1
|
Scholp AJ, Jensen J, Chinnathambi S, Atluri K, Mendenhall A, Fowler T, Salem AK, Martin JA, Sander EA. Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets. Front Bioeng Biotechnol 2022; 10:907611. [PMID: 35928948 PMCID: PMC9343955 DOI: 10.3389/fbioe.2022.907611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue fibrosis is a major health issue that impacts millions of people and is costly to treat. However, few effective anti-fibrotic treatments are available. Due to their central role in fibrotic tissue deposition, fibroblasts and myofibroblasts are the target of many therapeutic strategies centered primarily on either inducing apoptosis or blocking mechanical or biochemical stimulation that leads to excessive collagen production. Part of the development of these drugs for clinical use involves in vitro prescreening. 2D screens, however, are not ideal for discovering mechanobiologically significant compounds that impact functions like force generation and other cell activities related to tissue remodeling that are highly dependent on the conditions of the microenvironment. Thus, higher fidelity models are needed to better simulate in vivo conditions and relate drug activity to quantifiable functional outcomes. To provide guidance on effective drug dosing strategies for mechanoresponsive drugs, we describe a custom force-bioreactor that uses a fibroblast-seeded fibrin gels as a relatively simple mimic of the provisional matrix of a healing wound. As cells generate traction forces, the volume of the gel reduces, and a calibrated and embedded Nitinol wire deflects in proportion to the generated forces over the course of 6 days while overhead images of the gel are acquired hourly. This system is a useful in vitro tool for quantifying myofibroblast dose-dependent responses to candidate biomolecules, such as blebbistatin. Administration of 50 μM blebbistatin reliably reduced fibroblast force generation approximately 40% and lasted at least 40 h, which in turn resulted in qualitatively less collagen production as determined via fluorescent labeling of collagen.
Collapse
Affiliation(s)
- Austin J. Scholp
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Jordan Jensen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Sathivel Chinnathambi
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Keerthi Atluri
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Alyssa Mendenhall
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | - Timothy Fowler
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - James A. Martin
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Cell contractile force measured using a deformable hollow capsule. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
There are several possible ways to measure the contraction of cells in vitro. Here, we report measurements of the contractile properties of 3T3-L1 cells grown to confluence on 3D hollow capsules. The capsules were fabricated using the layer-by-layer polyelectrolyte deposition technique on a polymer core. After the polyelectrolyte film was completed, the core was dissolved to leave the hollow capsule. The contractile force of the cells was determined from the deformation in the capsule size induced by interruption of the actin cytoskeleton of the cells that adhered to the outer surface of the hollow capsules, using prior measurements of the elastic modulus of the capsule. From the measurements of the compressive modulus for the capsules (of 6.52 μN), those capsule deformations indicate that the forskolin relaxed the layer of cells by 19.6 μN and the cytochalasin-D relaxed the layer of cells by 45.6 μN. The density of cells in the layer indicated that the force associated with the forskolin-induced relaxation of a single cell is 3.2 nN and the force associated with the cytochalasin-D-induced relaxation of a single cell is 7.5 nN. The mechanism of action of forskolin through second messenger pathways to disrupt the assembly of actin stress fibres also explains its reduced effect on cell contraction compared to that for cytochalasin-D, which is a compound that directly inhibits the polymerization of F-actin filaments.
Collapse
|
3
|
Han Y, Shang Q, Yao J, Ji Y. Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 2019; 10:293. [PMID: 30926772 PMCID: PMC6441042 DOI: 10.1038/s41419-019-1525-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) serves as a gasotransmitter in the regulation of organ development and maintenance of homeostasis in tissues. Its abnormal levels are associated with multiple human diseases, such as neurodegenerative disease, myocardial injury, and ophthalmic diseases. Excessive exposure to H2S could lead to cellular toxicity, orchestrate pathological process, and increase the risk of various diseases. Interestingly, under physiological status, H2S plays a critical role in maintaining cellular physiology and limiting damages to tissues. In mammalian species, the generation of H2S is catalyzed by cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), 3-mercapto-methylthio pyruvate aminotransferase (3MST) and cysteine aminotransferase (CAT). These enzymes are found inside the mammalian eyeballs at different locations. Their aberrant expression and the accumulation of substrates and intermediates can change the level of H2S by orders of magnitude, causing abnormal structures or functions in the eyes. Detailed investigations have demonstrated that H2S donors' administration could regulate intraocular pressure, protect retinal cells, inhibit oxidative stress and alleviate inflammation by modulating the function of intra or extracellular proteins in ocular tissues. Thus, several slow-releasing H2S donors have been shown to be promising drugs for treating multiple diseases. In this review, we discuss the biological function of H2S metabolism and its application in ophthalmic diseases.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Qianwen Shang
- Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Choudhary P, Gutteridge A, Impey E, Storer RI, Owen RM, Whiting PJ, Bictash M, Benn CL. Targeting the cAMP and Transforming Growth Factor-β Pathway Increases Proliferation to Promote Re-Epithelialization of Human Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med 2016; 5:925-37. [PMID: 27112176 DOI: 10.5966/sctm.2015-0247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Retinal pigment epithelium (RPE) cell integrity is critical to the maintenance of retinal function. Many retinopathies such as age-related macular degeneration (AMD) are caused by the degeneration or malfunction of the RPE cell layer. Replacement of diseased RPE with healthy, stem cell-derived RPE is a potential therapeutic strategy for treating AMD. Human embryonic stem cells (hESCs) differentiated into RPE progeny have the potential to provide an unlimited supply of cells for transplantation, but challenges around scalability and efficiency of the differentiation process still remain. Using hESC-derived RPE as a cellular model, we sought to understand mechanisms that could be modulated to increase RPE yield after differentiation. We show that RPE epithelialization is a density-dependent process, and cells seeded at low density fail to epithelialize. We demonstrate that activation of the cAMP pathway increases proliferation of dissociated RPE in culture, in part through inhibition of transforming growth factor-β (TGF-β) signaling. This results in enhanced uptake of epithelial identity, even in cultures seeded at low density. In line with these findings, targeted manipulation of the TGF-β pathway with small molecules produces an increase in efficiency of RPE re-epithelialization. Taken together, these data highlight mechanisms that promote epithelial fate acquisition in stem cell-derived RPE. Modulation of these pathways has the potential to favorably impact scalability and clinical translation of hESC-derived RPE as a cell therapy. SIGNIFICANCE Stem cell-derived retinal pigment epithelium (RPE) is currently being evaluated as a cell-replacement therapy for macular degeneration. This work shows that the process of generating RPE in vitro is regulated by the cAMP and transforming growth factor-β signaling pathway. Modulation of these pathways by small molecules, as identified by phenotypic screening, leads to an increased efficiency of generating RPE cells with a higher yield. This can have a potential impact on manufacturing transplantation-ready cells at large scale and is advantageous for clinical studies using this approach in the future.
Collapse
Affiliation(s)
- Parul Choudhary
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Alex Gutteridge
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Emma Impey
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - R Ian Storer
- Pfizer Worldwide Medicinal Chemistry, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Robert M Owen
- Pfizer Worldwide Medicinal Chemistry, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Paul J Whiting
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Magda Bictash
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Caroline L Benn
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| |
Collapse
|
5
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
6
|
Boulton ME. Studying melanin and lipofuscin in RPE cell culture models. Exp Eye Res 2014; 126:61-7. [PMID: 25152361 DOI: 10.1016/j.exer.2014.01.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/05/2023]
Abstract
The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols.
Collapse
Affiliation(s)
- Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, USA.
| |
Collapse
|
7
|
Guo CM, Wang YS, Hu D, Han QH, Wang JB, Hou X, Hui YN. Modulation of migration and Ca2+ signaling in retinal pigment epithelium cells by recombinant human CTGF. Curr Eye Res 2010; 34:852-62. [PMID: 19895313 DOI: 10.3109/02713680903128935] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The migration of retinal pigment epithelium (RPE) cells is an initial step in the development of proliferative vitreoretinopathy (PVR). We investigated the expression of connective tissue growth factor (CTGF) in an in vitro model of wound healing and effects of recombinant human CTGF (rhCTGF) on modulating migration and Ca(2+) signaling in RPE cells. METHODS Cultured human RPE monolayers were used to establish a wound-healing model. Western blot and in situ hybridization were used to detect the CTGF expression in RPE cells. Migration of RPE cells was measured under the stimulation of rhCTGF alone or in combination with dexamethasone (DEX) or 8-Br-cAMP. To determine the concentration of cytoplasmic-free Ca(2+) ([Ca(2+)]i) responding to CTGF, the fluo-3/AM-loaded RPE cells were observed with a laser scanning confocal microscope. RESULTS The CTGF expression first increased after being wounded in RPE cells, then reached a peak and maintained at a high level. The positive expression was mainly at the edge of scrape and in motile RPE cells. rhCTGF-stimulated RPE cells migrated in a dose-dependent manner, and both DEX and 8-Br-cAMP could significantly inhibit the CTGF-induced migrations. CTGF induced a (Ca(2+))i elevation in RPE cells in a concentration-dependent manner. Moreover, stimulation of RPE cells with CTGF and DEX or 8-Br-cAMP counteracted the elevation of (Ca(2+))i induced by CTGF. CONCLUSIONS The CTGF expression could be induced by an in vitro model of scrape wounding. rhCTGF stimulated the migration and Ca(2+) signal pathway in RPE cells in a dose-dependent manner, and DEX and 8-Br-cAMP suppressed this effect. Our results indicate that CTGF is involved in the wound-healing process and plays an important role in the pathogenesis of intraocular proliferative diseases.
Collapse
Affiliation(s)
- Chang-Mei Guo
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Ohsumi TK, Flaherty JE, Evans MC, Barocas VH. Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomech Model Mechanobiol 2007; 7:53-62. [PMID: 17354006 DOI: 10.1007/s10237-007-0075-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
Tissue equivalents (TEs), formed by entrapping cells in a collagen gel, are an important model system for studying cell behavior. We have previously (Barocas and Tranquillo in J Biomech Eng 117:161-170, 1997a) developed an anisotropic biphasic theory of TE mechanics, which comprises five coupled partial differential equations describing interaction among cells and collagen fibers in the TE. The model equations, previously solved in one or two dimensions, were solved in three dimensions using an adaptive finite-element platform. The model was applied to three systems: a rectangular isometric cell traction assay, an otherwise- acellular gel containing two islands of cells, and an idealized tissue-engineered cardiac valve leaflet. In the first two cases, published experimental data were available for comparison, and the model results were consistent with the experimental observations. Fibers and cells aligned in the fixed direction in the isometric assay, and a region of strong fiber alignment arose between the two cell islands. For the valve problem, the alignment predicted by the model was generally similar to that observed experimentally, but an asymmetry in the experiment was not captured by the model.
Collapse
Affiliation(s)
- Toshiro K Ohsumi
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | | | | | | |
Collapse
|
9
|
Verdugo-Gazdik ME, Simic D, Opsahl AC, Tengowski MW. Investigating cytoskeletal alterations as a potential marker of retinal and lens drug-related toxicity. Assay Drug Dev Technol 2007; 4:695-707. [PMID: 17199508 DOI: 10.1089/adt.2006.4.695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Actin filaments play a critical role in the normal physiology of lenticular and retinal cells in the eye. Disruption of the actin cytoskeleton has been associated with retinal pathology and lens cataract formation. Ocular toxicity is an infrequent observation in drug safety studies, yet its impact to the drug development process is significant. Recognizing compounds through screening with a potential ocular safety liability is one way to prioritize development candidates while reducing development attrition. Lens epithelial cells from human, dog, and rat origins and retinal pigmented epithelium cells from human, monkey, and rat origins were cultured and investigated with immunocytochemical techniques. Cells were treated using noncytotoxic doses of the compound, fixed, stained for actin with rhodamine phalloidin, and counterstained for nuclei with TOTO-3, followed by confocal imaging. Tamoxifen and several experimental compounds known to be in vivo lens and retinal toxicants caused a reduction in F-actin fluorescence at noncytotoxic concentrations in all cells tested as observed by confocal microscopy. Developing an assay that predicts ocular toxicity helps the development process by prioritizing compounds for further investigation. Drug-induced cytoskeletal alterations may be useful as a potential safety-screening marker of retinal and lens toxicity. The knowledge of actin molecular biology and the application of other mechanistic screens to toxicology are discussed. Reducing this work to a high-throughput platform will enable chemists to select compounds with a reduced risk of ocular toxicity.
Collapse
|
10
|
Moses DN, Harreld JH, Stucky GD, Waite JH. Melanin and Glycera jaws: emerging dark side of a robust biocomposite structure. J Biol Chem 2006; 281:34826-32. [PMID: 16984906 DOI: 10.1074/jbc.m603429200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defining the design principles guiding the fabrication of superior biocomposite structures from an assemblage of ordinary molecules is a key goal of biomimetics. Considering their low degree of mineralization, Glycera jaws have been shown to be extraordinarily resistant to abrasion based on the metric hardness3/Young's modulus2. The jaws also exhibit an impressive chemical inertness withstanding boiling concentrated hydrochloric acid as well as boiling concentrated sodium hydroxide. A major organic component largely responsible for the chemical inertness of the jaws has been characterized using a spectrophotometric assay for melanin content, 13C solid state nuclear magnetic resonance, IR spectroscopy, and laser desorption ionization-time of flight mass spectrometry and is identified here as a melanin-like network. Although melanin is widely distributed as a pigment in tissues and other structural biomaterials, to our knowledge, Glycera jaws represent the first known integument to exploit melanin as a cohesive load- and shape-bearing material.
Collapse
Affiliation(s)
- Dana N Moses
- Program of Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
The collagen gel contraction (CGC) assay is used frequently to study the cell-mediated reorganization of the extracellular natrix. In a typical CGC assay, cells embedded in a disk-shaped lattice (gel) of native type I collagen fibers compress the fibers and, consequently, reduce the diameter of the collagen disk within h or d. The degree to which the collagen is contracted is usually quantified by measurement of the diameter or the area of the disk. During CCC assays, friction or adhesion (or both) between gels and their culture containers can cause gels to be incompletely contracted or to acquire distorted shapes. Such occurrences degrade the reproducibility and reliability of measurements of gel dimensions. To address these problems, we developed an oil-supported collagen retraction (OSCR) assay that creates an environment of low friction and adhesion around the contracting collagen gel. The OSCR assay is accomplished with simple equipment and is easily performed, sensitive, and consistently yields fully contracted gels with minimal distortion.
Collapse
|
12
|
Pastor JC, de la Rúa ER, Martín F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 2002; 21:127-44. [PMID: 11906814 DOI: 10.1016/s1350-9462(01)00023-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is still a major cause of failure of retinal detachment surgery. Despite a dramatic increase in our pathobiologic knowledge of PVR during the last 10 years, little of this information has been used to modify the surgical management of the disease, and, thus, the anatomic and functional results are still unsatisfactory. Collaborative research involving clinicians and basic researchers must be encouraged. PVR must be considered a multifactorial disease caused by interaction of several cells and intra- and extraocular factors. Therefore, therapeutic options based on the inhibition of one factor or phenomenon may be regarded with scepticism. To prevent PVR, it is necessary to determine the factors involved in its development, and because of its relatively small prevalence, large, prospective, multicenter studies seem necessary. In addition, clinical research must not be underestimated. PVR affects both sides of the retina and the retina itself, a point to which little attention has been paid and that is critical for surgical results. Therefore, a new classification that provides information about clinical relevance, such as the evolutionary stages of the disease (biologic activity) and the degree of surgical difficulty (location of the fibrotic process), seems necessary.
Collapse
Affiliation(s)
- J Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Retina Group, Ramon y Cajal, 7, 47005, Spain.
| | | | | |
Collapse
|