1
|
Guo K, Joshipura K, Ricart K, Patel RP, Gower BA, Andriankaja OM, Morou-Bermudez E. Association of over-the-counter mouthwash use with markers of nitric oxide metabolism, inflammation, and endothelial function-a cross-sectional study. FRONTIERS IN ORAL HEALTH 2025; 6:1488286. [PMID: 39981124 PMCID: PMC11841417 DOI: 10.3389/froh.2025.1488286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Regular use of mouthwash can disrupt nitrate reduction by oral bacteria and may affect systemic nitric oxide (NO) levels, which are important for inflammation and endothelial function. We aim to assess the association between over-the-counter (OTC) mouthwash use and nitrate/nitrite, markers of inflammation (IL-6, TNF-α, CRP) and endothelial function (sICAM-1, sVCAM-1) in serum and saliva, and to assess the relationship between nitrate/nitrite levels and these biomarkers, as well as how OTC mouthwash modulated this relationship. We hypothesize that nitrates/nitrites are associated with these biomarkers, and that their associations would vary with the frequency of mouthwash use. Method Our cross-sectional study used data and specimen from the baseline of the San Juan Overweight Adult Longitudinal Study (SOALS). Robust Gamma regression with log-link function, Spearman correlations and partial correlations adjusted for covariates were used for the analysis. Results Using OTC mouthwash twice a day or more was significantly associated with lower serum nitrite levels compared to less frequent use (β = -0.357, 95% CI: -0.650, -0.064), but not with other markers of inflammation and endothelial function. Mouthwash use differentially impacted the relationship between nitrate/nitrite and TNF-α, sICAM-1 and sVCAM-1. Specifically, in the participants who used mouthwash less than twice a day or no use, TNF-α (β = -0.35, 95% CI: -0.52, -0.18), and sICAM-1 (β = -0.21, 95% CI: -0.32, -0.09) were negatively associated with serum nitrite. In the participants who used mouthwash twice a day or more use, TNF-α was positively associated with serum nitrate (β = 3.36, 95% CI: 2.07, 4.65), salivary nitrite (β = 1.04, 95% CI: 0.39, 1.69) and salivary nitrate (β = 0.48, 95% CI: 0.25, 0.71); sICAM-1 was positively associated with serum nitrate (β = 1.58, 95% CI: 0.86, 2.29). In both subgroups of mouthwash users, sVCAM-1 was positively correlated with serum nitrate and salivary nitrate. In addition, sVCAM-1 was positively correlated with serum nitrite in participants who used mouthwash frequently (ρ_S = 0.18, p = 0.045). Discussion Regular use of OTC mouthwash was associated with systemic nitric oxide. This raises concerns about its potential effects on the levels of inflammatory and endothelial biomarkers associated with cardiometabolic diseases.
Collapse
Affiliation(s)
- Kai Guo
- Surgical Science Department, School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | | | - Karina Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barbara A. Gower
- Department of Nutrition Sciences, Division of Physiology & Metabolism, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Oelisoa Mireille Andriankaja
- Center for Oral Health Research (COHR), College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Evangelia Morou-Bermudez
- Surgical Science Department, School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
2
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Willmott T, Serrage HJ, Cottrell EC, Humphreys GJ, Myers J, Campbell PM, McBain AJ. Investigating the association between nitrate dosing and nitrite generation by the human oral microbiota in continuous culture. Appl Environ Microbiol 2024; 90:e0203523. [PMID: 38440981 PMCID: PMC11022587 DOI: 10.1128/aem.02035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hannah J. Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth C. Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J. Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paul M. Campbell
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Farook FF, Alnasyan B, Alhamid R, AlAmri Z, Alshammari A, Nizam MNM, Alorf RA. Association between mouth rinse use and changes in blood pressure: A systematic review and meta-analysis with trial sequential analysis. Int J Dent Hyg 2024; 22:65-77. [PMID: 37486884 DOI: 10.1111/idh.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Revised: 12/26/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Previous randomized controlled trials have shown that the use of antiseptic mouth rinses not only eradicates oral bacteria but also disrupts their ability to convert nitrate to nitrite, which is the key molecule in regulating blood pressure (BP). OBJECTIVE This study aimed to evaluate the association between the use of mouth rinses and changes in BP. METHODS The PubMed, Web of Science, EMBASE, Scopus, and Cochrane Library databases were systematically searched from their respective inception dates to 18th December 2022 to identify potential interventional studies with information on the association between the use of mouth rinse and changes in BP. Five trials using a controlled, crossover design were identified for data analysis. RESULTS The weighted mean difference was pooled using a random-effects model. The pooled results of five trials together showed that the use of mouth rinses did not result in a statistically or clinically significant increase in the systolic BP (SBP) (1.59 mmHg; 95% confidence interval [CI], -0.15 to 3.33) or diastolic BP (DBP) (0.46 mmHg; 95% CI, -0.72 to 1.64). The trial sequential analysis did not present conclusive evidence supporting the association between mouth rinse use and BP elevation. CONCLUSION Within the limits of the available evidence, our review and meta-analysis showed that mouth rinse use did not result in a statistically significant increase in the SBP, DBP, or mean arterial pressure (MAP). Nevertheless, the results should be interpreted cautiously due to the high degree of inconsistency across the studies.
Collapse
Affiliation(s)
- Fathima Fazrina Farook
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bothinah Alnasyan
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Reem Alhamid
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Zahra AlAmri
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulsalam Alshammari
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | | - Roaa Ali Alorf
- College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sebastiá-Rico J, Cabeza-Melendre D, Anderson L, Martínez-Sanz JM. Nitric Oxide in the Field: Prevalence and Use of Nitrates by Dietitians and Nutritionists in Spanish Elite Soccer. Nutrients 2023; 15:5128. [PMID: 38140386 PMCID: PMC10745965 DOI: 10.3390/nu15245128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Soccer players make frequent use of dietary supplements to improve performance. One of the most widely used strategies to optimize performance is to increase the bioavailability of nitric oxide through nitrates, as it could delay fatigue during physical exertion, among other benefits. This may be positive for performance in soccer, although there is almost no research in professional soccer. The aim of the study was to evaluate the use of nitrates and behaviours related to their consumption in Spanish elite soccer clubs. Dietitian-nutritionist representatives from 45 teams from the most important Spanish soccer leagues completed an online survey to determine if, when, how and why nitrates are prescribed to soccer players. Of the total sample, 55.6% indicated providing nitrates, always before matches, but only 36% in training. There was a wide variation and lack of consistency in the timing, dosage and form of administration of nitrates. The use of mouthwashes or the protocol of chronic nitrate intake was not taken into account in most cases. The present study indicates a lack of interpretation between scientific knowledge and its application in practice, highlighting the need for future research to better understand how to optimize the use of nitrates in professional soccer.
Collapse
Affiliation(s)
- Jaime Sebastiá-Rico
- Area of Nutrition, University Clinic of Nutrition, Physical Activity and Physiotherapy (CUNAFF), Lluís Alcanyís Foundation—University of Valencia, 46020 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Daniel Cabeza-Melendre
- Area of Nutrition, University Clinic of Nutrition, Physical Activity and Physiotherapy (CUNAFF), Lluís Alcanyís Foundation—University of Valencia, 46020 Valencia, Spain
| | - Liam Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | | |
Collapse
|
6
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Zhang H, Qin L. Positive feedback loop between dietary nitrate intake and oral health. Nutr Res 2023; 115:1-12. [PMID: 37207592 DOI: 10.1016/j.nutres.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Nitrate was once thought to be an inert end-product of endothelial-derived nitric oxide (NO) heme oxidation; however, this view has been radically revised over the past few decades. Following the clarification of the nitrate-nitrite-NO pathway, accumulated evidence has shown that nitrate derived from the diet is a supplementary source of endogenous NO generation, playing important roles in a variety of pathological and physiological conditions. However, the beneficial effects of nitrate are closely related with oral health, and oral dysfunction has an adverse effect on nitrate metabolism and further impacts overall systemic health. Moreover, an interesting positive feedback loop has been identified between dietary nitrate intake and oral health. Dietary nitrate's beneficial effect on oral health may further improve its bioavailability and promote overall systemic well-being. This review aims to provide a detailed description of the functions of dietary nitrate, with an emphasis on the key role oral health plays in nitrate bioavailability. This review also provides recommendations for a new paradigm that includes nitrate therapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Chen Y, Huang Z, Tang Z, Huang Y, Huang M, Liu H, Ziebolz D, Schmalz G, Jia B, Zhao J. More Than Just a Periodontal Pathogen –the Research Progress on Fusobacterium nucleatum. Front Cell Infect Microbiol 2022; 12:815318. [PMID: 35186795 PMCID: PMC8851061 DOI: 10.3389/fcimb.2022.815318] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is a common oral opportunistic bacterium that can cause different infections. In recent years, studies have shown that F. nucleatum is enriched in lesions in periodontal diseases, halitosis, dental pulp infection, oral cancer, and systemic diseases. Hence, it can promote the development and/or progression of these conditions. The current study aimed to assess research progress in the epidemiological evidence, possible pathogenic mechanisms, and treatment methods of F. nucleatum in oral and systemic diseases. Novel viewpoints obtained in recent studies can provide knowledge about the role of F. nucleatum in hosts and a basis for identifying new methods for the diagnosis and treatment of F. nucleatum-related diseases.
Collapse
Affiliation(s)
- Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| |
Collapse
|
9
|
Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health. J Dent Res 2022; 101:623-631. [PMID: 35081826 DOI: 10.1177/00220345211064571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Nitrate-reducing oral bacteria have gained a lot of interest due to their involvement in nitric oxide (NO) synthesis and its important cardiometabolic outcomes. Consortia of nitrate-metabolizing oral bacteria associated with cardiometabolic health and cognitive function have been recently identified. Longitudinal studies and clinical trials have shown that chronic mouthwash use is associated with increased blood pressure and increased risk for prediabetes/diabetes and hypertension. Concurrently, recent studies are beginning to shed some light on the complexity of nitrate reduction pathways of oral bacteria, such as dissimilatory nitrate reduction to ammonium (DNRA), which converts nitrite into ammonium, and denitrification, which converts nitrite to NO, nitrous oxide, and dinitrogen. These pathways can affect the composition and metabolism of the oral microbiome; consequently, salivary nitrate and nitrite metabolism have been proposed as targets for probiotics and oral health. These pathways could also affect systemic NO levels because NO generated through denitrification can be oxidized back to nitrite in the saliva, thus facilitating flux along the NO3--NO2--NO pathway, while DNRA converts nitrite to ammonium, leading to reduced NO. It is, therefore, important to understand which pathway predominates under different oral environmental conditions, since the clinical consequences could be different for oral and systemic health. Recent studies show that oral hygiene measures such as tongue cleaning and dietary nitrate are likely to favor denitrifying bacteria such as Neisseria, which are linked with better cardiometabolic health. A vast body of literature demonstrates that redox potential, carbon-to-nitrate ratio, and nitrate-to-nitrite ratio are key environmental drivers of the competing denitrification and DNRA pathways in various natural and artificial ecosystems. Based on this information, a novel behavioral and microbial model for nitric oxide metabolism and health is proposed, which links lifestyle factors with oral and systemic health through NO metabolism.
Collapse
Affiliation(s)
- E Morou-Bermúdez
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - J E Torres-Colón
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - N S Bermúdez
- Department of Linguistics, Harvard University, Cambridge, MA, USA
| | - R P Patel
- Department of Pathology, University of Alabama at Birmingham and Center for Free Radical Biology, AL, USA
| | - K J Joshipura
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico.,T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Batista RIM, Nogueira RC, Ferreira GC, Oliveira-Paula GH, Damacena-Angelis C, Pinheiro LC, Tanus-Santos JE. Antiseptic mouthwash inhibits antihypertensive and vascular protective effects of L-arginine. Eur J Pharmacol 2021; 907:174314. [PMID: 34245745 DOI: 10.1016/j.ejphar.2021.174314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
L-arginine supplementation increases nitric oxide (NO) formation and bioavailability in hypertension. We tested the possibility that many effects of L-arginine are mediated by increased formation of NO and enhanced nitrite, nitrate and nitrosylated species concentrations, thus stimulating the enterosalivary cycle of nitrate. Those effects could be prevented by antiseptic mouthwash. We examined how the derangement of the enterosalivary cycle of nitrate affects the improvement of endothelial dysfunction (assessed with isolated aortic ring preparation), the antihypertensive (assessed by tail-cuff blood pressure measurement) and the antioxidant effects (assessed with the fluorescent dye DHE) of L-arginine in two-kidney, one-clip hypertension model in rats by using chlorhexidine to decrease the number of oral bacteria and to decrease nitrate reductase activity assessed from the tongue (by ozone-based chemiluminiscence assay). Nitrite, nitrate and nitrosylated species concentrations were assessed (ozone-based chemiluminiscence). Chlorhexidine mouthwash reduced the number of oral bacteria and tended to decrease the nitrate reductase activity from the tongue. Antiseptic mouthwash blunted the improvement of the endothelial dysfunction and the antihypertensive effects of L-arginine, impaired L-arginine-induced increases in plasma nitrite and nitrosylated species concentrations, and blunted L-arginine-induced increases in aortic nitrate concentrations and vascular antioxidant effects. Our results show for the first time that the vascular and antihypertensive effects of L-arginine are prevented by antiseptic mouthwash. These findings show an important new mechanism that should be taken into consideration to explain how the use of antibacterial mouth rinse may affect arterial blood pressure and the risk of developing cardiovascular and other diseases.
Collapse
Affiliation(s)
- Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Célio Damacena-Angelis
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
11
|
Burke LM, Hall R, Heikura IA, Ross ML, Tee N, Kent GL, Whitfield J, Forbes SF, Sharma AP, Jones AM, Peeling P, Blackwell JR, Mujika I, Mackay K, Kozior M, Vallance B, McKay AKA. Neither Beetroot Juice Supplementation nor Increased Carbohydrate Oxidation Enhance Economy of Prolonged Exercise in Elite Race Walkers. Nutrients 2021; 13:nu13082767. [PMID: 34444928 PMCID: PMC8398364 DOI: 10.3390/nu13082767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes’ economy as well as the performance effects in elite groups.
Collapse
Affiliation(s)
- Louise M. Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Correspondence: ; Tel.: +61-422-635-869
| | - Rebecca Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Ida A. Heikura
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Megan L. Ross
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Nicolin Tee
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Georgina L. Kent
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
| | - Sara F. Forbes
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- UniSA Online, University of South Australia, Adelaide, SA 5000, Australia
| | - Avish P. Sharma
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Triathlon Australia, Burleigh Heads, Gold Coast, QLD 4220, Australia
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| | - Jamie R. Blackwell
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Basque Country, Spain;
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Karen Mackay
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Marta Kozior
- Department of Physical Education & Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Brent Vallance
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Athletics Australia, South Melbourne, Melbourne, VIC 3205, Australia
| | - Alannah K. A. McKay
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| |
Collapse
|
12
|
Antiseptic mouthwash, the nitrate-nitrite-nitric oxide pathway, and hospital mortality: a hypothesis generating review. Intensive Care Med 2020; 47:28-38. [PMID: 33067640 PMCID: PMC7567004 DOI: 10.1007/s00134-020-06276-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
Meta-analyses and several large cohort studies have demonstrated that antiseptic mouthwashes are associated with mortality in hospitalized patients. A clear pathogenic mechanism is lacking, leading to controversy and a reluctance to abandon or limit the use of antiseptic mouthwashes. Here, we generate the hypothesis that a disturbance in nitric oxide homeostasis by antiseptic mouthwashes may be responsible for the observed increase in mortality risk. Nitric oxide is essential in multiple physiological processes, and a reduction in nitric oxide bioavailability is associated with the occurrence or worsening of pathologies, such as atherosclerosis, diabetes, and sepsis. Oral facultative anaerobic bacteria are essential for the enterosalivary nitrate–nitrite–nitric oxide pathway due to their capacity to reduce nitrate to nitrite. Nitrate originates from dietary sources or from the active uptake by salivary glands of circulating nitrate, which is then excreted in the saliva. Because antiseptic mouthwashes eradicate the oral bacterial flora, this nitric oxide-generating pathway is abolished, which may result in nitric oxide-deficient conditions potentially leading to life-threatening complications such as ischaemic heart events or sepsis.
Collapse
|
13
|
How Periodontal Disease and Presence of Nitric Oxide Reducing Oral Bacteria Can Affect Blood Pressure. Int J Mol Sci 2020; 21:ijms21207538. [PMID: 33066082 PMCID: PMC7589924 DOI: 10.3390/ijms21207538] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO), a small gaseous and multifunctional signaling molecule, is involved in the maintenance of metabolic and cardiovascular homeostasis. It is endogenously produced in the vascular endothelium by specific enzymes known as NO synthases (NOSs). Subsequently, NO is readily oxidized to nitrite and nitrate. Nitrite is also derived from exogenous inorganic nitrate (NO3) contained in meat, vegetables, and drinking water, resulting in greater plasma NO2 concentration and major reduction in systemic blood pressure (BP). The recycling process of nitrate and nitrite to NO (nitrate-nitrite-NO pathway), known as the enterosalivary cycle of nitrate, is dependent upon oral commensal nitrate-reducing bacteria of the dorsal tongue. Veillonella, Actinomyces, Haemophilus, and Neisseria are the most copious among the nitrate-reducing bacteria. The use of chlorhexidine mouthwashes and tongue cleaning can mitigate the bacterial nitrate-related BP lowering effects. Imbalances in the oral reducing microbiota have been associated with a decrease of NO, promoting endothelial dysfunction, and increased cardiovascular risk. Although there is a relationship between periodontitis and hypertension (HT), the correlation between nitrate-reducing bacteria and HT has been poorly studied. Restoring the oral flora and NO activity by probiotics may be considered a potential therapeutic strategy to treat HT.
Collapse
|
14
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
15
|
Rowland SN, Chessor R, French G, Robinson GP, O'Donnell E, James LJ, Bailey SJ. Oral nitrate reduction is not impaired after training in chlorinated swimming pool water in elite swimmers. Appl Physiol Nutr Metab 2020; 46:86-89. [PMID: 32835490 DOI: 10.1139/apnm-2020-0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
This study tested the hypothesis that exposure to chlorine-sterilised pool water would impair oral nitrate reduction (ONR). ONR was assessed in elite swimmers before and after morning and afternoon pool-based training. Nonswimmers were only assessed in the morning. ONR was similar in swimmers and nonswimmers (P = 1.000) and unchanged before and after morning and afternoon training (P ≥ 0.341). Therefore, exposure to chlorinated pool water does not interfere with ONR. Novelty Exposure to chlorine-sterilised pool water does not impair oral nitrate reduction in elite swimmers.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Richard Chessor
- British Swimming, Loughborough University, Loughborough LE11 3TU, UK
| | - George French
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - George P Robinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|