1
|
Yao Y, Zhang H, Liu H, Teng C, Che X, Bian W, Zhang W, Wang Z. CT-based radiomics predicts CD38 expression and indirectly reflects clinical prognosis in epithelial ovarian cancer. Heliyon 2024; 10:e32910. [PMID: 38948050 PMCID: PMC11211891 DOI: 10.1016/j.heliyon.2024.e32910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Cluster of differentiation 38 (CD38) has been found to be highly expressed in various solid tumours, and its expression level may be associated with patient prognosis and survival. This study aimed to evaluate the prognostic value of CD38 expression for patients with epithelial ovarian cancer (EOC) and construct two computed tomography (CT)-based radiomics models for predicting CD38 expression. Methods A total of 333 cases of EOC were enrolled from The Cancer Genome Atlas (TCGA) database for CD38-related bioinformatics and survival analysis. A total of 56 intersection cases from TCGA and The Cancer Imaging Archive (TCIA) databases were selected for radiomics feature extraction and model construction. Logistic regression (LR) and support vector machine (SVM) models were constructed and internally validated using 5-fold cross-validation to assess the performance of the models for CD38 expression levels. Results High CD38 expression was an independent protective factor (HR = 0.540) for overall survival (OS) in EOC patients. Five radiomics features based on CT images were selected to build models for the prediction of CD38 expression. In the training and internal validation sets, for the receiver operating characteristic (ROC) curve, the LR model reached an area under the curve (AUC) of 0.739 and 0.732, while the SVM model achieved AUC values of 0.741 and 0.700, respectively. For the precision-recall (PR) curve, the LR and SVM models demonstrated an AUC of 0.760 and 0.721. The calibration curves and decision curve analysis (DCA) provided evidence supporting the fitness and net benefit of the models. Conclusions High levels of CD38 expression can improve OS in EOC patients. CT-based radiomics models can be a new predictive tool for CD38 expression, offering possibilities for individualised survival assessment for patients with EOC.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| | - Haijin Zhang
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| | - Hui Liu
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| | - Chendi Teng
- Department of Radiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Xuan Che
- Department of Gynecology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314000, China
| | - Wei Bian
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| | - Wenting Zhang
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| | - Zhifeng Wang
- Department of Radiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, China
| |
Collapse
|
2
|
Abduh MS. An overview of multiple myeloma: A monoclonal plasma cell malignancy's diagnosis, management, and treatment modalities. Saudi J Biol Sci 2024; 31:103920. [PMID: 38283805 PMCID: PMC10818257 DOI: 10.1016/j.sjbs.2023.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Multiple Myeloma (MM) is a plasma cell cancer with high mortality and morbidity rates. Its incidence rate has increased by 143% since 1975. Adipokines, cytokines, chemokines, and genetic variations influence the development and progression of MM. Chromosomal translocations cause mutations associated with MM. The pathogenesis of MM is complicated by novel issues like miRNAs, RANKL, Wnt/DKK1, Wnt, and OPG. Conventional diagnosis methods include bone marrow biopsy, sPEP or uPEP, sIFE and uIFE, and sFLC assay, along with advanced techniques such as FISH, SNPA, and gene expression technologies. A novel therapeutic strategy has been developed recently. Chemotherapy, hematopoietic stem cell transplantation, and a variety of drug classes in combination are used to treat patients with high-risk diseases. Alkylating agents, PIs, and IMiDs have all been developed as effective treatment options for MM in recent years. This review overviews the current recommendations for managing MGUS, SMM, MM, SP and NSMM and discusses practices in diagnosing and treating MM.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Huang X, Yang Z, Li Y, Long X. m6A methyltransferase METTL3 facilitates multiple myeloma cell growth through the m6A modification of BZW2. Ann Hematol 2023:10.1007/s00277-023-05283-6. [PMID: 37222774 DOI: 10.1007/s00277-023-05283-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has been confirmed to be involved in multiple myeloma (MM) progression, and basic leucine zipper and W2 domains 2 (BZW2) is considered to be a regulator for MM development. However, whether METTL3 mediates MM progression by regulating BZW2 remains unclear. The messenger RNA (mRNA) and protein levels of METTL3 and BZW2 in MM specimens and cells were determined using quantitative real-time PCR and western blot analysis. Cell proliferation and apoptosis were assessed by cell counting kit 8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, and flow cytometry. Methylated RNA immunoprecipitation-qPCR was used to detect the m6A modification level of BZW2. Xenograft tumor models were constructed to confirm the effect of METTL3 knockdown on MM tumor growth in vivo. Our results showed that BZW2 was upregulated in MM bone marrow specimens and cells. BZW2 downregulation reduced MM cell proliferation and promoted apoptosis, while its overexpression enhanced MM cell proliferation and inhibited apoptosis. METTL3 was highly expressed in MM bone marrow specimens, and its expression was positively correlated with BZW2 expression. BZW2 expression was positively regulated by METTL3. Mechanistically, METTL3 could upregulate BZW2 expression by modulating its m6A modification. Additionally, METTL3 accelerated MM cell proliferation and restrained apoptosis via increasing BZW2 expression. In vivo experiments showed that METTL3 knockdown reduced MM tumor growth by decreasing BZW2 expression. In conclusion, these data indicated that METTL3-mediated the m6A methylation of BZW2 to promote MM progression, suggesting a novel therapeutic target for MM.
Collapse
Affiliation(s)
- Xiaoqing Huang
- The First Affiliated Hospital, Department of Blood Transfusion, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Zhiyong Yang
- The First Affiliated Hospital, Department of Blood Transfusion, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yanwen Li
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xingxing Long
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Desai A, Peters S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat Rev 2023; 116:102545. [PMID: 37030062 DOI: 10.1016/j.ctrv.2023.102545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Immuno-oncology has revolutionized the treatment of metastatic non-small cell lung cancer (mNSCLC) since the approval of immunotherapy by the U.S. FDA in 2015. Despite the advancements, outcomes for patients have room for further improvement. Combination therapies have shown promise in overcoming resistance and improving outcomes. This review focuses on current immunotherapy-based combination approaches, reported and ongoing trials, as well as novel combination strategies, challenges, and future directions for mNSCLC treatment. We summarize approaches in combination with chemotherapy, novel immune checkpoints, tyrosine kinase inhibitors and other strategies including vaccines, and radiation therapy. The promise of biomarker-driven studies to understand resistance and design multi-arm platform trials that evaluate novel therapies is becoming of increasing relevance with the ultimate goal of administering precision immunotherapy by identifying the right dose of the right combination for the right patient at the right time.
Collapse
|
5
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
7
|
Jiao Y, Li S, Wang X, Yi M, Wei H, Rong S, Zheng K, Zhang L. A genomic instability-related lncRNA model for predicting prognosis and immune checkpoint inhibitor efficacy in breast cancer. Front Immunol 2022; 13:929846. [PMID: 35990656 PMCID: PMC9389369 DOI: 10.3389/fimmu.2022.929846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has overtaken lung cancer as the most frequently diagnosed cancer type and is the leading cause of death for women worldwide. It has been demonstrated in published studies that long non-coding RNAs (lncRNAs) involved in genomic stability are closely associated with the progression of breast cancer, and remarkably, genomic stability has been shown to predict the response to immune checkpoint inhibitors (ICIs) in cancer therapy, especially colorectal cancer. Therefore, it is of interest to explore somatic mutator-derived lncRNAs in predicting the prognosis and ICI efficacy in breast cancer patients. In this study, the lncRNA expression data and somatic mutation data of breast cancer patients from The Cancer Genome Atlas (TCGA) were downloaded and analyzed thoroughly. Univariate and multivariate Cox proportional hazards analyses were used to generate the genomic instability-related lncRNAs in a training set, which was subsequently used to analyze a testing set and combination of the two sets. The qRT-PCR was conducted in both normal mammary and breast cancer cell lines. Furthermore, the Kaplan–Meier and receiver operating characteristic (ROC) curves were applied to validate the predictive effect in the three sets. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the association between genomic instability-related lncRNAs and immune checkpoints. As a result, a six-genomic instability-related lncRNA signature (U62317.4, MAPT-AS1, AC115837.2, EGOT, SEMA3B-AS1, and HOTAIR) was identified as the independent prognostic risk model for breast cancer patients. Compared with the normal mammary cells, the qRT-PCR showed that HOTAIR was upregulated while MAPT-AS1, EGOT, and SEMA3B-AS1 were downregulated in breast cancer cells. The areas under the ROC curves at 3 and 5 years were 0.711 and 0.723, respectively. Moreover, the patients classified in the high-risk group by the prognostic model had abundant negative immune checkpoint molecules. In summary, this study suggested that the prognostic model comprising six genomic instability-related lncRNAs may provide survival prediction. It is necessary to identify patients who are suitable for ICIs to avoid severe immune-related adverse effects, especially autoimmune diseases. This model may predict the ICI efficacy, facilitating the identification of patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqu Wei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanjie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Zhang,
| |
Collapse
|
8
|
CD38: An important regulator of T cell function. Biomed Pharmacother 2022; 153:113395. [PMID: 35834988 DOI: 10.1016/j.biopha.2022.113395] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is a multifunctional extracellular enzyme on the cell surface with NADase and cyclase activities. CD38 is not only expressed in human immune cells, such as lymphocytes and plasma cells, but also is abnormally expressed in a variety of tumor cells, which is closely related to the occurrence and development of tumors. T cells are one of the important immune cells in the body. As NAD consuming enzymes, CD38, ART2, SIRT1 and PARP1 are closely related to the number and function of T cells. CD38 may also influence the activity of ART2, SIRT1 and PARP1 through the CD38-NAD+ axis to indirectly affect the number and function of T cells. Thus, CD38-NAD+ axis has a profound effect on T cell activity. In this paper, we reviewed the role and mechanism of CD38+ CD4+ T cells / CD38+ CD8+ T cells in cellular immunity and the effects of the CD38-NAD+ axis on T cell activity. We also summarized the relationship between the CD38 expression level on T cell surface and disease prediction and prognosis, the effects of anti-CD38 monoclonal antibodies on T cell activity and function, and the role of anti-CD38 chimeric antigen receptor (CAR) T cell therapy in tumor immunity. This will provide an important theoretical basis for a comprehensive understanding of the relationship between CD38 and T cells.
Collapse
|
9
|
Zhang Q, Zhang W, Lin T, Lu W, He X, Ding Y, Chen W, Diao W, Ding M, Shen P, Guo H. Mass cytometry reveals immune atlas of urothelial carcinoma. BMC Cancer 2022; 22:677. [PMID: 35725444 PMCID: PMC9210814 DOI: 10.1186/s12885-022-09788-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Immunotherapy has emerged as a robust clinical strategy for cancer treatment. PD1/PD-L1 inhibitors have been used as second-line therapy for urothelial carcinoma due to the high tumor mutational burden. Despite the efficacy of the treatment is significant, the response rate is still poor. The tumor immune microenvironment plays a key role in the regulation of immunotherapeutic efficacy. However, a comprehensive understanding of the intricate microenvironment in clinical samples remains unclear. To obtain detailed systematic tumor immune profile, we performed an in-depth immunoassay on 12 human urothelial carcinoma tissue samples and 14 paratumor tissue samples using mass cytometry. Among the large number of cells assayed, we identified 71 T-cell phenotypes, 30 tumor-associated macrophage phenotypes. T cell marker expression profiles showed that almost all T cells in the tumor tissue were in a state of exhaustion. CD38 expression on tumor-associated macrophages (TAMs) was significantly higher than PDL1, and CD38+ TAMs were closely associated with immunosuppression. CD38 may be a more suitable target for immunotherapy in urothelial carcinoma compared to PD1/PDL1. This single-cell analysis of clinical samples expands our insights into the immune microenvironment of urothelial carcinoma and reveals potential biomarkers and targets for immunotherapy development.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenlong Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tingsheng Lin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenfeng Lu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin He
- Department of Urology, Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuanzhen Ding
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Urology, School of Life Science, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
10
|
Huang Y, Huang S, Ma L, Wang Y, Wang X, Xiao L, Qin W, Li L, Yuan X. Exploring the Prognostic Value, Immune Implication and Biological Function of H2AFY Gene in Hepatocellular Carcinoma. Front Immunol 2021; 12:723293. [PMID: 34899687 PMCID: PMC8651705 DOI: 10.3389/fimmu.2021.723293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/02/2021] [Indexed: 12/09/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an extremely malignant cancer with poor survival. H2AFY gene encodes for a variant of H2A histone, and it has been found to be dysregulated in various tumors. However, the clinical value, biological functions and correlations with immune infiltration of H2AFY in HCC remain unclear. Methods We analyzed the expression and clinical significance of H2AFY in HCC using multiple databases, including Oncomine, HCCDB, TCGA, ICGC, and so on. The genetic alterations of H2AFY were analyzed by cBioPortal and COSMIC databases. Co-expression networks of H2AFY and its regulators were investigated by LinkedOmics. The correlations between H2AFY and tumor immune infiltration were explored using TIMER, TISIDB databases, and CIBERSORT method. Finally, H2AFY was knocked down with shRNA lentiviruses in HCC cell lines for functional assays in vitro. Results H2AFY expression was upregulated in the HCC tissues and cells. Kaplan-Meier and Cox regression analyses revealed that high H2AFY expression was an independent prognostic factor for poor survival in HCC patients. Functional network analysis indicated that H2AFY and its co-expressed genes regulates cell cycle, mitosis, spliceosome and chromatin assembly through pathways involving many cancer-related kinases and E2F family. Furthermore, we observed significant correlations between H2AFY expression and immune infiltration in HCC. H2AFY knockdown suppressed the cell proliferation and migration, promoted cycle arrest, and apoptosis of HCC cells in vitro. Conclusion Our study revealed that H2AFY is a potential biomarker for unfavorable prognosis and correlates with immune infiltration in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Xiong H, Luo F, Zhou P, Yi J. Development of a reporter gene method to measure the bioactivity of anti-CD38 × CD3 bispecific antibody. Antib Ther 2021; 4:212-221. [PMID: 34676357 PMCID: PMC8524643 DOI: 10.1093/abt/tbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background A T cell-redirecting bispecific antibody (bsAb) consisting of a tumor-binding unit and a T cell-binding unit is a large group of antibody-based biologics against death-causing cancer diseases. The anti-CD38 × anti-CD3 bsAb (Y150) is potential for treating multiple myeloma (MM). When developing a cell-based reporter gene bioassay to assess the activities of Y150, it was found that the expression of CD38 on the human T lymphocyte cells (Jurkat) caused the nonspecific activation, which interfered with the specific T cells activation of mediated by the Y150 and CD38(+) tumor cells. Methods Here, we first knocked-out the CD38 expression on Jurkat T cell line by CRISPR-Cas9 technology, then developed a stable monoclonal CD38(−) Jurkat T cell line with an NFAT-RE driving luciferase expressing system. Further based on the CD38(−) Jurkat cell, we developed a reporter gene method to assess the bioactivity of the anti-CD38 × anti-CD3 bsAb. Results Knocking out CD38 expression abolished the nonspecific self-activation of the Jurkat cells. The selected stable monoclonal CD38(−) Jurkat T cell line assured the robustness of the report genes assay for the anti-CD38 × anti-CD3 bsAb. The relative potencies of the Y150 measured by the developed reporter gene assay were correlated with those by the flow-cytometry-based cell cytotoxicity assay and by the ELISA-based binding assay. Conclusions The developed reporter gene assay was mechanism of action-reflective for the bioactivity of anti-CD38 × anti-CD3 antibody, and suitable for the quality control for the bsAb product.
Collapse
Affiliation(s)
- Hui Xiong
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Fengyan Luo
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
12
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
13
|
Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, Han C, Zhao X, Liu Y, Shao Y, Wu Z, Zhang L, Meng F, Xiao-Feng Qin F. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Cell Death Dis 2021; 12:680. [PMID: 34226519 PMCID: PMC8256983 DOI: 10.1038/s41419-021-03968-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
It has been recently reported that CD38 expressed on tumor cells of multiple murine and human origins could be upregulated in response to PD-L1 antibody therapy, which led to dysfunction of tumor-infiltrating CD8+ T immune cells due to increasing the production of adenosine. However, the role of tumor expressed-CD38 on neoplastic formation and progression remains elusive. In the present study, we aimed to delineate the molecular and biochemical function of the tumor-associated CD38 in lung adenocarcinoma progression. Our clinical data showed that the upregulation of tumor-originated CD38 was correlated with poor survival of lung cancer patients. Using multiple in vitro assays we found that the enzymatic activity of tumor expressed-CD38 facilitated lung cancer cell migration, proliferation, colony formation, and tumor development. Consistently, our in vivo results showed that inhibition of the enzymatic activity or antagonizing the enzymatic product of CD38 resulted in the similar inhibition of tumor proliferation and metastasis as CD38 gene knock-out or mutation. At biochemical level, we further identified that cADPR, the mainly hydrolytic product of CD38, was responsible for inducing the opening of TRPM2 iron channel leading to the influx of intracellular Ca2+ and then led to increasing levels of NRF2 while decreasing expression of KEAP1 in lung cancer cells. These findings suggested that malignant lung cancer cells were capable of using cADPR catalyzed by CD38 to facilitate tumor progression, and blocking the enzymatic activity of CD38 could be represented as an important strategy for preventing tumor progression.
Collapse
Affiliation(s)
- Long Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yuan Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, the Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Sai Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Minmin Ge
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Haijun Tang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Chenfeng Han
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xin Zhao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yanbin Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yun Shao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Zhao Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Fang Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
14
|
Yuan X, Yi M, Zhang W, Xu L, Chu Q, Luo S, Wu K. The biology of combination immunotherapy in recurrent metastatic head and neck cancer. Int J Biochem Cell Biol 2021; 136:106002. [PMID: 33962022 DOI: 10.1016/j.biocel.2021.106002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Preclinical data suggest that head and neck cancer is an intrinsically immunosuppressive disease with abnormal inflammatory components in the tumor microenvironment. The development of immune checkpoint inhibitors, which are monoclonal antibodies capable of inhibiting immune suppressive signals to prime anticancer immunity, has revolutionized the therapeutic landscape in recurrent/metastatic head and neck cancer. However, patients with head and neck cancer present primary resistance to immunotherapy. Many ongoing trials include combinations of immunotherapy with different therapeutic interventions, aiming to improve response rates and overall survival. As novel therapy strategies are leveraged, the significance of immunotherapy in recurrent/metastatic head and neck cancer continues to be revealed. This review aims to summarize combinational immunotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
15
|
Eggers M, Rühl F, Haag F, Koch-Nolte F. Nanobodies as probes to investigate purinergic signaling. Biochem Pharmacol 2021; 187:114394. [PMID: 33388283 DOI: 10.1016/j.bcp.2020.114394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Nanobodies (VHHs) are the single variable immunoglobulin domains of heavy chain antibodies (hcAbs) that naturally occur in alpacas and other camelids. The two variable domains of conventional antibodies typically interact via a hydrophobic interface. In contrast, the corresponding surface area of nanobodies is hydrophilic, rendering these single immunoglobulin domains highly soluble, robust to harsh environments, and exceptionally easy to format into bispecific reagents. In homage to Geoffrey Burnstock, the pioneer of purinergic signaling, we provide a brief history of nanobody-mediated modulation of purinergic signaling, using our nanobodies targeting P2X7 and the NAD+-metabolizing ecto-enzymes CD38 and ARTC2.2 as examples.
Collapse
Affiliation(s)
- Marie Eggers
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Rühl
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Baum N, Fliegert R, Bauche A, Hambach J, Menzel S, Haag F, Bannas P, Koch-Nolte F. Daratumumab and Nanobody-Based Heavy Chain Antibodies Inhibit the ADPR Cyclase but not the NAD + Hydrolase Activity of CD38-Expressing Multiple Myeloma Cells. Cancers (Basel) 2020; 13:cancers13010076. [PMID: 33396591 PMCID: PMC7795599 DOI: 10.3390/cancers13010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematological malignancy of antibody-producing plasma cells in the bone marrow. Nucleotides released from cells in the tumor microenvironment act as inflammatory danger signals. CD38 and other enzymes on the surface of cancer cells hydrolyze these nucleotides to immunosuppressive mediators, thereby hampering anti-tumor immune responses. Daratumumab and other CD38-specific antibodies mediate killing of tumor cells by natural killer cells, macrophages, and the complement system. Here, we investigated whether CD38-specific antibodies also inhibit the enzyme activity of CD38-expressing tumor cells, thereby providing a potential second mode of action. Our results showed that daratumumab and nanobody-based heavy chain antibodies inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38. Thus, there remains a need for better CD38-inhibitory antibodies. Abstract The nucleotides ATP and NAD+ are released from stressed cells as endogenous danger signals. Ecto-enzymes in the tumor microenvironment hydrolyze these inflammatory nucleotides to immunosuppressive adenosine, thereby, hampering anti-tumor immune responses. The NAD+ hydrolase CD38 is expressed at high levels on the cell surface of multiple myeloma (MM) cells. Daratumumab, a CD38-specific monoclonal antibody promotes cytotoxicity against MM cells. With long CDR3 loops, nanobodies and nanobody-based heavy chain antibodies (hcAbs) might bind to cavities on CD38 and thereby inhibit its enzyme activity more potently than conventional antibodies. The goal of our study was to establish assays for monitoring the enzymatic activities of CD38 on the cell surface of tumor cells and to assess the effects of CD38-specific antibodies on these activities. We monitored the enzymatic activity of CD38-expressing MM and other tumor cell lines, using fluorometric and HPLC assays. Our results showed that daratumumab and hcAb MU1067 inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38-expressing MM cells. We conclude that neither clinically approved daratumumab nor recently developed nanobody-derived hcAbs provide a second mode of action against MM cells. Thus, there remains a quest for “double action” CD38-inhibitory antibodies.
Collapse
Affiliation(s)
- Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.F.); (A.B.)
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.F.); (A.B.)
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Peter Bannas
- Department of Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
- Correspondence: ; Tel.: +49-407-4105-3612
| |
Collapse
|
17
|
Li L, Wang Y. Recent updates for antibody therapy for acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:33. [PMID: 33292550 PMCID: PMC7697374 DOI: 10.1186/s40164-020-00189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic malignancy arising from precursors of the lymphoid lineage. Conventional cytotoxic chemotherapies have resulted in high cure rates of up to 90% in pediatric ALL, but the outcomes for adult patients remain suboptimal with 5-year survival rates of only 30%-40%. Current immunotherapies exploit the performance of antibodies through several different mechanisms, including naked antibodies, antibodies linked to cytotoxic agents, and T-cell re-directing antibodies. Compared with chemotherapy, the application of an antibody-drug conjugates (ADC) called inotuzumab ozogamicin in relapsed or refractory (R/R) CD22+. ALL resulted in a complete remission (CR) rate of 81% and an overall median survival of 7.7 months with reduced toxicity. Similarly, blinatumomab, the first FDA-approved bispecific antibody (BsAb), produced a 44% complete response rate and an overall median survival of 7.7 months in a widely treated ALL population. In addition, approximately 80% of patients getting complete remission with evidence of minimal residual disease (MRD) achieved a complete MRD response with the use of blinatumomab. These results highlight the great promise of antibody-based therapy for ALL. How to reasonably determine the place of antibody drugs in the treatment of ALL remains a major problem to be solved for ongoing and future researches. Meanwhile the combination of antibody-based therapy with traditional standard of care (SOC) chemotherapy, chimeric antigen receptor (CAR) T-cell therapy and HSCT is also a challenge. Here, we will review some important milestones of antibody-based therapies, including combinational strategies, and antibodies under clinical development for ALL.
Collapse
Affiliation(s)
- Le Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|