1
|
Bianchi VE, von Haehling S. The treatment of chronic anemia in heart failure: a global approach. Clin Res Cardiol 2024; 113:1117-1136. [PMID: 37660308 DOI: 10.1007/s00392-023-02275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Chronic anemia is an independent risk factor for mortality in patients with heart failure (HF). Restoring physiological hemoglobin (Hb) levels is essential to increase oxygen transport capacity to tissues and improve cell metabolism as well as physical and cardiac performance. Nutritional deficits and iron deficiency are the major causes of chronic anemia, but other etiologies include chronic kidney disease, inflammatory processes, and unexplained anemia. Hormonal therapy, including erythropoietin (EPO) and anabolic treatment in chronic anemia HF patients, may contribute to improving Hb levels and clinical outcomes. Although preliminary studies showed a beneficial effect of EPO therapy on cardiac efficiency and in HF, more recent studies have not confirmed this positive impact of EPO, alluding to its side effect profile. Physical exercise significantly increases Hb levels and the response of anemia to treatment. In malnourished patients and chronic inflammatory processes, low levels of anabolic hormones, such as testosterone and insulin-like growth factor-1, contribute to the development of chronic anemia. This paper aims to review the effect of nutrition, EPO, anabolic hormones, standard HF treatments, and exercise as regulatory mechanisms of chronic anemia and their cardiovascular consequences in patients with HF.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42, 47891, Falciano, San Marino.
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
2
|
Xie Y, Xiang D, Hu X, Pakula H, Park ES, Chi J, Linn DE, Tao L, Li Z. Interplay of IGF1R and estrogen signaling regulates hematopoietic stem and progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585808. [PMID: 38562745 PMCID: PMC10983897 DOI: 10.1101/2024.03.20.585808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/04/2024]
Abstract
Tissue stem cells often exhibit developmental stage-specific and sexually dimorphic properties, but the underlying mechanism remains largely elusive. By characterizing IGF1R signaling in hematopoietic cells, here we report that its disruption exerts sex-specific effects in adult hematopoietic stem and progenitor cells (HSPCs). Loss of IGF1R decreases the HSPC population in females but not in males, in part due to a reduction in HSPC proliferation induced by estrogen. In addition, the adult female microenvironment enhances engraftment of wild-type but not Igf1r-null HSPCs. In contrast, during gestation, when both female and male fetuses are exposed to placental estrogens, loss of IGF1R reduces the numbers of their fetal liver HSPCs regardless of sex. Collectively, these data support the interplay of IGF1R and estrogen pathways in HSPCs and suggest that the proliferation-promoting effect of estrogen on HSPCs is in part mediated via IGF1R signaling.
Collapse
Affiliation(s)
- Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hubert Pakula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eun-Sil Park
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jiadong Chi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Douglas E Linn
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
4
|
Maternal anemia and childhood cancer: a population-based case-control study in Denmark. Cancer Epidemiol 2023; 82:102308. [PMID: 36434977 PMCID: PMC9904448 DOI: 10.1016/j.canep.2022.102308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Childhood cancer risk is associated with maternal health during pregnancy. Anemia in pregnancy is a common condition, especially in low-income countries, but a possible association between maternal anemia and childhood cancer has not been widely studied. METHODS We examined the relation in a population-based study in Denmark (N = 6420 cancer cases, 160,485 controls). Cases were taken from the Danish Cancer Registry, and controls were selected from national records. We obtained maternal anemia diagnoses from the National Patient and Medical Births registries. In a separate analysis within the years available (births 1995-2014), we examined cancer risks among mothers taking prescribed vitamin supplements, using data from the National Prescription Register. We estimated the risks of childhood cancer using conditional logistic regression. RESULTS The risks of neuroblastoma [odds ratio (OR= 1.83, 95% confidence interval (CI): 1.04, 3.22] and acute lymphoblastic leukemia (OR= 1.46, 95% CI 1.09, 1.97) were increased in children born to mothers with anemia in pregnancy. There was a two-fold increased risk for bone tumors (OR= 2.59, 95% CI: 1.42, 4.72), particularly osteosarcoma (OR= 3.54, 95% CI 1.60, 7.82). With regards to prescribed supplement use, mothers prescribed supplements for B12 and folate deficiency anemia (OR= 4.03, 95% CI 1.91, 8.50) had an increased risk for cancer in offspring. CONCLUSION Our results suggest that screening for anemia in pregnancy and vitamin supplementation may be an actionable strategy to prevent some cases of childhood cancer.
Collapse
|
5
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
6
|
Epigenetic Effects of Benzene in Hematologic Neoplasms: The Altered Gene Expression. Cancers (Basel) 2021; 13:cancers13102392. [PMID: 34069279 PMCID: PMC8156840 DOI: 10.3390/cancers13102392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Benzene is produced by diverse petroleum transformation processes and it is widely employed in industry despite its oncogenic effects. In fact, occupational exposure to benzene may cause hematopoietic malignancy. The leukemogenic action of benzene is particularly complex. Possible processes of onset of hematological malignancies have been recognized as a genotoxic action and the provocation of immunosuppression. However, benzene can induce modifications that do not involve alterations in the DNA sequence, the so-called epigenetics changes. Acquired epigenetic modification may also induce leukemogenesis, as benzene may alter nuclear receptors, and cause changes at the protein level, thereby modifying the function of regulatory proteins, including oncoproteins and tumor suppressor proteins. Abstract Benzene carcinogenic ability has been reported, and chronic exposure to benzene can be one of the risk elements for solid cancers and hematological neoplasms. Benzene is acknowledged as a myelotoxin, and it is able to augment the risk for the onset of acute myeloid leukemia, myelodysplastic syndromes, aplastic anemia, and lymphomas. Possible mechanisms of benzene initiation of hematological tumors have been identified, as a genotoxic effect, an action on oxidative stress and inflammation and the provocation of immunosuppression. However, it is becoming evident that genetic alterations and the other causes are insufficient to fully justify several phenomena that influence the onset of hematologic malignancies. Acquired epigenetic alterations may participate with benzene leukemogenesis, as benzene may affect nuclear receptors, and provoke post-translational alterations at the protein level, thereby touching the function of regulatory proteins, comprising oncoproteins and tumor suppressor proteins. DNA hypomethylation correlates with stimulation of oncogenes, while the hypermethylation of CpG islands in promoter regions of specific tumor suppressor genes inhibits their transcription and stimulates the onset of tumors. The discovery of the systems of epigenetic induction of benzene-caused hematological tumors has allowed the possibility to operate with pharmacological interventions able of stopping or overturning the negative effects of benzene.
Collapse
|
7
|
Reis LC, Ramos-Sanchez EM, Araujo FN, Leal AF, Ozaki CY, Sevillano OR, Uscata BA, Goto H. Pleiotropic Effect of Hormone Insulin-Like Growth Factor-I in Immune Response and Pathogenesis in Leishmaniases. J Immunol Res 2021; 2021:6614475. [PMID: 34036108 PMCID: PMC8116165 DOI: 10.1155/2021/6614475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2020] [Revised: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniases are diseases caused by several Leishmania species, and many factors contribute to the development of the infection. Because the adaptive immune response does not fully explain the outcome of Leishmania infection and considering that the initial events are crucial in the establishment of the infection, we investigated one of the growth factors, the insulin-like growth factor-I (IGF-I), found in circulation and produced by different cells including macrophages and present in the skin where the parasite is inoculated. Here, we review the role of IGF-I in leishmaniasis experimental models and human patients. IGF-I induces the growth of different Leishmania species in vitro and alters the disease outcome increasing the parasite load and lesion size, especially in L. major- and L. amazonensis-infected mouse leishmaniasis. IGF-I affects the parasite interacting with the IGF-I receptor present on Leishmania. During Leishmania-macrophage interaction, IGF-I acts on the arginine metabolic pathway, resulting in polyamine production both in macrophages and Leishmania. IGF-I and cytokines interact with reciprocal influences on their expression. IL-4 is a hallmark of susceptibility to L. major in murine leishmaniasis, but we observed that IGF-I operates astoundingly as an effector element of the IL-4. Approaching human leishmaniasis, patients with mucosal, disseminated, and visceral diseases presented surprisingly low IGF-I serum levels, suggesting diverse effects than parasite growth. We observed that low IGF-I levels might contribute to the inflammatory response persistence and delayed lesion healing in human cutaneous leishmaniasis and the anemia development in visceral leishmaniasis. We must highlight the complexity of infection revealed depending on the Leishmania species and the parasite's developmental stages. Because IGF-I exerts pleiotropic effects on the biology of interaction and disease pathogenesis, IGF-I turns up as an attractive tool to explore biological and pathogenic processes underlying infection development. IGF-I pleiotropic effects open further the possibility of approaching IGF-I as a therapeutical target.
Collapse
Affiliation(s)
- Luiza C. Reis
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Fernanda N. Araujo
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Ariane F. Leal
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Christiane Y. Ozaki
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Orlando R. Sevillano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Bernardina A. Uscata
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
| | - Hiro Goto
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo (IMTSP-USP), São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Stremming J, Heard S, White A, Chang EI, Shaw SC, Wesolowski SR, Jonker SS, Rozance PJ, Brown LD. IGF-1 infusion to fetal sheep increases organ growth but not by stimulating nutrient transfer to the fetus. Am J Physiol Endocrinol Metab 2021; 320:E527-E538. [PMID: 33427051 PMCID: PMC7988781 DOI: 10.1152/ajpendo.00453.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is an important fetal growth factor. However, the role of fetal IGF-1 in increasing placental blood flow, nutrient transfer, and nutrient availability to support fetal growth and protein accretion is not well understood. Catheterized fetuses from late gestation pregnant sheep received an intravenous infusion of LR3 IGF-1 (LR3 IGF-1; n = 8) or saline (SAL; n = 8) for 1 wk. Sheep then underwent a metabolic study to measure uterine and umbilical blood flow, nutrient uptake rates, and fetal protein kinetic rates. By the end of the infusion, fetal weights were not statistically different between groups (SAL: 3.260 ± 0.211 kg, LR3 IGF-1: 3.682 ± 0.183; P = 0.15). Fetal heart, adrenal gland, and spleen weights were higher (P < 0.05), and insulin was lower in LR3 IGF-1 (P < 0.05). Uterine and umbilical blood flow and umbilical uptake rates of glucose, lactate, and oxygen were similar between groups. Umbilical amino acid uptake rates were lower in LR3 IGF-1 (P < 0.05) as were fetal concentrations of multiple amino acids. Fetal protein kinetic rates were similar. LR3 IGF-1 skeletal muscle had higher myoblast proliferation (P < 0.05). In summary, LR3 IGF-1 infusion for 1 wk into late gestation fetal sheep increased the weight of some fetal organs. However, because umbilical amino acid uptake rates and fetal plasma amino acid concentrations were lower in the LR3 IGF-1 group, we speculate that animals treated with LR3 IGF-1 can efficiently utilize available nutrients to support organ-specific growth in the fetus rather than by stimulating placental blood flow or nutrient transfer to the fetus.NEW & NOTEWORTHY After a 1-wk infusion of LR3 IGF-1, late gestation fetal sheep had lower umbilical uptake rates of amino acids, lower fetal arterial amino acid and insulin concentrations, and lower fetal oxygen content; however, LR-3 IGF-1-treated fetuses were still able to effectively utilize the available nutrients and oxygen to support organ growth and myoblast proliferation.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sara Heard
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alicia White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven C Shaw
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sonnet S Jonker
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, Oregon
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Guevara-Aguirre J, Torres C, Peña G, Palacios M, Bautista C, Guevara A, Gavilanes AW. IGF-I deficiency and enhanced insulin sensitivity due to a mutated growth hormone receptor gene in humans. Mol Cell Endocrinol 2021; 519:111044. [PMID: 33053393 DOI: 10.1016/j.mce.2020.111044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Human size is achieved by the coordinated expression of many genes. From conception to adulthood, a given genomic endowment is modified by highly variable environmental circumstances. During each stage of a person's life, distinct nutritional and hormonal influences continuously shape growing physical features until mature characteristics are attained. Underlying processes depend on precise provision of substrates and energy extracted by insulin action from nutrients, which allows cell proliferation, differentiation, and survival, under the concerted actions of growth hormone and insulin-like growth factor-I (IGF-I). It should be noted that growth and metabolic signaling pathways are interdependent and superimposed at multiple levels. Attainment of a fully developed human phenotype should be considered as a harmonious increment in body size rather than a simple increase in height. From this perspective we herein analyze adult features of individuals with an inactive growth hormone receptor, who consequently have severely diminished concentrations of serum insulin and endocrine IGF-I.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador; Maastricht University, Maastricht, the Netherlands; Instituto de Endocrinología IEMYR, Quito, Ecuador.
| | - Carlos Torres
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Gabriela Peña
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - María Palacios
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Camila Bautista
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | | | | |
Collapse
|
10
|
Karnas E, Sekuła-Stryjewska M, Kmiotek-Wasylewska K, Bobis-Wozowicz S, Ryszawy D, Sarna M, Madeja Z, Zuba-Surma EK. Extracellular vesicles from human iPSCs enhance reconstitution capacity of cord blood-derived hematopoietic stem and progenitor cells. Leukemia 2021; 35:2964-2977. [PMID: 34140648 PMCID: PMC8478657 DOI: 10.1038/s41375-021-01325-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45dimLin-CD34+ cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro. Moreover, hiPSC-EVs enhanced homing and engraftment of CB-HSPCs in vivo. This phenomenon might be related to activation of signaling pathways in CB-HSPCs following hiPSC-EV treatment, as shown on both gene expression and the protein kinases activity levels. In conclusion, hiPSC-EVs might be used as ex vivo modulators of CB-HSPCs capacity to enhance their functional properties and augment future practical applications of CB-derived cells in BM reconstitution.
Collapse
Affiliation(s)
- Elżbieta Karnas
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Sekuła-Stryjewska
- grid.5522.00000 0001 2162 9631Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek-Wasylewska
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Bobis-Wozowicz
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Ryszawy
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Sarna
- grid.5522.00000 0001 2162 9631Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Madeja
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa K. Zuba-Surma
- grid.5522.00000 0001 2162 9631Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Ericsson M, Bhuiyan H, Yousif B, Lehtihet M, Ekström L. The intra-individual stability of GH biomarkers IGF-I and P-III-NP in relation to GHRH administration, menstrual cycle, and hematological parameters. Drug Test Anal 2020; 12:1620-1628. [PMID: 33125822 DOI: 10.1002/dta.2953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Abstract
The intra-individual stability of growth hormone (GH) biomarkers IGF-I, P-III-NP, calculated GH-2000 score in relation to growth hormone-releasing hormone (GHRH) (Somatorelin) administration, menstrual cycle, and hematological parameters were investigated in four men and eight women, respectively. Moreover, the hematological parameters hemoglobin (Hb) and percentage of reticulocyte (RET%) were statistically analyzed in relation to the GH biomarker parameters for the GHRH administration study and the menstrual cycle study. Longitudinal monitoring of IGF-I and/or GH-2000 score proved to be a viable approach to detect the GHRH intake in men, as all four participants show values above individually calculated thresholds (calculated as mean ± 3SD from three baseline samples). The intra-individual variation for IGF-I, P-III-NP, and calculated GH-2000 score in women, over two consecutive menstrual cycles, was investigated and established to be higher (coefficients variations [CVs] between 12% and 186%) than in men (CVs between 3% and 12%). The GHRH administration did not influence the hematological parameters. A strong positive correlation between Hb and IGF-I (Rs = 0.73, p < 0.0001) and a borderline weak correlation between RET% and IGF-I (Rs = 0.28, p = 0.054) were noticed in the women. No correlation for the P-III-NP and the hematological parameters was seen for the females in the menstrual cycle study. The results fortify previous studies that longitudinal monitoring of IGF-I and/or GH-2000 score may be a promising method to detect doping with GH and GH stimulating agents in men, whereas the large intra-individual variation noted in women indicates that longitudinal monitoring of these biomarker may be harder to evaluate in women.
Collapse
Affiliation(s)
- Magnus Ericsson
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Département des analyses, AFLD, Châtenay-Malabry, France
| | - Hasanuzzaman Bhuiyan
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Basam Yousif
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Lehtihet
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lena Ekström
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
de Pinho FA, Vendrame CMV, Maciel BLL, Silva LDS, Miyashiro SI, Jerônimo SMB, Goto H. Association between Insulin-Like Growth Factor-I Levels and the Disease Progression and Anemia in Visceral Leishmaniasis. Am J Trop Med Hyg 2019; 100:808-815. [PMID: 30761980 PMCID: PMC6447109 DOI: 10.4269/ajtmh.17-0982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2017] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
We analyzed the association between insulin-like growth factor-I (IGF-I) and the pathogenesis of anemia during active visceral leishmaniasis (VL). Serum levels of IGF-I, IGF-binding protein 3 (IGFBP3), and cytokines were measured in samples from individuals with active VL and cured VL, asymptomatic Leishmania-infected, and noninfected individuals. Then, we extended our analysis to VL dogs to evaluate hematimetric parameters, bone marrow alterations, and cytokine and IGF-I expression. We identified a positive correlation between lower IGF-I and IGFBP3 levels in active VL patients and lower hemoglobin levels. In infected dogs, there was a positive correlation between lower IGF-I expression in the bone marrow and lower peripheral blood hematocrit and hemoglobin levels. There was no correlation between decreased IGF-I level/expression and any measured cytokine serum levels in either host. The data suggest that low IGF-I expression is associated with pathogenesis of anemia in active VL, primarily in severe cases, by mechanisms other than alterations in cytokine production.
Collapse
Affiliation(s)
- Flaviane Alves de Pinho
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Anatomia, Patologia e Clínica, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Bruna Leal Lima Maciel
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucilene dos Santos Silva
- Setor de Patologia Animal, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Samantha Ive Miyashiro
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Selma Maria Bezerra Jerônimo
- Departamento de Bioquímica, Centro de Biociências and Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- National Institute of Science and Technology of Tropical Diseases, Natal, Brazil
| | - Hiro Goto
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, Ribeiro RC, Downing JR, Pounds SB, Lamba JK. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget 2018; 9:34859-34875. [PMID: 30405880 PMCID: PMC6201857 DOI: 10.18632/oncotarget.26163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/02/2022] Open
Abstract
Cytarabine has been an integral part of acute myeloid leukemia (AML) chemotherapy for over four decades. However, development of resistance and high rates of relapse is a significant impediment in successfully treating AML. We performed a genome-wide association analysis (GWAS) and identified 113 (83 after adjusting for Linkage Disequilibrium) SNPs associated with in vitro cytarabine chemosensitivity of diagnostic leukemic cells from a cohort of 50 pediatric AML patients (p<10-4). Further evaluation of diagnostic leukemic cell gene-expression identified 19 SNP-gene pairs with a concordant triad of associations: i)SNP genotype with cytarabine sensitivity (p<0.0001), ii) gene-expression with cytarabine sensitivity (p<0.05), and iii) genotype with gene-expression (p<0.1). Two genes from SNP-gene pairs, rs1376041-GPR56 and rs75400242-IGF1R, were functionally validated by siRNA knockdown in AML cell lines. Consistent with association of rs1376041 and gene-expression in AML patients siRNA mediated knock-down of GPR56 increased cytarabine sensitivity of AML cell lines. Similarly for IGF1R, knockdown increased the cytarabine sensitivity of AML cell lines consistent with results in AML patients. Given both IGF1R and GPR56 are promising drug-targets in AML, our results on SNPs driving the expression/function of these genes will not only enhance our understanding of cytarabine resistance but also hold promise in personalizing AML for targeted therapies.
Collapse
Affiliation(s)
- Salma A Bargal
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Roya Rafiee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyuan Cao
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Yucel D, Kocabas F. Developments in Hematopoietic Stem Cell Expansion and Gene Editing Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:103-125. [DOI: 10.1007/5584_2017_114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
15
|
Ghosh SP, Pathak R, Kumar P, Biswas S, Bhattacharyya S, Kumar VP, Hauer-Jensen M, Biswas R. Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen. Radiat Res 2016; 185:485-95. [PMID: 27128741 DOI: 10.1667/rr14248.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation.
Collapse
Affiliation(s)
- Sanchita P Ghosh
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Rupak Pathak
- b Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Parameet Kumar
- c Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and
| | - Shukla Biswas
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vidya P Kumar
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Martin Hauer-Jensen
- b Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Roopa Biswas
- c Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and
| |
Collapse
|
16
|
Maggio M, De Vita F, Fisichella A, Lauretani F, Ticinesi A, Ceresini G, Cappola A, Ferrucci L, Ceda GP. The Role of the Multiple Hormonal Dysregulation in the Onset of "Anemia of Aging": Focus on Testosterone, IGF-1, and Thyroid Hormones. Int J Endocrinol 2015; 2015:292574. [PMID: 26779261 PMCID: PMC4686706 DOI: 10.1155/2015/292574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/08/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
Anemia is a multifactorial condition whose prevalence increases in both sexes after the fifth decade of life. It is a highly represented phenomenon in older adults and in one-third of cases is "unexplained." Ageing process is also characterized by a "multiple hormonal dysregulation" with disruption in gonadal, adrenal, and somatotropic axes. Experimental studies suggest that anabolic hormones such as testosterone, IGF-1, and thyroid hormones are able to increase erythroid mass, erythropoietin synthesis, and iron bioavailability, underlining a potential role of multiple hormonal changes in the anemia of aging. Epidemiological data more consistently support an association between lower testosterone and anemia in adult-older individuals. Low IGF-1 has been especially associated with anemia in the pediatric population and in a wide range of disorders. There is also evidence of an association between thyroid hormones and abnormalities in hematological parameters under overt thyroid and euthyroid conditions, with limited data on subclinical statuses. Although RCTs have shown beneficial effects, stronger for testosterone and the GH-IGF-1 axis and less evident for thyroid hormones, in improving different hematological parameters, there is no clear evidence for the usefulness of hormonal treatment in improving anemia in older subjects. Thus, more clinical and research efforts are needed to investigate the hormonal contribution to anemia in the older individuals.
Collapse
Affiliation(s)
- Marcello Maggio
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
- Geriatric Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy
- *Marcello Maggio:
| | - Francesca De Vita
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
| | - Alberto Fisichella
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy
| | - Andrea Ticinesi
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
| | - Graziano Ceresini
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
- Geriatric Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy
| | - Anne Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21201, USA
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, 43126 Parma, Italy
- Geriatric Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
17
|
Liang Z, Diepstra A, Xu C, van Imhoff G, Plattel W, Van Den Berg A, Visser L. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma. PLoS One 2014; 9:e87474. [PMID: 24489919 PMCID: PMC3905016 DOI: 10.1371/journal.pone.0087474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022] Open
Abstract
The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.
Collapse
Affiliation(s)
- Zheng Liang
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Otolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Chuanhui Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Gustaaf van Imhoff
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Wouter Plattel
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Anke Van Den Berg
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- * E-mail:
| |
Collapse
|
18
|
Gao B, Sun W, Wang X, Jia X, Ma B, Chang Y, Zhang W, Xue D. Whole genome expression profiling and screening for differentially expressed cytokine genes in human bone marrow endothelial cells treated with humoral inhibitors in liver cirrhosis. Int J Mol Med 2013; 32:1204-14. [PMID: 24043211 DOI: 10.3892/ijmm.2013.1495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
Abstract
Bone marrow endothelial cells (BMECs) are important components of the hematopoietic microenvironment in bone marrow, and they can secrete several types of cytokines to regulate the functions of hematopoietic stem/progenitor cells. To date, it is unknown whether BMECs undergo functional changes and lead to hematopoietic abnormalities in cases of liver cirrhosis (LC). In the present study, whole genome microarray analysis was carried out to detect differentially expressed genes in human BMECs treated for 48 h with medium supplemented with 20% pooled sera from 26 patients with LC or 10 healthy volunteers as the control group. A total of 1,106 upregulated genes and 766 downregulated genes were identified. In Gene Ontology analysis, the most significant categories of genes were revealed. A large number of the upregulated genes were involved in processes, such as cell-cell adhesion, apoptosis and cellular response to stimuli and the downregulated genes were involved in the negative regulation of secretion, angiogenesis, blood vessel development and cell growth. Pathway analysis revealed that the upregulated genes were either cell adhesion molecules or parts of the apoptotic signaling pathway and the downregulated genes were involved in the Wnt signaling pathway and MAPK signaling pathway. These were the pathways with the highest enrichment scores. The results of apoptosis assays revealed that the humoral inhibitors in the sera of patients with LC induced the apoptosis of BMECs, which confirmed the accuracy of bioinformatic analysis. Moreover, we screened and verified 21 differentially expressed cytokine genes [transforming growth factor (TGF)B1, tumor necrosis factor (TNF)B, TNF receptor superfamily, member 11b (TNFRSF11B), TNF (ligand) superfamily, member 13b (TNFSF13B), interleukin (IL)1A, IL6, IL11, IL17C, IL24, family with sequence similarity 3, member B (FAM3B), Fas ligand (FASLG), matrix metallopeptidase (MMP)3, MMP15, vitronectin (VTN), insulin-like growth factor 1 (IGF1), fibroblast growth factor 22 (FGF22), slit homolog 2 (Drosophila) (SLIT2), thrombospondin (THBS)2, THBS3, chemokine (C-C motif) ligand 28 (CCL28) and macrophage stimulating 1 (MST1)] from 97 cytokine genes in BMECs treated with serum from patients with LC. The results from our study demonstrate that the humoral inhibitors in the sera of patients with LC induce the dysfunction and abnormal cytokine secretion by BMECs, which may be a novel mechanism responsible for hematological abnormalities in patients with LC.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Everson CA, Folley AE, Toth JM. Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp Biol Med (Maywood) 2012; 237:1101-9. [PMID: 22946089 DOI: 10.1258/ebm.2012.012043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Insufficient sleep over long durations of the lifespan is believed to adversely affect proper development and healthful aging, although how this might become manifested is unknown. In the present study, rats were repeatedly sleep-restricted during 72 days to permit maladaptations to evolve, thereby permitting study. Densitometric and histomorphometric analyses were performed on harvested bone. In sleep-restricted rats, bone lined by osteoid was reduced 45-fold and osteoid thickness was decreased, compared with controls. This corresponded to a decrease in osteoblast number and activity. The percentage of bone lined by osteoclasts did not differ from that of controls. Plasma concentrations of an osteoclast marker (TRACP 5b) were increased in sleep-restricted rats, indicating increased bone resorption. The low amount of new bone formation without a reduction in bone resorption is diagnostic of osteopenia. Bone mineral density was decreased in femurs from sleep-restricted rats compared with controls, indicating osteoporosis. Red marrow in sleep-restricted rats contained only 37% of the fat and more than twice the number of megakaryocytes compared with that of the control rats. These findings in marrow suggest changed plasticity and increased hematopoiesis. Plasma concentrations of insulin-like growth factor-1, a known, major mediator of osteoblast differentiation and the proliferation of progenitor cells, was decreased by 30% in sleep-restricted rats. Taken together, these findings suggest that chronically inadequate sleep affects bone metabolism and bone marrow composition in ways that have implications for development, aging, bone healing and repair, and blood cell differentiation.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA.
| | | | | |
Collapse
|
20
|
Smith TJ, Hegedüs L, Douglas RS. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves' orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26:291-302. [PMID: 22632366 PMCID: PMC3712747 DOI: 10.1016/j.beem.2011.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The etiology of Graves' orbitopathy (GO) remains enigmatic and thus controversy surrounds its pathogenesis. The role of the thyroid stimulating hormone receptor (TSHR) and activating antibodies directed against it in the hyperthyroidism of Graves' disease (GD) is firmly established. Less well elucidated is what part the TSHR pathway might play in the development of GO. Also uncertain is the participation of other cell surface receptors in the disease. Elevated levels of insulin-like growth factor-1 receptor (IGF-1R) have been found in orbital fibroblasts as well as B and T cells from patients with GD. These abnormal patterns of IGF-1R display are also found in rheumatoid arthritis and carry functional consequences. In addition, activating IgGs capable of displacing IGF-1 from IGF-1R have also been detected in patients with these diseases. IGF-1R forms a complex with TSHR which is necessary for at least some of the non-canonical signaling observed following TSHR activation. Functional TSHR and IGF-1R have also been found on fibrocytes, CD34⁺ bone marrow-derived cells from the monocyte lineage. Levels of TSHR on fibrocytes greatly exceed those found on orbital fibroblasts. When ligated by TSH or M22, a TSHR-activating monoclonal antibody, fibrocytes produce extremely high levels of several cytokines and chemokines. Moreover, fibrocytes infiltrate both the orbit and thyroid in GD. In sum, based on current evidence, IGF-1R and TSHR can be thought of as "partners in crime". Involvement of the former probably transcends disease boundaries, while TSHR may not.
Collapse
Affiliation(s)
- Terry J Smith
- University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
21
|
Callan AC, Milne E. Involvement of the IGF system in fetal growth and childhood cancer: an overview of potential mechanisms. Cancer Causes Control 2011; 20:1783-98. [PMID: 19533389 DOI: 10.1007/s10552-009-9378-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
Abstract
Fetal growth is determined by a complex interplay of genetic, nutritional, environmental, and hormonal factors. Greater than expected fetal growth has been positively associated with the risk of the development of some cancers in childhood, particularly acute lymphoblastic leukemia, and the biological mechanisms underlying such associations are thought to involve insulin-like growth factors (IGFs). Circulating IGF levels are highly correlated with fetal growth, and IGFs are believed to play an important role in carcinogenesis; however, these two bodies of evidence have not been well integrated and, as a result, the potential underlying biological mechanisms linking the IGF system with the development of specific childhood cancers have not been elucidated. This review aims to draw together and summarize the literature linking the IGF system, rapidity of fetal growth, and risk of some specific childhood cancers; suggest explanations for some of the inconsistencies observed in previous studies of these associations; and propose an integrated framework for the putative involvement of the IGF system in the development of at least some childhood cancers. If the challenges involved in studying the complex IGF system can be overcome, this field presents an exciting opportunity to elucidate etiological pathways to childhood malignancies.
Collapse
Affiliation(s)
- Anna Carita Callan
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, PO Box 855, West Perth, WA 6872, Australia.
| | | |
Collapse
|
22
|
Noyes HA, Alimohammadian MH, Agaba M, Brass A, Fuchs H, Gailus-Durner V, Hulme H, Iraqi F, Kemp S, Rathkolb B, Wolf E, de Angelis MH, Roshandel D, Naessens J. Mechanisms controlling anaemia in Trypanosoma congolense infected mice. PLoS One 2009; 4:e5170. [PMID: 19365556 PMCID: PMC2664899 DOI: 10.1371/journal.pone.0005170] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2008] [Accepted: 03/05/2009] [Indexed: 12/21/2022] Open
Abstract
Background Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. Methodology/Principal Findings The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. Conclusions/Significance The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection.
Collapse
Affiliation(s)
- Harry A. Noyes
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Morris Agaba
- International Livestock Research Institute, Nairobi, Kenya
| | - Andy Brass
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Helmut Fuchs
- GMC at the Helmholtz Zentrum München, Munich/Neuherberg, Germany
| | | | - Helen Hulme
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Fuad Iraqi
- International Livestock Research Institute, Nairobi, Kenya
| | - Stephen Kemp
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Birgit Rathkolb
- GMC at the Helmholtz Zentrum München, Munich/Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Eckard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Martin Hrabé de Angelis
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Chair for Experimental Genetics, Center of Life and Food Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Delnaz Roshandel
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Jan Naessens
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| |
Collapse
|
23
|
Douglas RS, Naik V, Hwang CJ, Afifiyan NF, Gianoukakis AG, Sand D, Kamat S, Smith TJ. B cells from patients with Graves' disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. THE JOURNAL OF IMMUNOLOGY 2008; 181:5768-74. [PMID: 18832736 DOI: 10.4049/jimmunol.181.8.5768] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
Graves' disease (GD) is an autoimmune process involving the thyroid and connective tissues in the orbit and pretibial skin. Activating anti-thyrotropin receptor Abs are responsible for hyperthyroidism in GD. However, neither these autoAbs nor the receptor they are directed against have been convincingly implicated in the connective tissue manifestations. Insulin-like growth factor-1 receptor (IGF-1R)-bearing fibroblasts overpopulate connective tissues in GD and when ligated with IgGs from these patients, express the T cell chemoattractants, IL-16, and RANTES. Disproportionately large fractions of peripheral blood T cells also express IGF-1R in patients with GD and may account, at least in part, for expansion of IGF-1R(+) memory T cells. We now report a similarly skewed B cell population exhibiting the IGF-1R(+) phenotype from the blood, orbit, and bone marrow of patients with GD. This expression profile exhibits durability in culture and is maintained or increased with CpG activation. Moreover, IGF-1R(+) B cells produce pathogenic Abs against the thyrotropin receptor. In lymphocytes from patients with GD, IGF-1 enhanced IgG production (p < 0.05) and increased B cell expansion (p < 0.02) in vitro while those from control donors failed to respond. These findings suggest a potentially important role for IGF-1R display by B lymphocytes in patients with GD in supporting their expansion and abnormal Ig production.
Collapse
Affiliation(s)
- Raymond S Douglas
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dalamaga M, Karmaniolas K, Nikolaidou A, Chamberland J, Hsi A, Dionyssiou-Asteriou A, Mantzoros CS. Adiponectin and resistin are associated with risk for myelodysplastic syndrome, independently from the insulin-like growth factor-I (IGF-I) system. Eur J Cancer 2008; 44:1744-53. [DOI: 10.1016/j.ejca.2008.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|
25
|
Polli N, Scacchi M, Pecori Giraldi F, Sormani M, Zappulli D, Cavagnini F. Low insulin-like growth factor I and leukopenia in anorexia nervosa. Int J Eat Disord 2008; 41:355-9. [PMID: 18213689 DOI: 10.1002/eat.20506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Considering that leukopenia and anemia are commonly observed in anorexia nervosa (AN) and that growth hormone (GH) and insulin-like growth factor-I (IGF-I) markedly influence the activation, growth and survival of hemopoietic cells, we sought for possible relationships between hematologic parameters and the GH-IGF-I axis in a group of patients with AN. METHOD Twenty patients were studied. Leukocyte and erythrocyte counts, as well as baseline serum GH levels and IGF-I standard deviation score (SDS) values, were determined in each participant and correlations between parameters were searched. RESULTS Leukocyte and erythrocyte counts, as well as IGF-I SDS values, were significantly lower, conversely GH was significantly higher in AN patients than in normal weight participants. In patients, IGF-I SDS values were positively correlated with leukocyte count and BMI, whereas no correlation was found between IGF-I SDS and hemoglobin or erythrocytes. CONCLUSION The demonstration of a positive correlation between leukocyte number and circulating IGF-I in AN suggests a likely pathogenetic role of IGF-I deficiency in this hematologic abnormality.
Collapse
Affiliation(s)
- Nicoletta Polli
- Department of Medical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Landi F, Russo A, Capoluongo E, Cesari M, Liperoti R, Danese P, Bernabei R, Onder G. Insulin-like growth factor-binding protein 3 and hemoglobin concentration in older persons living in the community. Int J Hematol 2007; 85:294-9. [PMID: 17483071 DOI: 10.1532/ijh97.e0629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
A decreased hemoglobin concentration is a common clinical condition in elderly subjects, and in at least 20% of the cases it is not possible to directly attribute the anemia to specific factors. The aim of the present study was to evaluate the relationship of different levels of insulin-like growth factor-binding protein 3 (IGFBP-3) with the blood concentration of hemoglobin in persons aged 80 years and older. Data are from a baseline evaluation of the Aging and Longevity in the Sirente Geographic Area (ilSIRENTE) study (n=253). Analysis of covariance was used to examine the effect of different IGFBP-3 levels on hemoglobin concentration. After adjustment for potential confounding variables, which included age, sex, number of diseases, renal failure, cancer, gastric ulcer, albumin, and iron concentrations, individuals in the group with higher IGFBP-3 concentrations showed a significantly higher mean hemoglobin concentration than participants in the group with lower IGFBP-3 concentrations (13.4 +/- 1.4 g/dL versus 12.9 +/- 1.9 g/dL, respectively; P=.03). In conclusion, the present study has shown that a higher IGFBP-3 level is associated with a higher hemoglobin concentration among older people living in the community. This finding suggests that the growth hormone/IGF axis may play an important role in hematopoiesis, and it may be implicated in the age-related decline in hemoglobin concentration.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Gerontology and Geriatrics, Catholic University of Sacred Heart, Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Douglas RS, Gianoukakis AG, Kamat S, Smith TJ. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves' disease may carry functional consequences for disease pathogenesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:3281-7. [PMID: 17312178 DOI: 10.4049/jimmunol.178.5.3281] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Graves' disease (GD), an autoimmune process involving thyroid and orbital tissue, is associated with lymphocyte abnormalities including expansion of memory T cells. Insulin-like growth factor receptor-1 (IGF-1R)-bearing fibroblasts overpopulate connective tissues in GD. IGF-1R on fibroblasts, when ligated with IgGs from these patients, results in the expression of the T cell chemoattractants, IL-16 and RANTES. We now report that a disproportionately large fraction of peripheral blood T cells express IGF-1R (CD3+IGF-R+). CD3+IGF-1R+ T cells comprise 48 +/- 4% (mean +/- SE; n = 33) in patients with GD compared with 15 +/- 3% (n = 21; p < 10(-8)) in controls. This increased population of IGF-1R+ T cells results, at least in part, from an expansion of CD45RO+ T cells expressing the receptor. In contrast, the fraction of CD45RA+IGF-1R+ T cells is similar in GD and controls. T cells harvested from affected orbital tissues in GD reflect similar differences in the proportion of IGF-1R+CD3+ and IGF-1R+CD4+CD3+ cells as those found in the peripheral circulation. GD-derived peripheral T cells express durable, constitutive IGF-1R expression in culture and receptor levels are further up-regulated following CD3 complex activation. IGF-1 enhanced GD-derived T cell incorporation of BrdU (p < 0.02) and inhibited Fas-mediated apoptosis (p < 0.02). These findings suggest a potential role for IGF-1R displayed by lymphocytes in supporting the expansion of memory T cells in GD.
Collapse
Affiliation(s)
- Raymond S Douglas
- Department of Medicine, Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
28
|
Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 2007; 67:876-80. [PMID: 17283117 DOI: 10.1158/0008-5472.can-06-2995] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.
Collapse
Affiliation(s)
- Valentina Bollati
- Molecular Epidemiology Laboratory, Department of Environmental and Occupational Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sarfstein R, Werner H. The WT1 Wilms' tumor suppressor gene is a downstream target for insulin-like growth factor-I (IGF-I) action in PC12 cells. J Neurochem 2006; 99:818-26. [PMID: 16911581 DOI: 10.1111/j.1471-4159.2006.04119.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
The biological actions of the insulin-like growth factors, IGF-I and IGF-II, are mediated by the ligand-induced activation of the IGF-I receptor (IGF-IR), a transmembrane heterotetramer linked to the ras-raf-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)-protein kinase B (PKB)/Akt signal transduction cascades. The Wilms' tumor suppressor gene (wt1) encodes a zinc finger transcription factor, WT1, which has been implicated in various cellular processes including proliferation, differentiation and apoptosis. In the present study we demonstrated that IGF-I modulates the WT1 gene expression in neurally derived PC12 cells in a dose- and time-dependent manner. This effect was mediated through both the MAPK and PI3-kinase signaling pathways, as shown by the ability of the specific inhibitors UO126 and LY294002 to abrogate IGF-I action. Moreover, using RT-PCR and transient transfection assays, we demonstrated that the IGF-I effect was associated with corresponding changes in WT1 mRNA levels and WT1 promoter activity. In addition, the results of the present study revealed that high WT1 levels were associated with the induction of apoptosis, whereas low WT1 levels were correlated with the inhibition of apoptosis, as demonstrated by poly ADP ribose polymerase (PARP) cleavage, Bax expression, Annexin V-FITC staining, and by the use of antisense oligonucleotides against WT1. In summary, our results show that the wt1 gene is a novel target for IGF-I action in neurally derived cells.
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
30
|
Hasselbalch HC, Riley CH. Statins in the treatment of polycythaemia vera and allied disorders: An antithrombotic and cytoreductive potential? Leuk Res 2006; 30:1217-25. [PMID: 16483650 DOI: 10.1016/j.leukres.2005.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2005] [Revised: 12/02/2005] [Accepted: 12/22/2005] [Indexed: 12/01/2022]
Abstract
Thrombohaemorrhagic complications are major clinical problems in the classical chronic Ph-negative myeloproliferative disorders (CMPDs), polycytaemia vera (PV), essential thrombocythaemia (ET) and idiopathic myelofibrosis (IMF), contributing significantly to morbidity and mortality. Pathophysiologically these disorders are characterized by clonal myeloproliferation, myeloaccumulation and a propensity to develop myelofibrosis and neoangiogenesis in both the bone marrow and spleen. Based upon in vitro and in vivo studies of the effects of statins (antithrombotic, antiproliferative, proapoptotic and antiangiogenic), this review focuses on the translation of these effects into potential clinical benefits of statin therapy in patients with CMPDs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Haematology, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | | |
Collapse
|
31
|
Kurmasheva RT, Houghton PJ. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta Rev Cancer 2006; 1766:1-22. [PMID: 16844299 DOI: 10.1016/j.bbcan.2006.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 02/07/2023]
Abstract
The type-I and -II insulin-like growth factors (IGF-I, II) are now established as survival- or proliferation-factors in many in vitro systems. Of note IGFs provide trophic support for multiple cell types or organ cultures explanted from various species, and delay the onset of programmed cell death (apoptosis) through the mitochondrial (intrinsic pathway) or by antagonizing activation of cytotoxic cytokine signaling (extrinsic pathway). In some instances, IGFs protect against other forms of death such as necrosis or autophagy. The effect of IGFs on cell survival appears to be context specific, being determined both by the cell origin (tissue specific) and the cellular stress that induces loss of cellular viability. In many human cancers, there is a strong association with dysregulated IGF signaling, and this association has been extensively reviewed recently. IGF-regulation is also disrupted in childhood cancers as a consequence of chromosomal translocations. IGFs are implicated also in acute renal failure, traumatic injury to brain tissue, and cardiac disease. This article focuses on the role of IGFs and their cellular signaling pathways that provide survival signals in stressed cells.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105-2794, USA
| | | |
Collapse
|
32
|
Abstract
Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents.
Collapse
Affiliation(s)
- D Yee
- University of Minnesota Cancer Center, Department of Medicine, MMC 806, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Arsenijevic Y. Future perspectives: from stem cells and IGF biology to the clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:385-412. [PMID: 16370146 DOI: 10.1007/0-387-26274-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Arsenijevic
- Unit of Oculogenetics, Eye Hosptial Jules Gonin, Lausanne, Switzerland
| |
Collapse
|
34
|
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
35
|
Bruno L, Hoffmann R, McBlane F, Brown J, Gupta R, Joshi C, Pearson S, Seidl T, Heyworth C, Enver T. Molecular signatures of self-renewal, differentiation, and lineage choice in multipotential hemopoietic progenitor cells in vitro. Mol Cell Biol 2004; 24:741-56. [PMID: 14701746 PMCID: PMC343787 DOI: 10.1128/mcb.24.2.741-756.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms governing self-renewal, differentiation, and lineage specification remain unknown. Transcriptional profiling is likely to provide insight into these processes but, as yet, has been confined to "static" molecular profiles of stem and progenitors cells. We now provide a comprehensive, statistically robust, and "dynamic" analysis of multipotent hemopoietic progenitor cells undergoing self-renewal in response to interleukin-3 (IL-3) and multilineage differentiation in response to lineage-affiliated cytokines. Cells undergoing IL-3-dependent proliferative self-renewal displayed striking complexity, including expression of genes associated with different lineage programs, suggesting a highly responsive compartment poised to rapidly execute intrinsically or extrinsically initiated cell fate decisions. A remarkable general feature of early differentiation was a resolution of complexity through the downregulation of gene expression. Although effector genes characteristic of mature cells were upregulated late, coincident with morphological changes, lineage-specific changes in gene expression were observed prior to this, identifying genes which may provide early harbingers of unilineage commitment. Of particular interest were genes that displayed differential behavior irrespective of the lineage elaborated, many of which were rapidly downregulated within 4 to 8 h after exposure to a differentiation cue. These are likely to include genes important in self-renewal, the maintenance of multipotentiality, or the negative regulation of differentiation per se.
Collapse
Affiliation(s)
- Ludovica Bruno
- Section of Gene Function and Regulation, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by neonatal hypoglycemia, abdominal wall defects, macroglossia, organomegaly, ear pits and creases, hemihypertrophy, and increased birthweight. Children with BWS have an increased risk of malignancy. The authors present the case of a 3-year-old boy diagnosed with both BWS and acute lymphocytic leukemia (ALL). This case report will elaborate on the possibilities as to how BWS and ALL may be associated due to abnormal genomic imprinting and IGF dysregulation.
Collapse
Affiliation(s)
- Ziad Khatib
- Division of Hematology Oncology, Department of Pediatrics, Miami Children's Hospital, Miami, Florida, USA.
| | | | | | | |
Collapse
|
37
|
Casas S, Ollila J, Aventín A, Vihinen M, Sierra J, Knuutila S. Changes in apoptosis-related pathways in acute myelocytic leukemia. ACTA ACUST UNITED AC 2003; 146:89-101. [PMID: 14553942 DOI: 10.1016/s0165-4608(03)00102-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Expression analysis of apoptotic genes was performed for 15 patients with acute myelocytic leukemia (AML) at the time of diagnosis to identify genes and signaling pathways involved in the regulation of cell survival and apoptosis during leukemogenesis. cDNA array analysis revealed 34 genes whose expression was significantly different compared to others. Tumor suppressor genes TP53 and CDKN2A were downregulated and protooncogenes JUN and GRB10 were upregulated. Furthermore, several cellular signaling pathways acting either in cell cycle regulation or in apoptosis were altered. Deregulation was found in pathways that contribute to genomic stability (by downregulation of either TP53 or CSE1L and by upregulation of GADD45A) and regulate cell cycle progression (by downregulation of CDKN2A and upregulation of RBBP4, CDC37, and NEDD5). Alterations at the transcriptional level were identified, namely, upregulation of JUN and E2F5. Abnormalities were observed in the regulation of the caspases through upregulation of CASP8 and by altered expression of BCL2-related pathway. Extrinsic apoptotic signals mediated by IGFs were deregulated and the glutathione detoxification pathway was downregulated. These findings provide insight into the regulation of balance between apoptosis and cell proliferation signals, and suggest that these genes and pathways may have an important role in the pathogenesis of AML.
Collapse
Affiliation(s)
- Sílvia Casas
- Departments of Pathology and Medical Genetics, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|