1
|
Pittenger JT, Hess JF, Fitzgerald PG. Identifying the role of specific motifs in the lens fiber cell specific intermediate filament phakosin. Invest Ophthalmol Vis Sci 2007; 48:5132-41. [PMID: 17962466 PMCID: PMC2909742 DOI: 10.1167/iovs.07-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Phakosin and filensin are lens fiber cell-specific intermediate filament (IF) proteins. Unlike every other cytoplasmic IF protein, they assemble into a beaded filament (BF) rather than an IF. Why the lens fiber cell requires two unique IF proteins and why and how they assemble into a structure other than an IF are unknown. In this report we test specific motifs/domains in phakosin to identify changes that that have adapted phakosin to lens-specific structure and function. METHODS Phakosin shows the highest level of sequence identity to K18, whose natural assembly partner is K8. We therefore exchanged conserved keratin motifs between phakosin and K18 to determine whether phakosin's divergent motifs could redirect the assembly of chimeric K18 and K8. Modified proteins were bacterially expressed and purified. Assembly competence was assessed by electron microscopy. RESULTS Substitution of the phakosin helix initiation motif (HIM) into K18 does not alter assembly with K8, establishing that the radical divergence in phakosin HIM is not by itself the mechanism by which IF assembly is redirected to BF assembly. Unexpectedly, K18 bearing phakosin HIM resulted in normal IF assembly, despite the presence of an otherwise disease-causing R-C substitution, and two helix-disrupting glycines. This disproves the widely held belief that mutation of the R is catastrophic to IF assembly. Additional data are presented that suggest normal IF assembly is dependent on sequence-specific interactions between the IF head domain and the HIM. CONCLUSIONS In the lens fiber cell, two members of the IF family have evolved to produce BFs instead of IFs, a change that presumably adapts the IF to a fiber cell-specific function. The authors establish here that the most striking divergence seen in phakosin is not, as hypothesized, the cause of this altered assembly outcome. The authors further establish that the HIM of IFs is far more tolerant of mutations, such as those that cause some corneal dystrophies and Alexander disease, than previously hypothesized and that normal assembly involves sequence-specific interactions between the head domain and the HIM.
Collapse
Affiliation(s)
- Joshua T Pittenger
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
2
|
Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O'Neill A, Stone MR, Bloch RJ. Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem 2004; 279:41830-8. [PMID: 15247274 DOI: 10.1074/jbc.m400128200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We used degenerate primers for the amino- and carboxyl-terminal ends of the rod domains of intermediate filament proteins in reverse transcriptase-PCR experiments to identify and clone cytokeratins 8 and 19 (K8 and K19) from cardiac muscle of the adult rat. Northern blots showed that K8 has a 2.2-kb transcript and K19 has a 1.9-kb transcript in both adult cardiac and skeletal muscles. Immunolocalization of the cytokeratins in adult cardiac muscle with isoform-specific antibodies for K8 and K19 showed labeling at Z-lines within the muscle fibers and at Z-line and M-line domains at costameres at the sarcolemmal membrane. Dystrophin and K19 could be co-immunoprecipitated and co-purified from extracts of cardiac muscle, suggesting a link between the cytokeratins and the dystrophin-based cytoskeleton at the sarcolemma. Furthermore, transfection experiments indicate that K8 and K19 may associate with dystrophin through a specific interaction with its actin-binding domain. Consistent with this observation, the cytokeratins are disrupted at the sarcolemmal membrane of skeletal muscle of the mdx mouse that lacks dystrophin. Together these results indicate that at least two cytokeratins are expressed in adult striated muscle, where they may contribute to the organization of both the myoplasm and sarcolemma.
Collapse
Affiliation(s)
- Jeanine A Ursitti
- University of Maryland Biotechnology Institute, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Yamada S, Wirtz D, Coulombe PA. The mechanical properties of simple epithelial keratins 8 and 18: discriminating between interfacial and bulk elasticities. J Struct Biol 2003; 143:45-55. [PMID: 12892725 DOI: 10.1016/s1047-8477(03)00101-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
The abundance and cytoplasmic organization of keratin filaments enables them to contribute to the maintenance of structural integrity in epithelial tissues. Co-polymers of the type II keratin 8 and type I keratin 18 form the major intermediate filament network in simple epithelia. We investigated the mechanical properties of K8-K18 filament suspensions using rheological assays in conjunction with light and electron microscopy. Suspensions of K8-K18 filaments behave like a viscoelastic solid under standard assembly conditions. Bulk elasticity is weakly dependent on deformation frequency but is very sensitive to the concentration (G' approximately C1.5) and size of individual keratin polymers, in agreement with recent models of semiflexible-polymer physics. K8-K18 filaments can self-organize to form a bundled network that exhibits gel-like mechanical properties. In all cases the mechanical properties of the suspensions correlate with the structural features of individual polymers, as seen under light and electron microscopy. Importantly, these bulk viscoelastic properties of K8-K18 filaments are revealed only when interfacial elastic effects are minimized by the application of phospholipids at the air-liquid interface. Suspensions of K5-K14 and vimentin filaments also exhibit interfacial elasticity, which distorts the interpretation of the viscoelastic moduli as determined by standard rheometry. The potential for modulation of mechanical properties through self-organization may be a general property of keratin polymers and contribute to their organization and function in vivo.
Collapse
Affiliation(s)
- Soichiro Yamada
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
4
|
Ravin NV, Rech J, Lane D. Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol 2003; 329:875-89. [PMID: 12798679 DOI: 10.1016/s0022-2836(03)00525-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Bioengineering Centre, Russian Academy of Sciences, 7-1 Prosp. 60 let Oktiabria, 117312 Moscow, Russian Federation
| | | | | |
Collapse
|
5
|
Lowrie DJ, Stickney JT, Ip W. Properties of the nonhelical end domains of vimentin suggest a role in maintaining intermediate filament network structure. J Struct Biol 2000; 132:83-94. [PMID: 11162730 DOI: 10.1006/jsbi.2000.4315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.
Collapse
Affiliation(s)
- D J Lowrie
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|
6
|
Abstract
All epithelial cells feature a prominent keratin intermediate filament (IF) network in their cytoplasm. Studies in transgenic mice and in patients with inherited epithelial fragility syndromes showed that a major function of keratin IFs is to provide mechanical support to epithelial cell sheets. Yet the micromechanical properties of keratin IFs themselves remain unknown. We used rheological methods to assess the properties of suspensions of epidermal type I and type II keratin IFs and of vimentin, a type III IF polymer. We find that both types of IFs form gels with properties akin to visco-elastic solids. With increasing deformation they display strain hardening and yield relatively rapidly. Remarkably, both types of gels recover their preshear properties upon cessation of the deformation. Repeated imposition of small deformations gives rise to a progressively stiffer gel for keratin but not vimentin IFs. The visco-elastic moduli of both gels show a weak dependence upon the frequency of the input shear stress and the concentration of the polymer, suggesting that both steric and nonsteric interactions between individual polymers contribute to the observed mechanical properties. In support of this, the length of individual polymers contributes only modestly to the properties of IF gels. Collectively these properties render IFs unique among cytoskeletal polymers and have strong implications for their function in vivo.
Collapse
Affiliation(s)
- L Ma
- Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
7
|
Porter RM, Hutcheson AM, Rugg EL, Quinlan RA, Lane EB. cDNA cloning, expression, and assembly characteristics of mouse keratin 16. J Biol Chem 1998; 273:32265-72. [PMID: 9822705 DOI: 10.1074/jbc.273.48.32265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
There has been speculation as to the existence of the mouse equivalent of human type I keratin 16 (K16). The function of this keratin is particularly intriguing because, in normal epidermis, it is usually confined to hair follicles and only becomes expressed in the suprabasal intrafollicular regions when the epidermis is traumatized. Previous studies suggested that K16 is highly expressed in the skin of mice carrying a truncated K10 gene. We therefore used the skin of heterozygous and homozygous mice to create a cDNA library, and we report here the successful cloning and sequencing of mouse K16. Recent in vitro studies suggested that filaments formed by human K16 are shorter than those formed by other type I keratins. One hypothesis put forward was that a proline residue in the 1B subdomain of the helical domain was responsible. The data presented here demonstrate that this proline is not conserved between mouse and human, casting doubt on the proposed function of this proline residue in filament assembly. In vitro assembly studies showed that mouse K16 produced long filaments in vitro. Also, in contrast to previous observations, transfection studies of PtK2 cells showed that mouse K16 (without the proline) and also human K16 (with the proline) can incorporate into the endogenous K8/K18 network without detrimental effect. In addition, K16 from both species can form filaments de novo when transfected with human K5 into immortalized human lens epithelial cells, which do not express keratins. These results suggest that reduced assembly capabilities due to unusual sequence characteristics in helix 1B are not the key to the unique function of K16. Rather, these data implicate the tail domain of K16 as the more likely protein domain that determines the unique functions.
Collapse
Affiliation(s)
- R M Porter
- Cancer Research Campaign Cell Structure Research Group, Department of Anatomy and Physiology, Medical Sciences Institute/Wellcome Trust Building Complex, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | |
Collapse
|
8
|
Schnabel J, Weber K, Hatzfeld M. Protein-protein interactions between keratin polypeptides expressed in the yeast two-hybrid system. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:158-68. [PMID: 9630597 DOI: 10.1016/s0167-4889(98)00036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Keratin filaments are obligatory heteropolymers of type I and type II keratin polypeptides. Specific type I/type II pairs are coexpressed in vivo. In contrast, all type I/type II pairs assemble into filaments in vitro, but the different pairs have different stabilities as demonstrated by treatment with increasing concentrations of urea. We have used the yeast two-hybrid system to analyse type I/type II interactions in a cellular context. We measured interactions between two different keratin pairs and we confirm the findings that K6+K17 form very stable heterodimers whereas K8+K18 interactions were weaker. The deletion of head domains did not reduce the strength of type I/type II interactions. Rather, the affinities were increased and the differences between the two pairs were retained in headless mutants. These findings argue against a major role of the head domains in directing heterodimer interactions and in defining heterodimer stabilities.
Collapse
Affiliation(s)
- J Schnabel
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
9
|
Trihn D, Jeang KT, Semmes O. HTLV-I Tax and Cytokeratin: Tax-Expressing Cells Show Morphological Changes in Keratin-Containing Cytoskeletal Networks. J Biomed Sci 1997; 4:47-53. [PMID: 11725133 DOI: 10.1007/bf02255593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) has been linked to the development of an aggressive lymphoproliferative disorder (adult T cell leukemia), a chronic neurodegenerative presentation (HTLV-I-associated myelopathy/tropical spastic paraparesis) and numerous less well-defined inflammatory conditions. The viral regulatory protein Tax has been implicated in cellular transformation events leading to the onset of adult T cell leukemia. Details on the stepwise processes through which Tax induces morphological changes in cells are poorly understood. We show here that Tax can bind to a class of intermediate filaments, the cytokeratins (Ker). Tax interacts with the 1B helical coil of keratin 8, a domain critical for higher-order intermediate filament matrix formation. Expression of Tax in epithelial cells visibly altered the structural pattern of the Ker network. In a T lymphocyte cell line, induction of Tax expression resulted in increased cellular adherence/invasion of Matrigel filters. We propose that one aspect of Tax function is the induction of morphological changes in cellular cytoskeletal structures. This finding for Tax-expressing cells might be one factor contributing directly to the pathogenesis of HTLV-I disease(s). Copyright 1997 S. Karger AG, Basel
Collapse
Affiliation(s)
- D. Trihn
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md., USA
| | | | | |
Collapse
|
10
|
Mukai H, Toshimori M, Shibata H, Kitagawa M, Shimakawa M, Miyahara M, Sunakawa H, Ono Y. PKN associates and phosphorylates the head-rod domain of neurofilament protein. J Biol Chem 1996; 271:9816-22. [PMID: 8621664 DOI: 10.1074/jbc.271.16.9816] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
PKN is a fatty acid-activated serine/threonine kinase that has a catalytic domain highly homologous to that of protein kinase C in the carboxyl terminus and a unique regulatory region in the amino terminus. Recently, we reported that the small GTP-binding protein Rho binds to the amino-terminal region of PKN and activates PKN in a GTP-dependent manner, and we suggested that PKN is located on the downstream of Rho in the signal transduction pathway (Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Science 271, 648-650; Watanabe, G., Saito, Y., Madaule, P., Ishizaki, T., Fujisawa, K., Morii, N., Mukai, H., Ono, Y. Kakizuka, A., and Narumiya, S. (1996) Science 271, 645-648). To identify other components of the PKN pathway such as substrates and regulatory proteins of PKN, the yeast two-hybrid strategy was employed. By this screening, a clone encoding the neurofilament L protein, a subunit of neuron-specific intermediate filament, was isolated. The amino-terminal regulatory region of PKN was shown to associate with the head-rod domains of other subunits of neurofilament (neurofilament proteins M and H) as well as neurofilament L protein in yeast cells. The direct binding between PKN and each subunit of neurofilament was confirmed by using the in vitro translated amino-terminal region of PKN and glutathione S-transferase fusion protein containing the head-rod domain of each subunit of neurofilament. PKN purified from rat testis phosphorylated each subunit of the native neurofilament purified from bovine spinal cord and the bacterially synthesized head-rod domain of each subunit of neurofilament. Polymerization of neurofilament L protein in vitro was inhibited by phosphorylation of neurofilament L protein by PKN. The identification and characterization of the novel interaction with PKN may contribute toward the elucidation of mechanisms regulating the function of neurofilament.
Collapse
Affiliation(s)
- H Mukai
- Department of Biology, Faculty of Science, Kobe University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Andreoli JM, Trevor KT. Structural and biological consequences of increased vimentin expression in simple epithelial cell types. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:10-25. [PMID: 8674130 DOI: 10.1002/cm.970320103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Abstract
Cytoskeletal intermediate filaments (IFs) constitute a diverse family of proteins whose members are expressed in tissue-specific patterns. Although vimentin IFs are normally restricted to mesenchyme, a variety of cell types express vimentin alone or together with cell-specific IFs during growth, differentiation, and neoplasia. In this study, we have investigated the influence of increased vimentin expression on the simple epithelial cell phenotype. An expression vector encoding a human vimentin cDNA was transfected into murine HR9 endoderm and F9 embryonal carcinoma cell lines, which serve as models for early extraembryonic epithelial differentiation. Stable clones that expressed varying levels of human vimentin were characterized by human vimentin were characterized by immunofluorescence and biochemical analysis. A relatively high level of vimentin expression in HR9 and differentiated F9 epithelial cells resulted in aberrant vimentin structures with co-collapse of keratin K8/K18 filaments and lowered amounts of keratin protein. In F9 epithelial cells, the desmosomal proteins DP I/II did not appear to localize to cell surface desmosome s but rather but rather co-aggregated with the perturbed IFs. Although overall cell morphology was not dramatically altered, individual nuclei were distorted by excess intracellular vimentin. Furthermore, cell proliferation as well as the cell spreading response time were slowed. Ther appears to be a threshold effect regarding overall vimentin levels as cells that expressed lower amounts of the human vimentin exhibited no obvious structural nor biological effects. Our results demonstrate that wild-type vimentin can act as a "mutant" protein when present at high intracellular levels, inducing a variety of phenotypic changes.
Collapse
Affiliation(s)
- J M Andreoli
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
12
|
|
13
|
Monteiro MJ, Hicks C, Gu L, Janicki S. Determinants for intracellular sorting of cytoplasmic and nuclear intermediate filaments. J Cell Biol 1994; 127:1327-43. [PMID: 7962093 PMCID: PMC2120253 DOI: 10.1083/jcb.127.5.1327] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
The mechanism by which nuclear and cytoplasmic filaments are sorted in vivo was studied by examining which lamin sequences are required to target an otherwise cytoplasmic IF protein, the small neurofilament subunit (NF-L), to the nuclear lamina. By swapping corresponding domains between NF-L and lamin A, nuclear envelope targeting of NF-L was shown to require the presence of the "head" domain, a 42-amino acid sequence unique to lamin rod domains, a nuclear localization signal and the CAAX motif. Replacement of the entire COOH-terminal tail of lamin A with that of NF-L had no discernible effect on nuclear localization of lamin A, provided the substituted NF-L tail contained a NLS and a CAAX motif. This chimeric protein exhibited characteristics more typical of lamin B than that of the parental lamin A. With regard to cytoplasmic assembly properties, substitution of the head domain of lamin A for that of NF-L did not substantially affect the ability of NF-L to coassemble with vimentin in the cytoplasm. In contrast, insertion of a 42-amino acid sequence unique to lamin rod domains into NF-L profoundly affected NF-L coassembly with vimentin indicating that the 42-amino acid insertion in lamins may be important for sorting lamins from cytoplasmic IF proteins.
Collapse
Affiliation(s)
- M J Monteiro
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore
| | | | | | | |
Collapse
|
14
|
Chan Y, Anton-Lamprecht I, Yu QC, Jäckel A, Zabel B, Ernst JP, Fuchs E. A human keratin 14 "knockout": the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev 1994; 8:2574-87. [PMID: 7525408 DOI: 10.1101/gad.8.21.2574] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Since their discovery, the function of intermediate filaments (IFs) has remained obscure. In skin, epidermal cells have extensive cytoskeletal architectures of IFs, composed of type I and type II keratin heterodimers. Clues to possible functions of these proteins have come from recent studies showing that several autosomal-dominant, blistering skin disorders are caused by defects in genes that encode epidermal keratins. These diseases all exhibit cell degeneration and keratin network perturbations in cells that express the particular mutant keratin gene. However, it is not clear from these studies whether cytolysis arises from the presence of large insoluble keratin aggregates that compromise cellular physiology or from the absence of an extensive keratin filament network, which jeopardizes mechanical integrity. We report here the analysis of an extremely rare case of severe recessive epidermolysis bullosa simplex (EBS), where the patient lacks a discernible keratin filament network in basal epidermal cells. Genetic analyses revealed a homozygous point mutation that yielded a premature termination codon in the major basal type I keratin gene and caused complete ablation of K14. The consanguineous parents were normal, each harboring one copy of the null K14 mutation. Analysis of cultured keratinocytes enabled us to document that the loss of K14 is not compensated for by the up-regulation of any other type I keratin. When taken together with the in vivo studies showing the presence of cell fragility generated from the lack of an extensive basal keratin network, these findings provide the first clear demonstration of loss of function associated with the absence of an IF protein in vivo.
Collapse
Affiliation(s)
- Y Chan
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
15
|
Stappenbeck TS, Bornslaeger EA, Corcoran CM, Luu HH, Virata ML, Green KJ. Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J Biophys Biochem Cytol 1993; 123:691-705. [PMID: 7693716 PMCID: PMC2200123 DOI: 10.1083/jcb.123.3.691] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
We previously demonstrated that truncated desmoplakin I (DP I) molecules containing the carboxyl terminus specifically coalign with and disrupt both keratin and vimentin intermediate filament (IF) networks when overexpressed in tissue culture cells (Stappenbeck, T. S., and K. J. Green. J. Cell Biol. 116:1197-1209). These experiments suggested that the DP carboxyl-terminal domain is involved either directly or indirectly in linking IF with the desmosome. Using a similar approach, we have now investigated the behavior of ectopically expressed full-length DP I in cultured cells. In addition, we have further dissected the functional sequences in the carboxyl terminus of DP I that facilitate the interaction with IF networks. Transient transfection of a clone encoding full-length DP I into COS-7 cells produced protein that appeared in some cells to associate with desmosomes and in others to coalign with and disrupt IF. Deletion of the carboxyl terminus from this clone resulted in protein that still appeared capable of associating with desmosomes but not interacting with IF networks. As the amino terminus appeared to be dispensable for IF interaction, we made finer deletions in the carboxyl terminus of DP based on blocks of sequence similarity with the related molecules bullous pemphigoid antigen and plectin. We found a sequence at the very carboxyl terminus of DP that was necessary for coalignment with and disruption of keratin IF but not vimentin IF. Furthermore, the coalignment of specific DP proteins along keratin IF but not vimentin IF was correlated with resistance to extraction by Triton. The striking uncoupling resulting from the deletion of specific DP sequences suggests that the carboxyl terminus of DP interacts differentially with keratin and vimentin IF networks.
Collapse
Affiliation(s)
- T S Stappenbeck
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | | | | | | | |
Collapse
|
16
|
Rugg EL, Morley SM, Smith FJ, Boxer M, Tidman MJ, Navsaria H, Leigh IM, Lane EB. Missing links: Weber-Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function. Nat Genet 1993; 5:294-300. [PMID: 7506097 DOI: 10.1038/ng1193-294] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
We have identified mutations in keratins K5 (Arg331Cys) and K14 (Val270Met) in two kinships affected by the dominantly-inherited skin blistering disease, Weber-Cockayne epidermolysis bullosa simplex (EBS-WC). Linkage analysis, DNA sequencing and clinical and ultrastructural analysis are combined to provide the first detailed description of classical EBS-WC. Both phenotypes show similar blistering on trauma, indicating that both mutations compromise the structural resilience of the basal keratinocytes by affecting the keratin cytoskeleton. The location of these mutations in the L12 linker, which bisects the alpha-helical rod region of intermediate filament proteins, identifies another keratin mutation cluster leading to hereditary skin fragility syndromes.
Collapse
Affiliation(s)
- E L Rugg
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Price M, Gomer R. Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80613-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
18
|
Abstract
The assembly of intermediate filaments is a fundamental property of the central rod domain of the individual subunit proteins. This rod domain, with its high propensity for alpha-helix formation, is the common and identifying feature of this family of proteins. Assembly occurs in vitro in the absence of other proteins or exogenous sources of energy; in vivo, it appears as if other factors, as yet poorly understood, modulate the assembly of intermediate filaments. Parallel, in-register dimers form via coiled-coil interactions of the rod domain. Tetramers may form from staggered arrays of parallel or antiparallel arrangements of dimers. Higher-order polymerization, which occurs spontaneously if the ionic strength of a mixture of dimers and tetramers is raised, proceeds rapidly through poorly described intermediates to the final 10 nm filament. This process is dependent on and modulated by the non-alpha-helical end domains, as well as those amino acids present at the very beginning and end of the rod domain. The interactions governing tetramer formation are most probably the same ones that are responsible for the lateral and longitudinal associations within intermediate filaments.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Ladenburg, Federal Republic of Germany
| | | |
Collapse
|
19
|
Pleasure SJ, Lee VM. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 1993; 35:585-602. [PMID: 8411264 DOI: 10.1002/jnr.490350603] [Citation(s) in RCA: 343] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
We have identified a human cell line with a phenotype resembling committed CNS neuronal precursor cells. NTera 2/cl.D1 (NT2/D1) cells expressed nestin and vimentin, intermediate filament (IF) proteins expressed in neuroepithelial precursor cells, as well as MAP1b, a microtubule-associated protein (MAP) expressed in human neuroepithelium. NT2/D1 cells also expressed the cell adhesion molecules NCAM and N-cadherin which are thought to be important in cell-cell interactions within the neuroepithelium. These NT2/D1 cells also expressed small amounts of NF-L, alpha-internexin, NF-M, and MAP2c, indicating that they are committed to a neuronal fate. Previous studies have shown that, following RA treatment, a proportion of NT2/D1 cells terminally differentiate into neurons and that this occurs via an asymmetric stem cell mode of differentiation. In light of the identification of the neuroepithelial phenotype of NT2/D1 cells we decided to examine more closely the relationship of in vitro neurogenesis in NT2/D1 cells, during RA treatment to that of neurons in vivo. Three days after RA treatment, islands of NT2/D1 cells showed increased expression of neurofilament proteins and increased phosphorylation of NF-M. By 10-14 days, these cells began to resemble neurons morphologically, i.e., with rounded cell bodies and processes. These neuronal cells were clustered into clumps which rested on top of a layer of progenitor cells. In this upper layer, the neurons began to express MAP2b and tau and extinguished their expression of nestin. Recently, we developed a method for obtaining pure cultures of neurons from RA treated NT2/D1 cells. The phenotype of these postmitotic neurons is clearly dissociated from that of the untreated NT2/D1 cells. Given the data obtained in this study and the characterization of the neurons derived from NT2/D1 cells, we propose that NT2/D1 cells are a committed human neuronal precursor cell line which retains some stem cell characteristics and is capable only of terminal differentiation into neurons.
Collapse
Affiliation(s)
- S J Pleasure
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia
| | | |
Collapse
|
20
|
McCormick MB, Kouklis P, Syder A, Fuchs E. The roles of the rod end and the tail in vimentin IF assembly and IF network formation. J Biophys Biochem Cytol 1993; 122:395-407. [PMID: 8320262 PMCID: PMC2119649 DOI: 10.1083/jcb.122.2.395] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
Using mutagenesis, we investigated the importance of two vimentin domains: (a) a highly conserved segment near the carboxy end of the alpha-helical rod, and (b) the tail, with which the rod end is known to interact. As judged by in vitro filament assembly and expression in transiently transfected cells lacking an endogenous vimentin network, the rod-tail interaction is not essential for 10 nm filament structure in vitro or for formation of fibrous arrays in culture. However, when mutated, amino acid residues within the rod and the tail segments can cause perturbations in IF assembly and in IF network formation. Finally, our studies show that the vimentin tail seems to play a role both in thermodynamically stabilizing IF structure in vitro and in establishing proper IF networks in vivo.
Collapse
Affiliation(s)
- M B McCormick
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
21
|
van de Klundert FA, Raats JM, Bloemendal H. Intermediate filaments: regulation of gene expression and assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:351-66. [PMID: 8513786 DOI: 10.1111/j.1432-1033.1993.tb17931.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Affiliation(s)
- F A van de Klundert
- Department of Biochemistry, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
22
|
Wiche G, Gromov D, Donovan A, Castañón MJ, Fuchs E. Expression of plectin mutant cDNA in cultured cells indicates a role of COOH-terminal domain in intermediate filament association. J Biophys Biochem Cytol 1993; 121:607-19. [PMID: 8486740 PMCID: PMC2119566 DOI: 10.1083/jcb.121.3.607] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
Plectin is an intermediate filament (IF) binding protein of exceptionally large size. Its molecular structure, revealed by EM and predicted by its sequence, indicates an NH2-terminal globular domain, a long rodlike central domain, and a globular COOH-terminal domain containing six highly homologous repeat regions. To examine the role of the various domains in mediating plectin's interaction with IFs, we have constructed rat cDNAs encoding truncated plectin mutants under the control of the SV-40 promoter. Mutant proteins expressed in mammalian COS and PtK2 cells could be distinguished from endogenous wild type plectin by virtue of a short carboxy-terminal antigenic peptide (P tag). As shown by conventional and confocal immunofluorescence microscopy, the transient expression of plectin mutants containing all six or the last four of the repeat regions of the COOH-terminus, or the COOH-terminus and the rod, associated with IF networks of both the vimentin and the cytokeratin type and eventually caused their collapse into perinuclear aggregates. Similar effects were observed upon expression of a protein encoded by a full length cDNA construct. Microtubules and microfilaments were unaffected. Unexpectedly, mutants containing the rod without any of the COOH-terminal repeats, accumulated almost exclusively within the nuclei of cells. When the rod was extended by the first one and a half of the COOH-terminal repeats, mutant proteins showed a partial cytoplasmic distribution, although association with intermediate filaments was not observed. Nuclear and diffuse cytoplasmic distribution was also observed upon expression of the NH2-terminal domain without rod. These results indicate that sequences located roughly within the last two thirds of the globular COOH-terminus are indispensable for association of plectin with intermediate filaments in living cells.
Collapse
Affiliation(s)
- G Wiche
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
23
|
Abstract
We have analyzed the dynamics of neuronal intermediate filaments in living neurons by using the method of photobleaching of fluorescently-labeled neurofilament L protein and immunoelectron microscopy of incorporation sites of biotinylated neurofilament L protein. Low-light-level imaging and photobleaching of growing axons of mouse sensory neurons did not affect the rate of either axonal growth or the addition of intermediate filament structures at the axon terminal, suggesting that any perturbations caused by these optical methods would be minimal. After laser photobleaching, recovery of fluorescence did occur slowly with a recovery half-time of 40 min. Furthermore, we observed a more rapid fluorescence recovery in growing axons than in quiescent ones, indicating a growth-dependent regulation of the turnover rate. Incorporation sites of biotin-labeled neurofilament L protein were localized as numerous discrete sites along the axon, and they slowly elongated to become continuous arrays 24 h after injection. Collectively, these results indicate that neuronal intermediate filaments in growing axons turn over within the small area of the axoplasm possibly by the mechanism of lateral and segmental incorporation of new subunits.
Collapse
Affiliation(s)
- S Okabe
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
24
|
Abstract
Intermediate filaments are constructed from two-chain alpha-helical coiled-coil molecules arranged on an imperfect helical lattice. Filament structure and assembly can be influenced at several different structural levels, including molecular structure, oligomer formation and filament nucleation and elongation. Consequently, it can sometimes be difficult to interpret mutagenesis data unequivocally, although regions near the amino and carboxyl termini of the rod domain of the molecule are known to be important for the production of native filaments. Imperfections in molecular packing may be important in filament assembly and dynamics.
Collapse
Affiliation(s)
- M Stewart
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
25
|
van de Klundert FA, van Eldik GJ, Pieper FR, Jansen HJ, Bloemendal H. Identification of two silencers flanking an AP-1 enhancer in the vimentin promoter. Gene 1992; 122:337-43. [PMID: 1487148 DOI: 10.1016/0378-1119(92)90223-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
We have studied the 5' upstream sequences required for the transcriptional regulation of the hamster gene encoding the intermediate filament protein, vimentin. Although vimentin is regarded as the intermediate filament protein of mesothelial tissue, it is also produced in most cultured cells. The human mammary carcinoma cell line, MCF-7, belongs to the exceptions. It contains no vimentin, and the complete upstream promoter region is inactive in this particular cell line. By using transient transfection of chimeric constructs into MCF-7 and HeLa cells, and subsequent chloramphenicol acetyltransferase assays, we were able to show the presence of two negative control regions flanking a double AP-1 enhancer element. Our data indicate that these elements exert their effect irrespective of orientation and position, suggesting that they are silencers. In vitro footprinting assays, gel mobility assays and Southwestern (protein-DNA) blotting revealed the presence of trans-acting factors interacting with both silencer elements. The silencing effect was particularly pronounced in MCF-7 cells, although DNA-binding proteins are present in HeLa cells as well.
Collapse
|
26
|
Abstract
The view of intermediate filaments as static cytoskeletal elements is changing. Studies of exogenous intermediate filament proteins, either microinjected or expressed from transfected genes, have demonstrated that a continuous incorporation of subunits into the polymerized filaments is taking place. This incorporation appears to be required for maintaining normal cytoplasmic networks of intermediate filaments. At the post-translational level, phosphorylation is an important factor in regulating dynamic aspects of intermediate filament organization and structure.
Collapse
Affiliation(s)
- J E Eriksson
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008
| | | | | |
Collapse
|
27
|
Raats JM, Bloemendal H. The role of protein domains in the assembly process of intermediate filaments. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:67-86. [PMID: 1410448 DOI: 10.1016/s0079-6603(08)61044-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Affiliation(s)
- R A Quinlan
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | |
Collapse
|