt
- Pfizer
Inc., Medicine and Design, Groton, Connecticut 06340, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States,
| |
Collapse
|
26
|
Li X, Yu F, Wang F, Wang S, Han R, Cheng Y, Zhao M, Sun J, Xue Z. Point mutation of V252 in neomycin C epimerase enlarges substrate-binding pocket and improves neomycin B accumulation in Streptomyces fradiae. BIORESOUR BIOPROCESS 2022; 9:123. [PMID: 38647873 PMCID: PMC10991966 DOI: 10.1186/s40643-022-00613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/09/2022] Open
Abstract
Neomycin, an aminoglycoside antibiotic with broad-spectrum antibacterial resistance, is widely used in pharmaceutical and agricultural fields. However, separation and purification of neomycin B as an active substance from Streptomyces fradiae are complicated. Although NeoN can catalyze conversion of neomycin C to neomycin B, the underlying catalytic mechanism is still unclear. In this study, the genomic information of high-yielding mutant S. fradiae SF-2 was elucidated using whole-genome sequencing. Subsequently, the mechanism of NeoN in catalyzing conversion of neomycin C to neomycin B was resolved based on NeoN-SAM-neomycin C ternary complex. Mutant NeoNV252A showed improved NeoN activity, and the recombinant strain SF-2-NeoNV252A accumulated 16,766.6 U/mL neomycin B, with a decrease in neomycin C ratio from 16.1% to 6.28%, when compared with the parental strain SF-2. In summary, this study analyzed the catalytic mechanism of NeoN, providing significant reference for rational design of NeoN to improve neomycin B production and weaken the proportion of neomycin C.
Collapse
Affiliation(s)
- Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Fei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fang Wang
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Sang Wang
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yihan Cheng
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Junfeng Sun
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| |
Collapse
|
27
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Nguyen TQ, Nicolet Y. Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel) 2022; 12:1732. [PMID: 36362886 PMCID: PMC9692996 DOI: 10.3390/life12111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/14/2023] Open
Abstract
Methyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5'-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5'-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations.
Collapse
Affiliation(s)
| | - Yvain Nicolet
- Metalloproteins Unit, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
29
|
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
30
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
31
|
Boswinkle K, McKinney J, Allen KD. Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol 2022; 204:e0019722. [PMID: 35880875 PMCID: PMC9380564 DOI: 10.1128/jb.00197-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
Collapse
Affiliation(s)
- Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Justin McKinney
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
32
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin-Dependent Radical SAM Enzyme Catalyzes the Unique C α -Methylation of Glutamine in Methyl-Coenzyme M Reductase. Angew Chem Int Ed Engl 2022; 61:e202204198. [PMID: 35638156 PMCID: PMC9401015 DOI: 10.1002/anie.202204198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Indexed: 12/22/2022]
Abstract
Methyl‐coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2‐(S)‐methylglutamine. The enzyme responsible for the Cα‐methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin‐dependent radical SAM enzyme as the glutamine C‐methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base‐off, His‐off conformation and contains a single [4Fe‐4S] cluster. The cobalamin cofactor cycles between the methyl‐cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5′‐deoxyadenosine and S‐adenosyl‐l‐homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C‐methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3‐hybridized carbon atoms.
Collapse
Affiliation(s)
- Jana Gagsteiger
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| | - Sören Jahn
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Lorenz Heidinger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Lukas Gericke
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christoph Loenarz
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| |
Collapse
|
33
|
Müller M, Germer P, Andexer JN. Biocatalytic One-Carbon Transfer – A Review. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/15/2022]
Abstract
AbstractThis review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.1 Introduction2 Methane, Methanol, and Methylamine3 Glycine4 Nitromethane5 SAM and SAM Ylide6 Other C1 Building Blocks7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents8 Cyanide9 Formic Acid10 Formyl-CoA and Oxalyl-CoA11 Carbon Monoxide12 Carbon Dioxide13 Conclusions
Collapse
|
34
|
Lichstrahl MS, Townsend CA, Sinner EK. Stereochemical course of cobalamin-dependent radical SAM methylation by TokK and ThnK. RSC Chem Biol 2022; 3:1028-1034. [PMID: 36042702 PMCID: PMC9358933 DOI: 10.1039/d2cb00113f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics for difficult-to-treat infections. An essential step in the biosyntheses of these natural products is stereospecific methylation at C6 and subsequent alkylations by cobalamin-dependent radical SAM methylases such as TokK and ThnK. We have prepared isotopically labeled substrates in a stereospecific manner and found that both homologous enzymes selectively abstract the 6-pro-S hydrogen, followed by methyl transfer to the opposite face to give the (6R)-methyl carbapenam product proceeding, therefore, by inversion of absolute configuration at C6. These data clarify an unexpected ambiguity in the recently solved substrate-bound crystal structure of TokK and have led to a stereochemically complete mechanistic proposal for both TokK and ThnK.
Collapse
Affiliation(s)
- Michael S Lichstrahl
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Erica K Sinner
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| |
Collapse
|
35
|
Liu YA, Quechol R, Solomon JB, Lee CC, Ribbe MW, Hu Y, Hedman B, Hodgson KO. Radical SAM-dependent formation of a nitrogenase cofactor core on NifB. J Inorg Biochem 2022; 233:111837. [PMID: 35550498 PMCID: PMC9526504 DOI: 10.1016/j.jinorgbio.2022.111837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
Abstract
Nitrogenase is a versatile metalloenzyme that reduces N2, CO and CO2 at its cofactor site. Designated the M-cluster, this complex cofactor has a composition of [(R-homocitrate)MoFe7S9C], and it is assembled through the generation of a unique [Fe8S9C] core prior to the insertion of Mo and homocitrate. NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. This review focuses on the recent work that sheds light on the role of NifB in the formation of the [Fe8S9C] core of the nitrogenase cofactor, highlighting the structure, function and mechanism of this unique radical SAM methyltransferase.
Collapse
Affiliation(s)
- Yiling A Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Joseph B Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America.
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America.
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America.
| |
Collapse
|
36
|
Lloyd CT, Iwig DF, Wang B, Cossu M, Metcalf WW, Boal AK, Booker SJ. Discovery, structure, and mechanism of a tetraether lipid synthase. Nature 2022; 609:197-203. [PMID: 35882349 PMCID: PMC9433317 DOI: 10.1038/s41586-022-05120-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1–5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon–carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon–carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3–Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7–10. In Methanocaldococcus jannaschii, a radical S-adenosylmethionine enzyme catalyses the formation of the biphytanyl chain.
Collapse
Affiliation(s)
- Cody T Lloyd
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - David F Iwig
- The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA
| | - Bo Wang
- The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA
| | - Matteo Cossu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William W Metcalf
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Institute for Genomic Biology, University of Illinois Urbana- Champaign, Urbana, IL, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA. .,The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA.
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA. .,The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA. .,Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
37
|
Chen P, Tang Y, He Q, Liu L, Zhou Z, Song Y, Zhang N, Wang B, Zhou H, Shi H, Jiang J. A sensitive UPLC-MS/MS method for simultaneous quantification of one-carbon metabolites & co-factors in human plasma. J Pharm Biomed Anal 2022; 219:114944. [PMID: 35863169 DOI: 10.1016/j.jpba.2022.114944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
One-carbon metabolism is an important metabolic pathway involved in many diseases, such as congenital malformations, tumours, cardiovascular diseases, anaemia, depression, cognitive diseases and liver disease. However, the current methods have specific defects in detecting and qualifying the related compounds of one-carbon metabolism. In this study, a validated method was established to simultaneously quantify 22 one-carbon metabolites & co-factors in human plasma and applied to the study of correlation between one-carbon metabolism and colorectal cancer in human plasma samples, which were from 44 healthy subjects and 55 colorectal cancer patients. The method used ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS), and the analytes included betaine, L-carnitine, L-cystathionine, L-cysteine, dimethylglycine, DL-homocysteic acid, homocysteine, methionine, pyridoxal hydrochloride, pyridoxamine dihydrochloride, pyridoxine dihydrochloride, S-(5'-Adenosyl)-L-homocysteine, serine, choline chloride, folic acid, glycine, pyridoxal phosphate monohydrate, riboflavin, taurine, 5-methyltetrahydrofolate, S-(5'-adenosyl)-L-methionine disulfate salt, trimethylamine oxide. The developed method was successfully applied to the quantification of 22 one-carbon metabolites & co-factors in human plasma from colorectal cancer patients and healthy individuals. The plasma concentrations of dimethylglycine was significantly decreased in the patients compared with the healthy individuals, while L-cystathionine was increased.
Collapse
Affiliation(s)
- Ping Chen
- Jinan University College of Pharmacy, Guangzhou 510630, PR China
| | - Yun Tang
- Shenzhen Tailored Medical Laboratory, Shenzhen 518055, PR China; Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen 518055, PR China
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China; Institute of Biomedicine, Anhui Medical University, Hefei 230000, PR China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 10034, PR China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China; Institute of Biomedicine, Anhui Medical University, Hefei 230000, PR China
| | - Houqing Zhou
- Department of Clinical Laboratory, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, PR China
| | - Hanping Shi
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, PR China
| | - Jie Jiang
- Jinan University College of Pharmacy, Guangzhou 510630, PR China.
| |
Collapse
|
38
|
Lechner H, Oberdorfer G. Derivatives of Natural Organocatalytic Cofactors and Artificial Organocatalytic Cofactors as Catalysts in Enzymes. Chembiochem 2022; 23:e202100599. [PMID: 35302276 PMCID: PMC9401024 DOI: 10.1002/cbic.202100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Revised: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Catalytically active non-metal cofactors in enzymes carry out a variety of different reactions. The efforts to develop derivatives of naturally occurring cofactors such as flavins or pyridoxal phosphate and the advances to design new, non-natural cofactors are reviewed here. We report the status quo for enzymes harboring organocatalysts as derivatives of natural cofactors or as artificial ones and their application in the asymmetric synthesis of various compounds.
Collapse
Affiliation(s)
- Horst Lechner
- Graz University of TechnologyInstitute of BiochemistryPetersgasse 10–12/II8010GrazAustria
| | - Gustav Oberdorfer
- Graz University of TechnologyInstitute of BiochemistryPetersgasse 10–12/II8010GrazAustria
| |
Collapse
|
39
|
Zhang J, Hou X, Chen Z, Ko Y, Ruszczycky MW, Chen Y, Zhou J, Liu HW. Dioxane Bridge Formation during the Biosynthesis of Spectinomycin Involves a Twitch Radical S-Adenosyl Methionine Dehydrogenase That May Have Evolved from an Epimerase. J Am Chem Soc 2022; 144:9910-9919. [PMID: 35622017 PMCID: PMC9204835 DOI: 10.1021/jacs.2c02676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Spectinomycin is a dioxane-bridged, tricyclic aminoglycoside produced by Streptomyces spectabilis ATCC 27741. While the spe biosynthetic gene cluster for spectinomycin has been reported, the chemistry underlying construction of the dioxane ring is unknown. The twitch radical SAM enzyme SpeY from the spe cluster is shown here to catalyze dehydrogenation of the C2' alcohol of (2'R,3'S)-tetrahydrospectinomycin to yield (3'S)-dihydrospectinomycin as a likely biosynthetic intermediate. This reaction is radical-mediated and initiated via H atom abstraction from C2' of the substrate by the 5'-deoxyadenosyl radical equivalent generated upon reductive cleavage of SAM. Crystallographic analysis of the ternary Michaelis complex places serine-183 adjacent to C2' of the bound substrate opposite C5' of SAM. Mutation of this residue to cysteine converts SpeY to the corresponding C2' epimerase mirroring the opposite phenomenon observed in the homologous twitch radical SAM epimerase HygY from the hygromycin B biosynthetic pathway. Phylogenetic analysis suggests a relatively recent evolutionary branching of putative twitch radical SAM epimerases bearing homologous cysteine residues to generate the SpeY clade of enzymes.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xueli Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhang Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yeonjin Ko
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yutian Chen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Purification and characterization of sequential cobalamin-dependent radical SAM methylases ThnK and TokK in carbapenem β-lactam antibiotic biosynthesis. Methods Enzymol 2022; 669:29-44. [PMID: 35644176 DOI: 10.1016/bs.mie.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
ThnK and TokK are cobalamin-dependent radical S-adenosylmethionine enzymes that catalyze sequential methylations of a common carbapenem biosynthetic intermediate. ThnK was an early characterized member of the subfamily of cobalamin-dependent radical S-adenosylmethionine enzymes. Since initial publication of the ThnK function, the field has progressed, and we have made methodological strides in the expression and purification of this enzyme and its ortholog TokK. An optimized protocol for obtaining the enzymes in pure and active form has enabled us to characterize their reactions and gain greater insight into the kinetic behavior of the sequential methylations they catalyze. We share here the methods and strategy that we have developed through our study of these enzymes.
Collapse
|
41
|
Knox HL, Booker SJ. Structural characterization of cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol 2022; 669:3-27. [PMID: 35644177 DOI: 10.1016/bs.mie.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Cobalamin-dependent radical S-adenosylmethionine (SAM) methylases catalyze key steps in the biosynthesis of numerous biomolecules, including protein cofactors, antibiotics, herbicides, and other natural products, but have remained a relatively understudied subclass of radical SAM enzymes due to their inherent insolubility upon overproduction in Escherichia coli. These enzymes contain two cofactors: a [4Fe-4S] cluster that is ligated by three cysteine residues, and a cobalamin cofactor typically bound by residues in the N-terminal portion of the enzyme. Recent advances in the expression and purification of these enzymes in their active states and with both cofactors present has allowed for more detailed biochemical studies as well as structure determination by X-ray crystallography. Herein, we use KsTsrM and TokK to highlight methods for the structural characterization of cobalamin-dependent radical SAM (RS) enzymes and describe recent advances in in the overproduction and purification of these enzymes.
Collapse
Affiliation(s)
- Hayley L Knox
- The Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Squire J Booker
- The Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; The Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
42
|
Characterization of the cobalamin-dependent radical S-adenosyl-l-methionine enzyme C-methyltransferase Fom3 in fosfomycin biosynthesis. Methods Enzymol 2022; 669:45-70. [PMID: 35644180 DOI: 10.1016/bs.mie.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Fosfomycin is a clinically used broad-spectrum antibiotic that has the structure of an oxirane ring with a phosphonic acid substituent and a methyl substituent. In nature, fosfomycin is produced by Streptomyces spp. and Pseudomonas sp., but biosynthesis of fosfomycin significantly differs between the two bacteria, especially in the incorporation mechanism of the methyl group. It has been proposed that the cobalamin-dependent radical S-adenosyl-l-methionine (SAM) enzyme Fom3 is responsible for the methyl-transfer reaction in Streptomyces fosfomycin biosynthesis. In this chapter, we describe the experimental methods to characterize Fom3. We performed the methylation reaction with the purified recombinant Fom3, revealing that Fom3 recognizes a cytidylylated 2-hydroxyethylphosphonate as a substrate and catalyzes stereoselective methylation of the sp3 carbon at the C2 position to afford cytidylylated (S)-2-hydroxypropylphosphonate. Reaction analysis using deuterium-labeled substrates showed that the 5'-deoxyadenosyl radical generated by reductive cleavage of SAM stereoselectively abstracts the pro-R hydrogen atom of the CH bond at the C2 position of cytidylylated 2-hydroxyethylphosphonate. Therefore, the C-methylation reaction catalyzed by Fom3 proceeds with inversion of the configuration at the C2 position. Experimental methods to elucidate the chemical structures of the substrate and products and the stereochemical course in the Fom3-catalyzed reaction could give information to progress investigation of cobalamin-dependent radical SAM C-methyltransferases.
Collapse
|
43
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin‐Dependent Radical SAM Enzyme Catalyzes the Unique Cα‐Methylation of Glutamine in Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Gagsteiger
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie GERMANY
| | - Sören Jahn
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Lorenz Heidinger
- Albert-Ludwigs-Universität Freiburg Institut für Biochemie GERMANY
| | - Lukas Gericke
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Jennifer N. Andexer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Biochemie GERMANY
| | - Christoph Loenarz
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie Stefan-Meier-Str. 19 79104 Freiburg GERMANY
| |
Collapse
|
44
|
Wu R, Ding W, Zhang Q. Consecutive Methylation catalyzed by
TsrM
, an atypical Class B radical
SAM
methylase. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Affiliation(s)
- Runze Wu
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
45
|
Bravo AC, Aguilera MNL, Marziali NR, Moritz L, Wingert V, Klotz K, Schumann A, Grünert SC, Spiekerkoetter U, Berger U, Lederer AK, Huber R, Hannibal L. Analysis of S-Adenosylmethionine and S-Adenosylhomocysteine: Method Optimisation and Profiling in Healthy Adults upon Short-Term Dietary Intervention. Metabolites 2022; 12:373. [PMID: 35629877 PMCID: PMC9143066 DOI: 10.3390/metabo12050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
S-adenosylmethionine (SAM) is essential for methyl transfer reactions. All SAM is produced de novo via the methionine cycle. The demethylation of SAM produces S-adenosylhomocysteine (SAH), an inhibitor of methyltransferases and the precursor of homocysteine (Hcy). The measurement of SAM and SAH in plasma has value in the diagnosis of inborn errors of metabolism (IEM) and in research to assess methyl group homeostasis. The determination of SAM and SAH is complicated by the instability of SAM under neutral and alkaline conditions and the naturally low concentration of both SAM and SAH in plasma (nM range). Herein, we describe an optimised LC-MS/MS method for the determination of SAM and SAH in plasma, urine, and cells. The method is based on isotopic dilution and employs 20 µL of plasma or urine, or 500,000 cells, and has an instrumental running time of 5 min. The reference ranges for plasma SAM and SAH in a cohort of 33 healthy individuals (age: 19-60 years old; mean ± 2 SD) were 120 ± 36 nM and 21.5 ± 6.5 nM, respectively, in accordance with independent studies and diagnostic determinations. The method detected abnormal concentrations of SAM and SAH in patients with inborn errors of methyl group metabolism. Plasma and urinary SAM and SAH concentrations were determined for the first time in a randomised controlled trial of 53 healthy adult omnivores (age: 18-60 years old), before and after a 4 week intervention with a vegan or meat-rich diet, and revealed preserved variations of both metabolites and the SAM/SAH index.
Collapse
Affiliation(s)
- Aida Corrillero Bravo
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Maria Nieves Ligero Aguilera
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Nahuel R. Marziali
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Urs Berger
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Internal Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.-K.L.); (R.H.)
| | - Roman Huber
- Center for Complementary Medicine, Department of Internal Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.-K.L.); (R.H.)
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| |
Collapse
|
46
|
Mathew LG, Brimberry M, Lanzilotta WN. Class C Radical SAM Methyltransferases Involved in Anaerobic Heme Degradation. ACS BIO & MED CHEM AU 2022; 2:120-124. [PMID: 37101744 PMCID: PMC10114669 DOI: 10.1021/acsbiomedchemau.1c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 04/28/2023]
Abstract
Class C radical SAM methyltransferases catalyze a diverse array of difficult chemical transformations in the biosynthesis of a range of compounds of biomedical importance. Phylogenetic analysis suggests that all of these enzymes are related to "CpdH" (formerly "HemN") and "HemW", proteins with essential roles in anaerobic heme biosynthesis and heme transport, respectively. These functions are essential to anaerobic metabolism in Escherichia coli. Interestingly, evolution has come full circle, and the divergence of this protein sequence/fold has resulted in the class C radical SAM methyltransferases. Several pathogenic organisms have further adapted this fold to catalyze the anaerobic degradation of heme. In this review, we summarize what is known about the mechanism of anaerobic heme degradation and the evolutionary implications.
Collapse
|
47
|
Ulrich EC, Drennan CL. The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts. J Am Chem Soc 2022; 144:5673-5684. [PMID: 35344653 PMCID: PMC8992657 DOI: 10.1021/jacs.1c12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Indexed: 12/29/2022]
Abstract
Cobalamin (Cbl)-dependent S-adenosyl-l-methionine (AdoMet) radical methylases are known for their use of a dual cofactor system to perform challenging radical methylation reactions at unactivated carbon and phosphorus centers. These enzymes are part of a larger subgroup of Cbl-dependent AdoMet radical enzymes that also perform difficult ring contractions and radical rearrangements. This subgroup is a largely untapped reservoir of diverse chemistry that requires steady efforts in biochemical and structural characterization to reveal its complexity. In this Perspective, we highlight the significant efforts over many years to elucidate the function, mechanism, and structure of TsrM, an unexpected nonradical methylase in this subgroup. We also discuss recent achievements in characterizing radical methylase subgroup members that exemplify how key tools in mechanistic enzymology are valuable time and again. Finally, we identify recent enzyme activity studies that have made use of bioinformatic analyses to expand our definition of the subgroup. Additional breakthroughs in radical (and nonradical) enzymatic chemistry and challenging transformations from the unexplored space of this subgroup are undoubtedly on the horizon.
Collapse
Affiliation(s)
- Emily C. Ulrich
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Zhao X, Wang L, Lin H, Wang J, Fu J, Zhu D, Xu W. Inhibition of MAT2A-Related Methionine Metabolism Enhances The Efficacy of Cisplatin on Cisplatin-Resistant Cells in Lung Cancer. CELL JOURNAL 2022; 24:204-211. [PMID: 35674024 PMCID: PMC9124450 DOI: 10.22074/cellj.2022.7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Objective Tumor drug resistance is a vital obstacle to chemotherapy in lung cancer. Methionine adenosyltransferase 2A has been considered as a potential target for lung cancer treatment because targeting it can disrupt the tumorigenicity of lung tumor-initiating cells. In this study, we primarily observed the role of methionine metabolism in cisplatin-resistant lung cancer cells and the functional mechanism of MAT2A related to cisplatin resistance. Materials and Methods In this experimental study, we assessed the half maximal inhibitory concentration (IC50) of cisplatin in different cell lines and cell viability via Cell Counting Kit-8. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression of relative proteins and genes. Crystal violet staining was used to investigate cell proliferation. Additionally, we explored the transcriptional changes in lung cancer cells via RNA-seq. Results We found H460/DDP and PC-9 cells were more resistant to cisplatin than H460, and MAT2A was overexpressed in cisplatin-resistant cells. Interestingly, methionine deficiency enhanced the inhibitory effect of cisplatin on cell activity and the pro-apoptotic effect. Targeting MAT2A not only restrained cell viability and proliferation, but also contributed to sensitivity of H460/DDP to cisplatin. Furthermore, 4283 up-regulated and 5841 down-regulated genes were detected in H460/DDP compared with H460, and 71 signal pathways were significantly enriched. After treating H460/DDP cells with PF9366, 326 genes were up-regulated, 1093 genes were down-regulated, and 13 signaling pathways were significantly enriched. In TNF signaling pathway, CAS7 and CAS8 were decreased in H460/DDP cells, which increased by PF9366 treatment. Finally, the global histone methylation (H3K4me3, H3K9me2, H3K27me3, H3K36me3) was reduced under methionine deficiency conditions, while H3K9me2 and H3K36me3 were decreased specially via PF9366. Conclusion Methionine deficiency or MAT2A inhibition may modulate genes expression associated with apoptosis, DNA repair and TNF signaling pathways by regulating histone methylation, thus promoting the sensitivity of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, Zhejiang Province, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, Zhejiang Province, China
| | - Haiping Lin
- Department of General Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Jing Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, Zhejiang Province, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Dan Zhu
- Department of Respiratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,Department of RespiratoryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang
ProvinceChina
Central LaboratoryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang ProvinceChina
;
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, Zhejiang Province, China,Department of RespiratoryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang
ProvinceChina
Central LaboratoryAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang ProvinceChina
;
| |
Collapse
|
49
|
Monfort B, Want K, Gervason S, D’Autréaux B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front Neurosci 2022; 16:838335. [PMID: 35310092 PMCID: PMC8924461 DOI: 10.3389/fnins.2022.838335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70–98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.
Collapse
|
50
|
Sinner E, Marous DR, Townsend CA. Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes. ACS BIO & MED CHEM AU 2022; 2:4-10. [PMID: 35341020 PMCID: PMC8950095 DOI: 10.1021/acsbiomedchemau.1c00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
While bioinformatic evidence of cobalamin-dependent radical S-adenosylmethionine (SAM) enzymes has existed since the naming of the radical SAM superfamily in 2001, none were biochemically characterized until 2011. In the past decade, the field has flourished as methodological advances have facilitated study of the subfamily. Because of the ingenuity and perseverance of researchers in this field, we now have functional, mechanistic, and structural insight into how this class of enzymes harnesses the power of both the cobalamin and radical SAM cofactors to achieve catalysis. All of the early characterized enzymes in this subfamily were methylases, but the activity of these enzymes has recently been expanded beyond methylation. We anticipate that the characterized functions of these enzymes will become both better understood and increasingly diverse with continued study.
Collapse
Affiliation(s)
- Erica
K. Sinner
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Daniel R. Marous
- Department
of Chemistry, Wittenberg University, 200 W Ward St., Springfield, Ohio 45504, United States
| | - Craig A. Townsend
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|