1
|
Yu W, Tingey M, Kelich JM, Li Y, Yu J, Junod SL, Jiang Z, Hansen I, Good N, Yang W. Exploring Cellular Gateways: Unraveling the Secrets of Disordered Proteins within Live Nuclear Pores. RESEARCH SQUARE 2024:rs.3.rs-3504130. [PMID: 38260360 PMCID: PMC10802689 DOI: 10.21203/rs.3.rs-3504130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph M. Kelich
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Zecheng Jiang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian Hansen
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Nacef Good
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Tai L, Yin G, Sun F, Zhu Y. Cryo-electron microscopy reveals the structure of the nuclear pore complex. J Mol Biol 2023; 435:168051. [PMID: 36933820 DOI: 10.1016/j.jmb.2023.168051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510005, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
4
|
Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW, Wang L, Fu TM, Bustamante C, Wu H. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 2022; 376:eabm9326. [PMID: 35679401 PMCID: PMC10054137 DOI: 10.1126/science.abm9326] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The nuclear pore complex (NPC) is the molecular conduit in the nuclear membrane of eukaryotic cells that regulates import and export of biomolecules between the nucleus and the cytosol, with vertebrate NPCs ~110 to 125 MDa in molecular mass and ~120 nm in diameter. NPCs are organized into four main rings: the cytoplasmic ring (CR) at the cytosolic side, the inner ring and the luminal ring on the plane of the nuclear membrane, and the nuclear ring facing the nucleus. Each ring possesses an approximate eightfold symmetry and is composed of multiple copies of different nucleoporins. NPCs have been implicated in numerous biological processes, and their dysfunctions are associated with a growing number of serious human diseases. However, despite pioneering studies from many groups over the past two decades, we still lack a full understanding of NPCs' organization, dynamics, and complexity. RATIONALE We used the Xenopus laevis oocyte as a model system for the structural characterization because each oocyte possesses a large number of NPC particles that can be visualized on native nuclear membranes without the aid of detergent extraction. We used single-particle cryo-electron microscopy (cryo-EM) analysis on data collected at different stage tilt angles for three-dimensional reconstruction and structure prediction with AlphaFold for model building. RESULTS We reconstructed the CR map of X. laevis NPC at 6.9 and 6.7 Å resolutions for the full CR protomer and a core region, respectively, and predicted the structures of the individual nucleoporins using AlphaFold because no high-resolution models of X. laevis Nups were available. For any ambiguous subunit interactions, we also predicted complex structures, which further guided model fitting of the CR protomer. We placed the nucleoporin or complex structures into the CR density to obtain an almost full CR atomic model, composed of the inner and outer Y-complexes, two copies of Nup205, two copies of the Nup214-Nup88-Nup62 complex, one Nup155, and five copies of Nup358. In particular, we predicted the largest protein in the NPC, Nup358, as having an S-shaped globular domain, a coiled-coil domain, and a largely disordered C-terminal region containing phenylalanine-glycine (FG) repeats previously shown to form a gel-like condensate phase for selective cargo passage. Four of the Nup358 copies clamp around the inner and outer Y-complexes to stabilize the CR, and the fifth Nup358 situates in the center of the cluster of clamps. AlphaFold also predicted a homo-oligomeric, likely specifically pentameric, coiled-coil structure of Nup358 that may provide the avidity for Nup358 recruitment to the NPC and for lowering the threshold for Nup358 condensation in NPC biogenesis. CONCLUSION Our studies offer an example of integrative cryo-EM and structure prediction as a general approach for attaining more precise models of megadalton protein complexes from medium-resolution density maps. The more accurate and almost complete model of the CR presented here expands our understanding of the molecular interactions in the NPC and represents a substantial step forward toward the molecular architecture of a full NPC, with implications for NPC function, biogenesis, and regulation. [Figure: see text].
Collapse
Affiliation(s)
- Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander B Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences-QB3, and Chemistry Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Corey W Hecksel
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences-QB3, and Chemistry Graduate Group, University of California, Berkeley, CA 94720, USA.,Departments of Molecular and Cell Biology, Physics, and Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
One Ring to Rule them All? Structural and Functional Diversity in the Nuclear Pore Complex. Trends Biochem Sci 2021; 46:595-607. [PMID: 33563541 DOI: 10.1016/j.tibs.2021.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The nuclear pore complex (NPC) is the massive protein assembly that regulates the transport of macromolecules between the nucleus and the cytoplasm. Recent breakthroughs have provided major insights into the structure of the NPC in different eukaryotes, revealing a previously unsuspected diversity of NPC architectures. In parallel, the NPC has been shown to be a key player in regulating essential nuclear processes such as chromatin organization, gene expression, and DNA repair. However, our knowledge of the NPC structure has not been able to address the molecular mechanisms underlying its regulatory roles. We discuss potential explanations, including the coexistence of alternative NPC architectures with specific functional roles.
Collapse
|
6
|
Zhang Y, Li S, Zeng C, Huang G, Zhu X, Wang Q, Wang K, Zhou Q, Yan C, Zhang W, Yang G, Liu M, Tao Q, Lei J, Shi Y. Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res 2020; 30:532-540. [PMID: 32367042 PMCID: PMC7264284 DOI: 10.1038/s41422-020-0320-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
The nuclear pore complex (NPC) mediates the flow of substances between the nucleus and cytoplasm in eukaryotic cells. Here we report the cryo-electron tomography (cryo-ET) structure of the luminal ring (LR) of the NPC from Xenopus laevis oocyte. The observed key structural features of the LR are independently confirmed by single-particle cryo-electron microscopy (cryo-EM) analysis. The LR comprises eight butterfly-shaped subunits, each containing two symmetric wings. Each wing consists of four elongated, tubular protomers. Within the LR subunit, the eight protomers form a Finger domain, which directly contacts the fusion between the inner and outer nuclear membranes and a Grid domain, which serves as a rigid base for the Finger domain. Two neighboring LR subunits interact with each other through the lateral edges of their wings to constitute a Bumper domain, which displays two major conformations and appears to cushion neighboring NPCs. Our study reveals previously unknown features of the LR and potentially explains the elastic property of the NPC.
Collapse
Affiliation(s)
- Yanqing Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao Zeng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuechen Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Qifan Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Kunpeng Wang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wusheng Zhang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Guangwen Yang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Minhao Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qinghua Tao
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
8
|
Li Y, Luo W, Yang W. Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy. Biophys J 2019; 114:2243-2251. [PMID: 29742417 DOI: 10.1016/j.bpj.2018.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation.
Collapse
Affiliation(s)
- Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Wangxi Luo
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Ruba A, Luo W, Kelich J, Tingey M, Yang W. 3D Tracking-Free Approach for Obtaining 3D Super-Resolution Information in Rotationally Symmetric Biostructures. J Phys Chem B 2019; 123:5107-5120. [PMID: 31117612 DOI: 10.1021/acs.jpcb.9b02979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, it is highly desirable but still challenging to obtain high-resolution (<50 nm) three-dimensional (3D) super-resolution information on structures in fixed specimens as well as for dynamic processes in live cells. Here we introduce a simple approach, without using 3D super-resolution microscopy or real-time 3D particle tracking, to estimate 3D sub-diffraction-limited structural or dynamic information in rotationally symmetric biostructures. This is a postlocalization analysis that transforms 2D super-resolution images or 2D single-molecule localization distributions into their corresponding 3D spatial probability distributions on the basis of prior known structural knowledge. This analysis is ideal in cases where the ultrastructure of a cellular structure is known but the substructural localization of a particular (usually mobile) protein is not. The method has been successfully applied to achieve 3D structural and functional sub-diffraction-limited information for 25-300 nm subcellular organelles that meet the rotational symmetry requirement, such as nuclear pore complex, primary cilium, and microtubule. In this Article, we will provide comprehensive analyses of this method by using experimental data and computational simulations. Finally, open source code of the 2D to 3D transformation algorithm (MATLAB) and simulations (Python) have also been developed.
Collapse
Affiliation(s)
- Andrew Ruba
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Wangxi Luo
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Joseph Kelich
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Mark Tingey
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Weidong Yang
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| |
Collapse
|
10
|
Sumoylated α-synuclein translocates into the nucleus by karyopherin α6. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Malekian B, Schoch RL, Robson T, Ferrand-Drake Del Castillo G, Xiong K, Emilsson G, Kapinos LE, Lim RYH, Dahlin A. Detecting Selective Protein Binding Inside Plasmonic Nanopores: Toward a Mimic of the Nuclear Pore Complex. Front Chem 2018; 6:637. [PMID: 30619840 PMCID: PMC6308133 DOI: 10.3389/fchem.2018.00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Biosensors based on plasmonic nanostructures offer label-free and real-time monitoring of biomolecular interactions. However, so do many other surface sensitive techniques with equal or better resolution in terms of surface coverage. Yet, plasmonic nanostructures offer unique possibilities to study effects associated with nanoscale geometry. In this work we use plasmonic nanopores with double gold films and detect binding of proteins inside them. By thiol and trietoxysilane chemistry, receptors are selectively positioned on the silicon nitride interior walls. Larger (~150 nm) nanopores are used detect binding of averaged sized proteins (~60 kg/mol) with high signal to noise (>100). Further, we fabricate pores that approach the size of the nuclear pore complex (diameter down to 50 nm) and graft disordered phenylalanine-glycine nucleoporin domains to the walls, followed by titration of karyopherinβ1 transport receptors. The interactions are shown to occur with similar affinity as determined by conventional surface plasmon resonance on planar surfaces. Our work illustrates another unique application of plasmonic nanostructures, namely the possibility to mimic the geometry of a biological nanomachine with integrated optical sensing capabilities.
Collapse
Affiliation(s)
- Bita Malekian
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Rafael L Schoch
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Timothy Robson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Pal S, Ganesan K, Eswaran S. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). IUBMB Life 2018; 70:947-960. [DOI: 10.1002/iub.1916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Shreya Pal
- Amity University Haryana; Manesar Haryana India
| | | | - Sambasivan Eswaran
- Regional Centre for Biotechnology (Established by DBT, Govt. of India under the auspices of UNESCO); NCR Biotech Science Cluster; Faridabad Haryana India
| |
Collapse
|
13
|
Abstract
Despite the central role of Nuclear Pore Complexes (NPCs) as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm, their large size and dynamic nature have impeded a full structural and functional elucidation. Here, we have determined a subnanometer precision structure for the entire 552-protein yeast NPC by satisfying diverse data including stoichiometry, a cryo-electron tomography map, and chemical cross-links. The structure reveals the NPC’s functional elements in unprecedented detail. The NPC is built of sturdy diagonal columns to which are attached connector cables, imbuing both strength and flexibility, while tying together all other elements of the NPC, including membrane-interacting regions and RNA processing platforms. Inwardly-directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized in distinct functional units. Taken together, this integrative structure allows us to rationalize the architecture, transport mechanism, and evolutionary origins of the NPC.
Collapse
|
14
|
Ruba A, Luo W, Yang W. Application of High-speed Super-resolution SPEED Microscopy in Live Primary Cilium. J Vis Exp 2018. [PMID: 29364223 DOI: 10.3791/56475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The primary cilium is a microtubule-based protrusion on the surface of many eukaryotic cells and contains a unique complement of proteins that function critically in cell motility and signaling. Since cilia are incapable of synthesizing their own protein, nearly 200 unique ciliary proteins need to be trafficked between the cytosol and primary cilia. However, it is still a technical challenge to map three-dimensional (3D) locations of transport pathways for these proteins in live primary cilia due to the limitations of currently existing techniques. To conquer the challenge, recently we have developed and employed a high-speed virtual 3D super-resolution microscopy, termed single-point edge-excitation sub-diffraction (SPEED) microscopy, to determine the 3D spatial location of transport pathways for both cytosolic and membrane proteins in primary cilia of live cells. In this article, we will demonstrate the detailed setup of SPEED microscopy, the preparation of cells expressing fluorescence-protein-labeled ciliary proteins, the real-time single-molecule tracking of individual proteins in live cilium and the achievement of 3D spatial probability density maps of transport routes for ciliary proteins.
Collapse
Affiliation(s)
| | - Wangxi Luo
- Department of Biology, Temple University
| | | |
Collapse
|
15
|
Pidaparti RM, Cartin C, Su G. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations. Bioengineering (Basel) 2017; 4:E37. [PMID: 28952516 PMCID: PMC5590468 DOI: 10.3390/bioengineering4020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.
Collapse
Affiliation(s)
| | - Charles Cartin
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Guoguang Su
- Previously at Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
16
|
Abstract
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; ,
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
17
|
Ma J, Kelich JM, Junod SL, Yang W. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex. J Cell Sci 2017; 130:1299-1306. [PMID: 28202688 DOI: 10.1242/jcs.193912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/09/2017] [Indexed: 01/22/2023] Open
Abstract
The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.,Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, PR China
| | - Joseph M Kelich
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
18
|
Samudram A, Mangalassery BM, Kowshik M, Patincharath N, Varier GK. Passive permeability and effective pore size of HeLa cell nuclear membranes. Cell Biol Int 2016; 40:991-8. [PMID: 27338984 DOI: 10.1002/cbin.10640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/18/2016] [Indexed: 12/12/2022]
Abstract
Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors.
Collapse
Affiliation(s)
- Arunkarthick Samudram
- Department of Physics, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India.,Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India
| | - Bijeesh M Mangalassery
- Department of Physics, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India
| | - Meenal Kowshik
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India
| | - Nandakumar Patincharath
- Department of Physics, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India
| | - Geetha K Varier
- Department of Physics, Birla Institute of Technology and Science, Pilani-KK Birla Goa Campus, Zuari Nagar, 403 726, Goa, India
| |
Collapse
|
19
|
Hoelz A, Glavy JS, Beck M. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat Struct Mol Biol 2016; 23:624-30. [PMID: 27273515 DOI: 10.1038/nsmb.3244] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Elucidating the structure of the nuclear pore complex (NPC) is a prerequisite for understanding the molecular mechanism of nucleocytoplasmic transport. However, owing to its sheer size and flexibility, the NPC is unapproachable by classical structure determination techniques and requires a joint effort of complementary methods. Whereas bottom-up approaches rely on biochemical interaction studies and crystal-structure determination of NPC components, top-down approaches attempt to determine the structure of the intact NPC in situ. Recently, both approaches have converged, thereby bridging the resolution gap from the higher-order scaffold structure to near-atomic resolution and opening the door for structure-guided experimental interrogations of NPC function.
Collapse
Affiliation(s)
- André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Joseph S Glavy
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
20
|
Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Cuellar LK, Förster F, Hyman AA, Plitzko JM, Baumeister W. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 2016; 351:969-72. [PMID: 26917770 DOI: 10.1126/science.aad8857] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness.
Collapse
Affiliation(s)
- Julia Mahamid
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Stefan Pfeffer
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Miroslava Schaffer
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elizabeth Villa
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany. Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Radostin Danev
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luis Kuhn Cuellar
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedrich Förster
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andrés-Pons A, Glavy JS, Beck M. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 2014; 155:1233-43. [PMID: 24315095 DOI: 10.1016/j.cell.2013.10.055] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.
Collapse
Affiliation(s)
- Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang W. Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 2013; 4:166-75. [PMID: 23669120 DOI: 10.4161/nucl.24874] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC), which provides the permeable and selective transport path between the nucleus and cytoplasm of eukaryotic cells, allows both the passive diffusion of small molecules in a signal-independent manner and the transport receptor-facilitated translocation of cargo molecules in a signal-dependent manner. However, the spatial and functional relationships between these two transport pathways, which represent critical information for unraveling the fundamental nucleocytoplasmic transport mechanism, remain in dispute. The direct experimental examination of passive and facilitated transport with a high spatiotemporal resolution under real-time trafficking conditions in native NPCs is still difficult. To address this issue and further define these transport mechanisms, we recently developed single-point edge-excitation sub-diffraction (SPEED) microscopy and a deconvolution algorithm to directly map both passive and facilitated transport routes in three dimensions (3D) in native NPCs. Our findings revealed that passive and facilitated transport occur through spatially distinct transport routes. Signal-independent small molecules exhibit a high probability of passively diffusing through an axial central viscous channel, while transport receptors and their cargo complexes preferentially travel through the periphery, around this central channel, after interacting with phenylalanine-glycine (FG) filaments. Strikingly, these two distinct transport zones are not completely separate either spatially or functionally. Instead, their conformations are closely correlated and simultaneously regulated. In this review, we will specifically highlight a detailed procedure for 3D mapping of passive and facilitated transport routes, demonstrate the correlation between these two distinct pathways, and finally, speculate regarding the regulation of the transport pathways driven by the conformational changes of FG filaments in NPCs.
Collapse
Affiliation(s)
- Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MRK. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys J 2011; 100:1410-9. [PMID: 21402022 DOI: 10.1016/j.bpj.2011.01.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/13/2010] [Accepted: 01/19/2011] [Indexed: 11/16/2022] Open
Abstract
The nuclear pore complex (NPC) is the gatekeeper of the nucleus, capable of actively discriminating between the active and inert cargo while accommodating a high rate of translocations. The biophysical mechanisms underlying transport, however, remain unclear due to the lack of information about biophysical factors playing role in transport. Based on published experimental data, we have established a coarse-grained model of an intact NPC structure to examine nucleocytoplasmic transport with refined spatial and temporal resolutions. Using our model, we estimate the transport time versus cargo sizes. Our findings suggest that the mean transport time of cargos smaller than 15 nm is independent of size, while beyond this size, there is a sharp increase in the mean transport time. The model confirms that kap-FG hydrophobicity is sufficient for active cargo transport. Moreover, our model predicts that during translocation, small and large cargo-complexes are hydrophobically attached to FG-repeat domains for 86 and 96% of their transport time, respectively. Inside the central channel FG-repeats form a thick layer on the wall leaving an open tube. The cargo-complex is almost always attached to this layer and diffuses back and forth, regardless of the cargo size. Finally, we propose a plausible model for transport in which the NPC can be viewed as a lubricated gate. This model incorporates basic assumptions underlying virtual-gate and reduction-of-dimensionality models with the addition of the FG-layer inside the central channel acting as a lubricant.
Collapse
Affiliation(s)
- R Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
25
|
Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MRK. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput Biol 2011; 7:e1002049. [PMID: 21673865 PMCID: PMC3107250 DOI: 10.1371/journal.pcbi.1002049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG) repeat domains. Taking into account the polymeric nature of FG-repeats grafted on the elastic structure of the NPC, and the kap-FG hydrophobic affinity, we have established a coarse-grained model of the NPC structure that mimics nucleocytoplasmic transport. To establish a foundation for future works, the methodology and biophysical rationale behind the model is explained in details. The model predicts that the first-passage time of a 15 nm cargo-complex is about 2.6±0.13 ms with an inverse Gaussian distribution for statistically adequate number of independent Brownian dynamics simulations. Moreover, the cargo-complex is primarily attached to the channel wall where it interacts with the FG-layer as it passes through the central channel. The kap-FG hydrophobic interaction is highly dynamic and fast, which ensures an efficient translocation through the NPC. Further, almost all eight hydrophobic binding spots on kap-β are occupied simultaneously during transport. Finally, as opposed to intact NPCs, cytoplasmic filaments-deficient NPCs show a high degree of permeability to inert cargos, implying the defining role of cytoplasmic filaments in the selectivity barrier. Perforating and spanning the nuclear envelope (NE), the nuclear pore complex (NPC) is a supramolecular assembly that regulates all traffic between the nucleus and cytoplasm. As the unique gateway to the nucleus, NPC selectively facilitates the transport of large cargo while offering a relatively unobstructed pathway for small molecules and ions. Despite the high throughput of about 1000 translocations per NPC per second, the NPC strictly controls the passage of individual cargos. However, the dynamic mechanism of nucleocytoplasmic transport is poorly understood. It is too difficult to experiment on the transport mechanism within the confined geometry of this tiny pore in vivo. Currently, only computational techniques can elucidate the detailed events happening at this tiny pore with a refined spatiotemporal resolution to account for transient bonds. Based on experimental data regarding the NPC structure and nucleocytoplasmic transport, we have established a coarse-grained model of the functional state of the NPC. The model mimics nucleocytoplasmic transport and allows us to directly observe the processes happening within the pore from a biophysical perspective. The first-passage time of a single cargo-complex is found to be about 2.6 ms. Furthermore, kap-FG hydrophobic bonds are highly dynamic and short-lived, ensuring efficient transport.
Collapse
Affiliation(s)
- Ruhollah Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yousef Jamali
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Reza Karimi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The lamins are the major architectural proteins of the animal cell nucleus. Lamins line the inside of the nuclear membrane, where they provide a platform for the binding of proteins and chromatin and confer mechanical stability. They have been implicated in a wide range of nuclear functions, including higher-order genome organization, chromatin regulation, transcription, DNA replication and DNA repair. The lamins are members of the intermediate filament (IF) family of proteins, which constitute a major component of the cytoskeleton. Lamins are the only nuclear IFs and are the ancestral founders of the IF protein superfamily. Lamins polymerize into fibers forming a complex protein meshwork in vivo and, like all IF proteins, have a tripartite structure with two globular head and tail domains flanking a central α-helical rod domain, which supports the formation of higher-order polymers. Mutations in lamins cause a large number of diverse human diseases, collectively known as the laminopathies, underscoring their functional importance.
Collapse
Affiliation(s)
- Travis A Dittmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20896, USA.
| | | |
Collapse
|
27
|
Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Matsuo K, Arimori A, Isobe M, Tochigi S, Kondoh S, Hirai T, Akase T, Yamashita T, Yamashita K, Yoshida T, Nagano K, Abe Y, Yoshioka Y, Kamada H, Imazawa T, Itoh N, Nakagawa S, Mayumi T, Tsunoda SI, Tsutsumi Y. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials 2011; 32:2713-24. [PMID: 21262533 DOI: 10.1016/j.biomaterials.2010.12.042] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/27/2010] [Indexed: 01/28/2023]
Abstract
Currently, nanomaterials (NMs) with particle sizes below 100 nm have been successfully employed in various industrial applications in medicine, cosmetics and foods. On the other hand, NMs can also be problematic in terms of eliciting a toxicological effect by their small size. However, biological and/or cellular responses to NMs are often inconsistent and even contradictory. In addition, relationships among NMs physicochemical properties, absorbency, localization and biological responses are not yet well understood. In order to open new frontiers in medical, cosmetics and foods fields by the safer NMs, it is necessary to collect the information of the detailed properties of NMs and then, build the prediction system of NMs safety. The present study was designed to examine the skin penetration, cellular localization, and cytotoxic effects of the well-dispersed amorphous silica particles of diameters ranging from 70 nm to 1000 nm. Our results suggested that the well-dispersed amorphous nanosilica of particle size 70 nm (nSP70) penetrated the skin barrier and caused systemic exposure in mouse, and induced mutagenic activity in vitro. Our information indicated that further studies of relation between physicochemical properties and biological responses are needed for the development and the safer form of NMs.
Collapse
Affiliation(s)
- Hiromi Nabeshi
- Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. ACTA ACUST UNITED AC 2010; 191:505-21. [PMID: 20974814 PMCID: PMC3003318 DOI: 10.1083/jcb.201007098] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pom121 anchors core structures of the NPC to the membrane through its binding to the β-propeller domains of Nup155 and Nup160. Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane.
Collapse
Affiliation(s)
- Jana M Mitchell
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
29
|
Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 2010; 9:2205-24. [PMID: 20368288 DOI: 10.1074/mcp.m000035-mcp201] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nuclear pore complexes (NPCs) gate the only conduits for nucleocytoplasmic transport in eukaryotes. Their gate is formed by nucleoporins containing large intrinsically disordered domains with multiple phenylalanine-glycine repeats (FG domains). In combination, these are hypothesized to form a structurally and chemically homogeneous network of random coils at the NPC center, which sorts macromolecules by size and hydrophobicity. Instead, we found that FG domains are structurally and chemically heterogeneous. They adopt distinct categories of intrinsically disordered structures in non-random distributions. Some adopt globular, collapsed coil configurations and are characterized by a low charge content. Others are highly charged and adopt more dynamic, extended coil conformations. Interestingly, several FG nucleoporins feature both types of structures in a bimodal distribution along their polypeptide chain. This distribution functionally correlates with the attractive or repulsive character of their interactions with collapsed coil FG domains displaying cohesion toward one another and extended coil FG domains displaying repulsion. Topologically, these bipartite FG domains may resemble sticky molten globules connected to the tip of relaxed or extended coils. Within the NPC, the crowding of FG nucleoporins and the segregation of their disordered structures based on their topology, dimensions, and cohesive character could force the FG domains to form a tubular gate structure or transporter at the NPC center featuring two separate zones of traffic with distinct physicochemical properties.
Collapse
Affiliation(s)
- Justin Yamada
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wolf C, Mofrad MRK. On the octagonal structure of the nuclear pore complex: insights from coarse-grained models. Biophys J 2008; 95:2073-85. [PMID: 18487299 PMCID: PMC2483776 DOI: 10.1529/biophysj.108.130336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/24/2008] [Indexed: 11/18/2022] Open
Abstract
The basic structure of the nuclear pore complex (NPC), conserved across almost all organisms from yeast to humans, persists in featuring an octagonal symmetry involving the nucleoporins that constitute the NPC ring. In this article, we seek to understand and evaluate the potential biomechanical reasons for this eightfold symmetry. Our analytical investigation shows that the eightfold symmetry maximizes the bending stiffness of each of the eight NPC spokes while our computational analyses identify the most likely deformation modes, frequencies, and associated kinetic energies of the NPC. These modes have energies close to other published findings using membrane analysis of the nuclear membrane pore opening, and deformation states in agreement with experimental observations. A better understanding of NPC mechanics is essential for characterizing the nucleocytoplasmic transport, which has a central importance in cell biology.
Collapse
Affiliation(s)
- Christopher Wolf
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
31
|
Kapon R, Topchik A, Mukamel D, Reich Z. A possible mechanism for self-coordination of bidirectional traffic across nuclear pores. Phys Biol 2008; 5:036001. [DOI: 10.1088/1478-3975/5/3/036001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Abstract
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC.
Collapse
|
33
|
Beçak ML, Fukuda-Pizzocaro K. Pore-linked filaments in anura spermatocyte nuclei. AN ACAD BRAS CIENC 2007; 79:63-70. [PMID: 17401476 DOI: 10.1590/s0001-37652007000100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 02/17/2006] [Indexed: 05/14/2023] Open
Abstract
Pore-linked filaments were visualized in spreads of anuran spermatocyte nuclei using transmission electron microscope. We used Odontophrynus diplo and tetraploid species having the tetraploid frogs reduced metabolic activities. The filaments with 20-40 nm width are connected to a ring component of the nuclear pore complex with 90-120 nm and extend up to 1 microm (or more) into the nucleus. The filaments are curved and connect single or neighboring pores. The intranuclear filaments are associated with chromatin fibers and related to RNP particles of 20-25 nm and spheroidal structures of 0.5 microm, with variations. The aggregates of several neighboring pores with the filaments are more commonly observed in 4n nuclei. We concluded that the intranuclear filaments may correspond to the fibrillar network described in Xenopus oocyte nucleus being probably related to RNA transport. The molecular basis of this RNA remains elusive. Nevertheless, the morphological aspects of the spheroidal structures indicate they could correspond to nucleolar chromatin or to nucleolus-derived structures. We also speculate whether the complex aggregates of neighboring pores with intranuclear filaments may correspond to pore clustering previously described in these tetraploid animals using freeze-etching experiments.
Collapse
Affiliation(s)
- Maria Luiza Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, 05503-900, Brasil.
| | | |
Collapse
|
34
|
Cotter L, Allen TD, Kiseleva E, Goldberg MW. Nuclear membrane disassembly and rupture. J Mol Biol 2007; 369:683-95. [PMID: 17467734 DOI: 10.1016/j.jmb.2007.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/18/2022]
Abstract
The nuclear envelope consists of two membranes traversed by nuclear pore complexes. The outer membrane is continuous with the endoplasmic reticulum. At mitosis nuclear pore complexes are dismantled and membranes disperse. The mechanism of dispersal is controversial: one view is that membranes feed into the endoplasmic reticulum, another is that they vesiculate. Using Xenopus egg extracts, nuclei have been assembled and then induced to breakdown by addition of metaphase extract. Field emission scanning electron microscopy was used to study disassembly. Strikingly, endoplasmic reticulum-like membrane tubules form from the nuclear surface after the addition of metaphase extracts, but vesicles were also observed. Microtubule inhibitors slowed but did not prevent membrane removal, whereas Brefeldin A, which inhibits vesicle formation, stops membrane disassembly, suggesting that vesiculation is necessary. Structures that looked like coated buds were observed and buds were labelled for beta-COP. We show that nuclear pore complexes are dismantled and the pore closed prior to membrane rupturing, suggesting that rupturing is an active process rather than a result of enlargement of nuclear pores.
Collapse
Affiliation(s)
- Laura Cotter
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
35
|
Naim B, Brumfeld V, Kapon R, Kiss V, Nevo R, Reich Z. Passive and facilitated transport in nuclear pore complexes is largely uncoupled. J Biol Chem 2006; 282:3881-8. [PMID: 17164246 DOI: 10.1074/jbc.m608329200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear pore complexes provide the sole gateway for the exchange of material between nucleus and cytoplasm of interphase eukaryotic cells. They support two modes of transport: passive diffusion of ions, metabolites, and intermediate-sized macromolecules and facilitated, receptor-mediated translocation of proteins, RNA, and ribonucleoprotein complexes. It is generally assumed that both modes of transport occur through a single diffusion channel located within the central pore of the nuclear pore complex. To test this hypothesis, we studied the mutual effects between transporting molecules utilizing either the same or different modes of translocation. We find that the two modes of transport do not interfere with each other, but molecules utilizing a particular mode of transport do hinder motion of others utilizing the same pathway. We therefore conclude that the two modes of transport are largely segregated.
Collapse
Affiliation(s)
- Bracha Naim
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Transport into the nucleus is critical for regulation of gene transcription and other intranuclear events. Passage of molecules into the nucleus depends in part upon their size and the presence of appropriate targeting sequences. However, little is known about the effects of hormones or their second messengers on transport across the nuclear envelope. We used localized, two-photon activation of a photoactivatable green fluorescent protein to investigate whether hormones, via their second messengers, could alter nuclear permeability. Vasopressin and other hormones that increase cytosolic Ca2+ and activate protein kinase C increased permeability across the nuclear membrane of SKHep1 liver cells in a rapid unidirectional manner. An increase in cytosolic Ca2+ was both necessary and sufficient for this process. Furthermore, localized photorelease of caged Ca2+ near the nuclear envelope resulted in a local increase in nuclear permeability. Neither activation nor inhibition of protein kinase C affected nuclear permeability. These findings provide evidence that hormones linking to certain G protein-coupled receptors increase nuclear permeability via cytosolic Ca2+. Short term regulation of nuclear permeability may provide a novel mechanism by which such hormones permit transcription factors and other regulatory molecules to enter the nucleus, thereby regulating gene transcription in target cells.
Collapse
Affiliation(s)
| | | | | | - Michael H. Nathanson
- To whom correspondence should be addressed: Section of Digestive Diseases, Yale University School of Medicine, 1 Gilbert St., Rm. TAC S241D, New Haven, CT 06520-8019. Tel.: 203-785-7312; Fax: 203-785-4306;
| |
Collapse
|
37
|
Stoffler D, Schwarz-Herion K, Aebi U, Fahrenkrog B. Getting across the nuclear pore complex: new insights into nucleocytoplasmic transport. Can J Physiol Pharmacol 2006; 84:499-507. [PMID: 16902595 DOI: 10.1139/y06-001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small ions and molecules can traverse the nuclear pore complex (NPC) simply by diffusion, whereas larger proteins and RNAs require specific signals and factors that facilitate their passage through the NPC. Our understanding of the factors that participate and regulate nucleocytoplasmic transport has increased tremendously over the past years, whereas the actual translocation step through the NPC has remained largely unclear. Here, we present and discuss recent findings on the interaction between the NPC and transport receptors and provide new evidence that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargos.
Collapse
Affiliation(s)
- Daniel Stoffler
- ME Müller Institute, Biozentrum, University of Basel, Switzerland.
| | | | | | | |
Collapse
|
38
|
Erickson ES, Mooren OL, Moore D, Krogmeier JR, Dunn RC. The role of nuclear envelope calcium in modifying nuclear pore complex structureThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell. Can J Physiol Pharmacol 2006; 84:309-18. [PMID: 16902578 DOI: 10.1139/y05-109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some of the most important trafficking processes in cells involve transport across the nuclear envelope. Whether it is the import of transcription factors or the export of RNA, the only known portal across the double lipid bilayer that forms the nuclear envelope are the macromolecular pores known as nuclear pore complexes (NPCs). Understanding how signals influence the conformation of the NPC is important for testing models of, and perhaps modifying, transport across the nuclear envelope. Here we summarize high-resolution atomic force microscopy studies of NPC structure following manipulation of nuclear envelope calcium stores of nuclei from Xenopus laevis oocytes. The results show that the release of calcium from these stores through the specific activation of inositol 1,4,5-trisphosphate receptors leads to changes in NPC structure observable from both sides of the nuclear envelope. The diameter of the NPC is also sensitive to these calcium stores and increases upon calcium release. Western blot analysis reveals the presence of ryanodine receptors in the nuclear envelope of X. laevis oocytes, although in low abundance. Activation of these calcium channels also leads to the displacement of the central mass and changes in NPC diameter. This change in structure may involve a displacement of the cytoplasmic and nuclear rings of the NPC towards each other, leading to the apparent emergence of the central mass from both sides of the NPC. The changes in conformation and diameter of the NPC may alter cargo access and binding to phenylalanine-glycine repeats lining the pore, thus altering transport.
Collapse
|
39
|
Abstract
Nucleocytoplasmic transport, the exchange of matter between nucleus and cytoplasm, plays a fundamental role in human and other eukaryotic cells, affecting almost every aspect of health and disease. The only gate for the transport of small and large molecules as well as supramolecular complexes between nucleus and cytoplasm is the nuclear pore complex (NPC). The NPC is not a normal membrane transport protein (transporter). Composed of 500 to 1000 peptide chains, the NPC features a mysterious functional duality. For most molecules, it constitutes a molecular sieve with a blurred cutoff at approx 10 nm, but for molecules binding to phenylalanine-glycine (FG) motifs, the NPC appears to be a channel of approx 50 nm diameter, permitting bidirectional translocation at high speed. To achieve this, the NPC cooperates with soluble factors, the nuclear transport receptors, which shuttle between nuclear contents and cytoplasm. Here, we provide a short introduction to nucleocytoplasmic transport by describing first the structure and composition of the nuclear pore complex. Then, mechanisms of nucleocytoplasmic transport are discussed. Finally, the still essentially unresolved mechanisms by which nuclear transport receptors and transport complexes are translocated through the nuclear pore complex are considered, and a novel translocation model is suggested.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics and Center for Nanotechnology, University of Münster, Germany
| |
Collapse
|
40
|
Mooren OL, Erickson ES, Moore-Nichols D, Dunn RC. Nuclear side conformational changes in the nuclear pore complex following calcium release from the nuclear membrane. Phys Biol 2005; 1:125-34. [PMID: 16204829 DOI: 10.1088/1478-3967/1/2/008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in nuclear pore complex (NPC) structure are studied following treatments modifying the cisternal calcium levels located between the two lipid bilayers that together form the nuclear envelope. Since the NPC forms the only known passageway across the nuclear envelope, it plays a central role in nucleocytoplasmic transport. Understanding the origin of conformational changes that may affect this trafficking or modify cargo interactions with the NPC is, therefore, necessary to completely understand the function of these complex molecules. In previous studies on the cytoplasmic side of the nuclear envelope, a central mass was observed in the pore of the NPC and its location was shown to be sensitive to the cisternal calcium levels. Here we report atomic force microscopy (AFM) measurements on the nuclear side of the envelope, which also reveal a cisternal calcium dependence in the conformational state of the NPC. These measurements, made at the single nuclear pore level, reveal a displacement of the central mass towards the nuclear side of the membrane following treatments with adenophostin A, a specific agonist of calcium channels (inositol 1,4,5-trisphosphate (IP(3)) receptors) located in the nuclear envelope. We further demonstrate that these conformational changes are observed in nuclear pores lacking the basket structure while samples prepared in the presence of protease inhibitors retain baskets and block AFM measurements of the channel. While these measurements are unable to distinguish whether the central mass is cargo or an integral component of the NPC, its dose-dependent displacement with cisternal calcium levels does suggest links to transport or to changes in cargo interactions with the NPC. Taken together with previous measurements done on the cytoplasmic side of the nuclear envelope, these studies argue against a piston-like displacement of the central mass and instead suggest a more complicated mechanism. One possibility involves a concerted collapse of the NPC rings towards one another following cisternal calcium release, thus leading to the apparent emergence of the central mass from each side of the NPC.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Chemistry, University of Kansas, Malott Hall, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
41
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
42
|
Leslie M. A portrait of the nuclear pore complex. J Biophys Biochem Cytol 2005. [PMCID: PMC2258027 DOI: 10.1083/jcb1712fta3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Senda T, Iizuka-Kogo A, Shimomura A. Visualization of the nuclear lamina in mouse anterior pituitary cells and immunocytochemical detection of lamin A/C by quick-freeze freeze-substitution electron microscopy. J Histochem Cytochem 2005; 53:497-507. [PMID: 15805424 DOI: 10.1369/jhc.4a6478.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the nuclear lamina in the quickly frozen anterior pituitary cells by electron microscopic techniques combined with freeze substitution, deep etching, and immunocytochemistry and compared it with that in the chemically fixed cells. By quick-freeze freeze-substitution electron microscopy, an electron-lucent layer, as thick as 20 nm, was revealed just inside the inner nuclear membrane, whereas in the conventionally glutaraldehyde-fixed cells the layer was not seen. By quick-freeze deep-etch electron microscopy, we could not distinguish definitively the layer corresponding to the nuclear lamina in either fresh unfixed or glutaraldehyde-fixed cells. Immunofluorescence microscopy showed that lamin A/C in the nucleus was detected in the acetone-fixed cells and briefly in paraformaldehyde-fixed cells but not in the cells with prolonged paraformaldehyde fixation. Nuclear localization of lamin A/C was revealed by immunogold electron microscopy also in the quickly frozen and freeze-substituted cells, but not in the paraformaldehyde-fixed cells. Lamin A/C was localized mainly in the peripheral nucleoplasm within 60 nm from the inner nuclear membrane, which corresponded to the nuclear lamina. These results suggest that the nuclear lamina can be preserved both ultrastructurally and immunocytochemically by quick-freezing fixation, rather than by conventional chemical fixation.
Collapse
Affiliation(s)
- Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | |
Collapse
|
44
|
Erickson ES, Mooren OL, Moore-Nichols D, Dunn RC. Activation of ryanodine receptors in the nuclear envelope alters the conformation of the nuclear pore complex. Biophys Chem 2004; 112:1-7. [PMID: 15501570 DOI: 10.1016/j.bpc.2004.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Nuclear pore complexes (NPCs) are supramolecular protein pores that traverse the nuclear envelope and form the only known direct route of transport between the cytoplasmic and nuclear spaces. Detailed studies have identified both active and passive mechanisms of transport through the NPC and structural studies have revealed its three-dimensional architecture. Under certain conditions, structural studies have found evidence for a mass in the central pore of the NPC whose identity remains unclear. Some studies suggest this mass represents cargo caught in transit, while others suggest it is an integral component of the NPC, the position of which is sensitive to sample conditions. Regardless of its identity, previous studies have shown that the central mass location within the NPC pore is influenced by the presence of calcium in the cisternal spaces of the nuclear membrane. Specific depletion of these calcium stores through inositol 1,4,5-trisphosphate (IP(3)) receptor activation leads to the apparent displacement of the central mass towards both the cytoplasmic and nucleoplasmic sides of the NPC. Whether the central mass is cargo or a NPC component, these observations may offer interesting insights linking transport and calcium signaling pathways. Here, we show that ryanodine (Ry) receptors are also present in the nuclear envelope of Xenopus laevis oocytes, and their specific activation can affect the conformational state of the NPC. Although previously undetected, Western blot analysis of isolated oocyte nuclei reveals the presence of Ry receptors in the nuclear envelope, albeit in low abundance. Extensive atomic force microscopy (AFM) studies at the single pore level of isolated, fixed nuclei reveal changes in the NPC conformational state following treatments that stimulate Ry receptor activity. At resting calcium levels ( approximately 200 nM Ca(2+)), the central mass within the lumen of the NPC is recessed 5.3 nm below the cytoplasmic rim of the NPC. Following treatment with 10 nM ryanodine, the central mass displaces towards the cytoplasmic face occupying a new position only 2.9 nm below the cytoplasmic rim. Interestingly, at high ryanodine concentrations (20 microM), which are reported to deactivate Ry receptors, the central mass is observed to return to the recessed position, 5.4 nm below the cytoplasmic rim. Treatments with caffeine also lead to large changes in the NPC conformation, confirming the link to specific activation of Ry receptors. These observations are consistent with a new mechanism of NPC regulation in which specific activation of Ry receptors located in the nuclear envelope can modulate cisternal calcium levels, leading to changes in the NPC conformation. Together with previous studies, it now appears that both IP(3) and Ry receptors are present in the nuclear envelope of Xenopus oocytes and are capable, through activation, of indirectly influencing the conformational state of the NPC.
Collapse
Affiliation(s)
- Elizabeth S Erickson
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
45
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goldfarb D, Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol 2004; 1:20-4. [PMID: 14731805 DOI: 10.1016/0962-8924(91)90065-h] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclear pore complex catalyses the import and export of both proteins and RNAs. The molecular mechanisms of RNA and protein translocation through the nuclear pore are likely to be similar; however, their signals and targeting apparatus may differ. Recent insights into RNA transport have come from studies of kinetic control mechanisms and the preconditions for translocation that include processing, RNP assembly, and a targeting function for 5' caps.
Collapse
Affiliation(s)
- D Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
47
|
Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D, Aebi U. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J Mol Biol 2003; 328:119-30. [PMID: 12684002 DOI: 10.1016/s0022-2836(03)00266-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To go beyond the current structural consensus model of the nuclear pore complex (NPC), we performed cryo-electron tomography of fully native NPCs from Xenopus oocyte nuclear envelopes (NEs). The cytoplasmic face of the NPC revealed distinct anchoring sites for the cytoplasmic filaments, whereas the nuclear face was topped with a massive distal ring positioned above the central pore with indications of the anchoring sites for the nuclear basket filaments and putative intranuclear filaments. The rather "spongy" central framework of the NPC was perforated by an elaborate channel and void system, and at the membrane pore interface it exhibited distinct "handles" protruding into the lumen of the NE. The most variable structural moiety of the NPC was a rather tenuous central plug partially obstructing the central pore. Its mobile character was documented by time-lapse atomic force microscopy. Taken together, the new insights we gained into NPC structure support the notion that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargoes.
Collapse
Affiliation(s)
- Daniel Stoffler
- Biozentrum, ME Müller Institute for Structural Biology, University of Basel CH-4056, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Nuclear pore complexes are rotationally symmetric structures that span the nuclear envelope and provide channels for nucleocytoplasmic traffic. These large complexes normally consist of eight spokes arranged around a central channel, although, occasionally, 9- and 10-fold nuclear pore complexes are found in preparations of Xenopus oocyte macronuclei. Here we examine these unusual nuclear pore complexes by negative stain electron microscopy and image analysis and compare the results with data previously obtained from 8-fold structures. The details in two-dimensional and three-dimensional maps indicate that the substructure of the spoke is the same in 8-, 9- and 10-fold nuclear pore complexes: therefore, the spoke is likely an immutable structural component. In all three variant forms, the spacing between adjacent annular subunits, which surround the central channel, is identical. Distances between spokes at higher radius decrease in the 9- and 10-fold nuclear pore complexes. These data imply that the most important connections holding the nuclear pore complex together are those between adjacent annular subunits and that these interactions may play a predominant role in nuclear pore complex assembly. Circumferential connections mediated by ring subunits and radial arms presumably further stabilize the structure and are flexible enough to accommodate additional spokes.
Collapse
Affiliation(s)
- Jenny E Hinshaw
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, 8 Center Drive, Building 8, Room 419, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Denning DP, Uversky V, Patel SS, Fink AL, Rexach M. The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J Biol Chem 2002; 277:33447-55. [PMID: 12065587 DOI: 10.1074/jbc.m203499200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the structure of the individual nucleoporins that form eukaryotic nuclear pore complexes (NPCs). We report here in vitro physical and structural characterizations of a full-length nucleoporin, the Saccharomyces cerevisiae protein Nup2p. Analyses of the Nup2p structure by far-UV circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, protease sensitivity, gel filtration, and sedimentation velocity experiments indicate that Nup2p is a "natively unfolded protein," belonging to a class of proteins that exhibit little secondary structure, high flexibility, and low compactness. Nup2p possesses a very large Stokes radius (79 A) in gel filtration columns, sediments slowly in sucrose gradients as a 2.9 S particle, and is highly sensitive to proteolytic digestion by proteinase K; these characteristics suggest a structure of low compactness and high flexibility. Spectral analyses (CD and FTIR spectroscopy) provide additional evidence that Nup2p contains extensive regions of structural disorder with comparatively small contributions of ordered secondary structure. We address the possible significance of natively unfolded nucleoporins in the mechanics of nucleocytoplasmic trafficking across NPCs.
Collapse
Affiliation(s)
- Daniel P Denning
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
50
|
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 2002; 158:63-77. [PMID: 12105182 PMCID: PMC2173022 DOI: 10.1083/jcb.200202088] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) mediates bidirectional macromolecular traffic between the nucleus and cytoplasm in eukaryotic cells. Eight filaments project from the NPC into the cytoplasm and are proposed to function in nuclear import. We investigated the localization and function of two nucleoporins on the cytoplasmic face of the NPC, CAN/Nup214 and RanBP2/Nup358. Consistent with previous data, RanBP2 was localized at the cytoplasmic filaments. In contrast, CAN was localized near the cytoplasmic coaxial ring. Unexpectedly, extensive blocking of RanBP2 with gold-conjugated antibodies failed to inhibit nuclear import. Therefore, RanBP2-deficient NPCs were generated by in vitro nuclear assembly in RanBP2-depleted Xenopus egg extracts. NPCs were formed that lacked cytoplasmic filaments, but that retained CAN. These nuclei efficiently imported nuclear localization sequence (NLS) or M9 substrates. NPCs lacking CAN retained RanBP2 and cytoplasmic filaments, and showed a minor NLS import defect. NPCs deficient in both CAN and RanBP2 displayed no cytoplasmic filaments and had a strikingly immature cytoplasmic appearance. However, they showed only a slight reduction in NLS-mediated import, no change in M9-mediated import, and were normal in growth and DNA replication. We conclude that RanBP2 is the major nucleoporin component of the cytoplasmic filaments of the NPC, and that these filaments do not have an essential role in importin alpha/beta- or transportin-dependent import.
Collapse
|