1
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
2
|
Wiegand MA, Gori-Savellini G, Gandolfo C, Papa G, Kaufmann C, Felder E, Ginori A, Disanto MG, Spina D, Cusi MG. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease. J Virol 2017; 91:e02298-16. [PMID: 28250126 PMCID: PMC5411584 DOI: 10.1128/jvi.02298-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Genetic Vectors
- Immunization
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Sendai virus/genetics
- Sendai virus/immunology
- Vaccines, Attenuated
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Virus Replication
Collapse
Affiliation(s)
| | - Gianni Gori-Savellini
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Guido Papa
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | | | - Eva Felder
- AmVac Research GmbH, Martinsried, Germany
| | - Alessandro Ginori
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Giulia Disanto
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Donatella Spina
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells. J Virol 2010; 84:11718-28. [PMID: 20810726 DOI: 10.1128/jvi.00798-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Collapse
|
4
|
Touzelet O, Loukili N, Pelet T, Fairley D, Curran J, Power UF. De novo generation of a non-segmented negative strand RNA virus with a bicistronic gene. Virus Res 2009; 140:40-8. [DOI: 10.1016/j.virusres.2008.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/28/2022]
|
5
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants and is an important source of morbidity and mortality in the elderly and immunocompromised. This review will discuss the humoral and cellular adaptive immune responses to RSV infection and how these responses are shaped in the immature immune system of the infant and the aged environment of the elderly. Furthermore, we will provide an overview of our current understanding of the role the various arms of the adaptive immune response play in mediating the delicate balance between the successful elimination of the virus from the host and the induction of immunopathology. Efficacious immunization against RSV remains a high priority within the field and we will highlight recent advances made in vaccine design.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 8433 Fax: +1 319 335 9006
| | - Steven M Varga
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 7784 Fax: +1 319 335 9006
| |
Collapse
|
6
|
Voges B, Vallbracht S, Zimmer G, Bossow S, Neubert WJ, Richter K, Hobeika E, Herrler G, Ehl S. Recombinant Sendai virus induces T cell immunity against respiratory syncytial virus that is protective in the absence of antibodies. Cell Immunol 2007; 247:85-94. [PMID: 17904538 DOI: 10.1016/j.cellimm.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe respiratory disease in infants and a vaccine is highly desirable. The fusion (F) protein of RSV is an important vaccine target, but the contribution of F-specific T cells to successful vaccination remains unclear. We studied the immune response to vaccination of mice with a recombinant Sendai virus expressing RSV F (rSeV F). rSeV F induced protective neutralizing antibody and RSV F-specific CTL responses. T cell immunity was stronger than that induced by recombinant vaccinia virus (rVV F), a well characterized reference vector. Vaccination of antibody-deficient mice showed that vaccine-induced RSV F-specific T cells were sufficient for protective immunity. rSeV F induced T cell immunity in the presence of neutralizing antibodies, which did not impair the vaccine response. Although the F protein only contains a subdominant CTL epitope, vaccination with rSeV F is sufficient to induce protective T cell immunity against RSV in mice.
Collapse
Affiliation(s)
- Brigitte Voges
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Faísca P, Desmecht D. Sendai virus, the mouse parainfluenza type 1: a longstanding pathogen that remains up-to-date. Res Vet Sci 2006; 82:115-25. [PMID: 16759680 DOI: 10.1016/j.rvsc.2006.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/12/2006] [Accepted: 03/08/2006] [Indexed: 11/20/2022]
Abstract
Biologically speaking, Sendai virus (SeV), the murine parainfluenza virus type 1, is perceived as a common respiratory pathogen that is endemic in many rodent colonies throughout the world. Currently it is believed that SeV is the leading cause of pneumonia in mice and together with the mouse hepatitis viruses, is the most prevalent and important of the naturally occurring infections of mice. The scientific community also considers SeV as the archetype organism of the Paramyxoviridae family because most of the basic biochemical, molecular and biologic properties of the whole family were derived from its own characteristics. Recently, scientific interest for this old pathogen has re-emerged, this time because of its potential value as a vector for gene transfer. This review aimed at drawing an exhaustive picture of this multifaceted pathogen.
Collapse
Affiliation(s)
- P Faísca
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman Faculty of Veterinary Medicine B43, B-4000 Liège, Belgium.
| | | |
Collapse
|
8
|
Platz J, Beisswenger C, Dalpke A, Koczulla R, Pinkenburg O, Vogelmeier C, Bals R. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1219-23. [PMID: 15240713 DOI: 10.4049/jimmunol.173.2.1219] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial cells represent the initial site of bacterial colonization in the respiratory tract. TLR9 has been identified in B cells and CD 123(+) dendritic cells and found to be involved in the recognition of microbial DNA. It was the aim of the study to investigate the role of TLR9 in the host defense reactions of the respiratory epithelium. Respiratory epithelial cell lines (IHAEo(-), Calu-3) or fully differentiated primary human cells as air-liquid interface cultures were stimulated with bacterial DNA or synthetic oligonucleotides containing CpG motifs (CpG oligodeoxynucleotides). Expression of TLR9, cytokines, and human beta-defensin 2 was determined by quantitative RT-PCR or by ELISA. We found that TLR9 is expressed by respiratory epithelial cell lines and fully differentiated primary epithelial cells at low levels. Stimulation of the above-mentioned cells with bacterial DNA or CpG oligodeoxynucleotide resulted in an inflammatory reaction characterized by a dose-dependent up-regulation of cytokines (IL-6, IL-8) and human beta-defensin 2. Up-regulation of NF-kappaB in epithelial cells in response to the CpG motif containing DNA was inhibited by overexpression of a dominant negative form of MyD88. These results provide clear evidence that the human respiratory epithelium is capable of detecting microbial DNA by TLR9. The respiratory epithelium has an important function in triggering innate immune responses and therefore represents an interesting target for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Juliane Platz
- Department of Internal Medicine, Division for Pulmonary Diseases, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|