1
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Long S, Cao W, Qiu Y, Deng R, Liu J, Zhang L, Dong R, Liu F, Li S, Zhao H, Li N, Li K. The appearance of cytoplasmic cytochrome C precedes apoptosis during Drosophila salivary gland degradation. INSECT SCIENCE 2024; 31:157-172. [PMID: 37370257 DOI: 10.1111/1744-7917.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.
Collapse
Affiliation(s)
- Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenxin Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongyu Qiu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruohan Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Renke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengxin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd, Jiangmen, Guangdong Province, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| |
Collapse
|
3
|
Zhang J, Zhang W, Wei L, Zhang L, Liu J, Huang S, Li S, Yang W, Li K. E93 promotes transcription of RHG genes to initiate apoptosis during Drosophila salivary gland metamorphosis. INSECT SCIENCE 2023; 30:588-598. [PMID: 36281570 DOI: 10.1111/1744-7917.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/15/2023]
Abstract
20-hydroxyecdysone (20E) induced transcription factor E93 is important for larval-adult transition, which functions in programmed cell death of larval obsolete tissues, and the formation of adult new tissues. However, the apoptosis-related genes directly regulated by E93 are still ambiguous. In this study, an E93 mutation fly strain was obtained by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated long exon deletion to investigate whether and how E93 induces apoptosis during larval tissues metamorphosis. The transcriptional profile of E93 was consistent with 3 RHG (rpr, hid, and grim) genes and the effector caspase gene drice, and all their expressions peaked at the initiation of apoptosis during the degradation of salivary glands. The transcription expression of 3 RHG genes decreased and apoptosis was blocked in E93 mutation salivary gland during metamorphosis. In contrast, E93 overexpression promoted the transcription of 3 RHG genes, and induced advanced apoptosis in the salivary gland. Moreover, E93 not only enhance the promoter activities of the 3 RHG genes in Drosophila Kc cells in vitro, but also in the salivary gland in vivo. Our results demonstrated that 20E induced E93 promotes the transcription of RHG genes to trigger apoptosis during obsolete tissues degradation at metamorphosis in Drosophila.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Zhang
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shumin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Weike Yang
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661100, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| |
Collapse
|
4
|
Zhu GH, Gaddelapati SC, Jiao Y, Koo J, Palli SR. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito, Aedes aegypti. CRISPR J 2022; 5:813-824. [PMID: 36374965 PMCID: PMC9805843 DOI: 10.1089/crispr.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.,Address correspondence to: Subba Reddy Palli, Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
5
|
Gao X, Zhang J, Wu P, Shu R, Zhang H, Qin Q, Meng Q. Conceptual framework for the insect metamorphosis from larvae to pupae by transcriptomic profiling, a case study of Helicoverpa armigera (Lepidoptera: Noctuidae). BMC Genomics 2022; 23:591. [PMID: 35963998 PMCID: PMC9375380 DOI: 10.1186/s12864-022-08807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect metamorphosis from larvae to pupae is one of the most important stages of insect life history. Relatively comprehensive information related to gene transcription profiles during lepidopteran metamorphosis is required to understand the molecular mechanism underlying this important stage. We conducted transcriptional profiling of the brain and fat body of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) during its transition from last instar larva into pupa to explore the physiological processes associated with different phases of metamorphosis. RESULTS During metamorphosis, the differences in gene expression patterns and the number of differentially expressed genes in the fat body were found to be greater than those in the brain. Each stage had a specific gene expression pattern, which contributed to different physiological changes. A decrease in juvenile hormone levels at the feeding stage is associated with increased expression levels of two genes (juvenile hormone esterase, juvenile hormone epoxide hydrolase). The expression levels of neuropeptides were highly expressed at the feeding stage and the initiation of the wandering stage and less expressed at the prepupal stage and the initiation of the pupal stage. The transcription levels of many hormone (or neuropeptide) receptors were specifically increased at the initiation of the wandering stage in comparison with other stages. The expression levels of many autophagy-related genes in the fat body were found to be gradually upregulated during metamorphosis. The activation of apoptosis was probably related to enhanced expression of many key genes (Apaf1, IAP-binding motif 1 like, cathepsins, caspases). Active proliferation might be associated with enhanced expression levels in several factors (JNK pathway: jun-D; TGF-β pathway: decapentaplegic, glass bottom boat; insulin pathway: insulin-like peptides from the fat body; Wnt pathway: wntless, TCF/Pangolin). CONCLUSIONS This study revealed several vital physiological processes and molecular events of metamorphosis and provided valuable information for illustrating the process of insect metamorphosis from larvae to pupae.
Collapse
Affiliation(s)
- Xinxin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Isoform specific roles of Broad-Complex in larval development in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2019; 28:420-430. [PMID: 30632239 DOI: 10.1111/imb.12563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Broad-Complex (BrC) is a downstream target of both 20-hydroxyecdysone and juvenile hormone signalling. BrC regulates morphogenetic changes between nymphal instars in hemimetabolans, whereas it controls pupal commitment, pupal morphogenesis and inhibits adult differentiation in holometabolans. Among five BrC cDNAs (Z1-Z4 and Z6) identified in the Colorado potato beetle, we found in this work that Z1, Z2 and Z6 were mainly expressed at the last (fourth) instar and prepupal stages, whereas the levels of Z3 and Z4 increased during the penultimate (third) instar stage, peaked at the last instar larval phase and gradually decreased at the prepupal and pupal periods. When knocking down all BrC isoforms by RNA interference (RNAi) at the penultimate instar stage, around 20% of the resultant larvae remained as moribund beetles. These moribund BrC RNAi larvae were completely or partially wrapped in old cuticle. Likewise, a portion of larvae treated for a single double-stranded RNA of Z3, Z4 or Z6 displayed a degree of similar aberrancies, increasing in the order of isoforms Z6 < Z3 < Z4. When silencing all BrC isoforms at the last instar period, most of the RNAi larvae did not normally pupate or emerge as adults. Separately silencing each of the five zinc finger domains revealed that approximately 70% of the Z1 RNAi larvae remained as prepupae, around 60% of the Z6 RNAi specimens formed aberrant prepupae or pupae and about 60% of the Z2 RNAi beetles became deformed pupae. After removal of the old exuviae, these deformed larvae in which either Z1, Z2 or Z6 was depleted possessed adult prothorax and mesothorax, developing antenna, mouthparts and wing discs. Moreover, less than 50% of the resultant pupae finally emerged as adults when either of Z1, Z2 or Z6 was knocked down. Therefore, our findings reveal, for the first time, that the two roles of BrC in insect groups (ie directing morphogenetic changes during juvenile development and regulating larval-pupal-adult metamorphosis) are played by different BrC isoforms in Leptinotarsa decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Vishal K, Bawa S, Brooks D, Bauman K, Geisbrecht ER. Thin is required for cell death in the Drosophila abdominal muscles by targeting DIAP1. Cell Death Dis 2018; 9:740. [PMID: 29970915 PMCID: PMC6030163 DOI: 10.1038/s41419-018-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
In holometabolous insects, developmentally controlled programmed cell death (PCD) is a conserved process that destroys a subset of larval tissues for the eventual creation of new adult structures. This process of histolysis is relatively well studied in salivary gland and midgut tissues, while knowledge concerning larval muscle destruction is limited. Here, we have examined the histolysis of a group of Drosophila larval abdominal muscles called the dorsal external oblique muscles (DEOMs). Previous studies have defined apoptosis as the primary mediator of DEOM breakdown, whose timing is controlled by ecdysone signaling. However, very little is known about other factors that contribute to DEOM destruction. In this paper, we examine the role of thin (tn), which encodes for the Drosophila homolog of mammalian TRIM32, in the regulation of DEOM histolysis. We find that loss of Tn blocks DEOM degradation independent of ecdysone signaling. Instead, tn genetically functions in a pathway with the death-associated inhibitor of apoptosis (DIAP1), Dronc, and death-associated APAF1-related killer (Dark) to regulate apoptosis. Importantly, blocking Tn results in the absence of active Caspase-3 immunostaining, upregulation of DIAP1 protein levels, and inhibition of Dronc activation. DIAP1 and Dronc mRNA levels are not altered in tn mutants, showing that Tn acts post-transcriptionally on DIAP1 to regulate apoptosis. Herein, we also find that the RING domain of Tn is required for DEOM histolysis as loss of this domain results in higher DIAP1 levels. Together, our results suggest that the direct control of DIAP1 levels, likely through the E3 ubiquitin ligase activity of Tn, provides a mechanism to regulate caspase activity and to facilitate muscle cell death.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kenneth Bauman
- Department of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Evans JD, Huang Q. Interactions Among Host-Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera. Front Microbiol 2018; 9:698. [PMID: 29692768 PMCID: PMC5902570 DOI: 10.3389/fmicb.2018.00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
We previously identified microRNA (miRNA) from Nosema ceranae and found that knockdowns of transcripts for the parasite protein Dicer greatly reduce parasite reproduction. In order to study parasitic miRNA functions and identify candidate target genes, we fed honey bees infected with N. ceranae with small interfering RNA (siRNA) targeting the N. ceranae gene Dicer. We then deep-sequenced honey bee and N. ceranae miRNAs daily across a full 6-day proliferation cycle. We found seven honey bee and five N. ceranae miRNAs that were significantly differently expressed between the infection and siRNA-Dicer groups. N. ceranae miRNA showed potentially strong impacts on the N. ceranae transcriptome, where over 79% of the total protein coding genes were significantly correlated with one or more miRNAs. N. ceranae miRNAs also can regulate honey bee metabolism and immune response, given parasitic miRNAs were secreted into the cytoplasm. Our results suggest that N. ceranae miRNAs regulate both parasite and host gene expression, providing new insights for microsporidia parasitism evolution.
Collapse
Affiliation(s)
- Jay D Evans
- Bee Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Qiang Huang
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
de Lacerda JTJG, e Lacerda RR, Assunção NA, Tashima AK, Juliano MA, dos Santos GA, dos Santos de Souza M, de Luna Batista J, Rossi CE, de Almeida Gadelha CA, Santi-Gadelha T. New insights into lectin from Abelmoschus esculentus seeds as a Kunitz-type inhibitor and its toxic effects on Ceratitis capitata and root-knot nematodes Meloidogyne spp. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017; 292:12460-12470. [PMID: 28584058 PMCID: PMC5535021 DOI: 10.1074/jbc.m117.775130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
The insect-specific transcription factor Broad-Complex (BR-C) is transcriptionally activated by the steroid 20-hydroxyecdysone (20E) and regulates the expression of many target genes involved in insect growth and development. However, although the transcriptional regulation of BR-C proteins has been well studied, how BR-C is regulated at post-transcription and -translation levels is poorly understood. To this end, using liquid chromatography-tandem mass spectrometry analysis, we identified residue Ser-186 as a phosphorylation site of BR-C in silkworm. Site-directed mutagenesis and treatment with specific kinase activators and inhibitors indicated that the Ser-186 residue in silkworm BR-C is phosphorylated by protein kinase A (PKA). Immunostaining assays disclosed that PKA-mediated phosphorylation of silkworm BR-C has no effect on its nuclear import. However, luciferase reporter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation revealed that the PKA phosphorylation event suppresses the transcriptional activation of silkworm BR-C target genes and that this inhibition was caused by repression of BR-C binding to its DNA targets. Of note, both in vitro and ex vivo experiments disclosed that a continuous 20E signal inhibits the PKA-mediated BR-C phosphorylation and also the cAMP/PKA pathway, indicating that 20E's inhibitory effect on PKA-mediated phosphorylation of silkworm BR-C contributes to maintaining BR-C transcriptional activity. In conclusion, our findings indicate that PKA-mediated phosphorylation inhibits silkworm BR-C activity by interfering with its binding to DNA and that 20E signaling relieves PKA-mediated phosphorylation of BR-C, thereby maintaining its transcriptional activity.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoxu Gang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Xinxin Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017. [DOI: 10.1.74/jbc.m117.77513010.1074/jbc.m117.775130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 2017. [PMID: 28644437 PMCID: PMC5520460 DOI: 10.1038/cdd.2017.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
14
|
Yang C, Lin XW, Xu WH. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:21-30. [PMID: 28153644 DOI: 10.1016/j.ibmb.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Vellichirammal NN, Gupta P, Hall TA, Brisson JA. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc Natl Acad Sci U S A 2017; 114:1419-1423. [PMID: 28115695 PMCID: PMC5307454 DOI: 10.1073/pnas.1617640114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.
Collapse
Affiliation(s)
| | - Purba Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Tannice A Hall
- Department of Life Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| | | |
Collapse
|
16
|
Xu T, Kumar S, Denton D. Characterization of Autophagic Responses in Drosophila melanogaster. Methods Enzymol 2017; 588:445-465. [DOI: 10.1016/bs.mie.2016.09.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Goncu E, Uranlı R, Selek G, Parlak O. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew061. [PMID: 27620558 PMCID: PMC5019025 DOI: 10.1093/jisesa/iew061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors.
Collapse
Affiliation(s)
- Ebru Goncu
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; ),
| | - Ramazan Uranlı
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Gozde Selek
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Osman Parlak
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| |
Collapse
|
18
|
Xu L, Li S, Ran X, Liu C, Lin R, Wang J. Apoptotic activity and gene responses in Drosophila melanogaster S2 cells, induced by azadirachtin A. PEST MANAGEMENT SCIENCE 2016; 72:1710-1717. [PMID: 26607310 DOI: 10.1002/ps.4198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. RESULTS The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. CONCLUSION The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Green Pesticide and Agriculture Bioengineering of Ministry of Education, Guizhou University, Guiyang, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xueqin Ran
- Faculty of Animal Science and Veterinary Medicine, Guiyang, China
| | - Chang Liu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Rutao Lin
- Faculty of Animal Science and Veterinary Medicine, Guiyang, China
| | - Jiafu Wang
- Key Laboratory of Green Pesticide and Agriculture Bioengineering of Ministry of Education, Guizhou University, Guiyang, China
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Tongren College, Tongren, China
| |
Collapse
|
19
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
20
|
Techa S, Alvarez JV, Sook Chung J. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus. Gen Comp Endocrinol 2015; 214:157-66. [PMID: 25101839 DOI: 10.1016/j.ygcen.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022]
Abstract
Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus.
Collapse
Affiliation(s)
- Sirinart Techa
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| | - Javier V Alvarez
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, MD 21202, USA.
| |
Collapse
|
21
|
Cell death in development: Signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39:12-9. [PMID: 25668151 DOI: 10.1016/j.semcdb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
Abstract
Programmed cell death eliminates unneeded and dangerous cells in a timely and effective manner during development. In this review, we examine the role cell death plays during development in worms, flies and mammals. We discuss signaling pathways that regulate developmental cell death, and describe how they communicate with the core cell death pathways. In most organisms, the majority of developmental cell death is seen in the nervous system. Therefore we focus on what is known about the regulation of developmental cell death in this tissue. Understanding how the cell death is regulated during development may provide insight into how this process can be manipulated in the treatment of disease.
Collapse
|
22
|
Cai MJ, Li XR, Pei XY, Liu W, Wang JX, Zhao XF. Heat shock protein 90 maintains the stability and function of transcription factor Broad Z7 by interacting with its Broad-Complex-Tramtrack-Bric-a-brac domain. INSECT MOLECULAR BIOLOGY 2014; 23:720-732. [PMID: 25060629 DOI: 10.1111/imb.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that interacts with various client proteins to mediate their folding and stability. The Broad-Complex-Tramtrack-Bric-a-brac (BTB) domain, also known as poxvirus and zinc finger (POZ) domain, exists widely in different proteins and is highly conserved. However, the stability mechanism of BTB domain-containing proteins has not been fully understood. Co-immunoprecipitation and a protein pull-down assay were performed to investigate the interaction between Hsp90 and the transcription factor Broad isoform Z7 (BrZ7) in vivo and in vitro. The middle domain of Hsp90 directly associated with the BTB domain of BrZ7. The Hsp90 inhibitor 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) interrupted the interaction between Hsp90 and BrZ7 and decreased the protein level of BrZ7 but did not affect the mRNA level of BrZ7. The addition of the proteasome inhibitor peptide aldehyde Cbz-leu-leu leucinal suppressed the 17-AAG-induced degradation of BrZ7. BTB domain deletion and 17-AAG treatment resulted in inhibition of BrZ7 function in gene expression in the 20-hydroxyecdysone and juvenile hormone pathways. These results reveal that the middle domain of Hsp90 associates with the BTB domain of BrZ7 to prevent BrZ7 degradation and maintain BrZ7 function in gene expression in the lepidopteran insect Helicoverpa armigera.
Collapse
Affiliation(s)
- M-J Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
23
|
Cheng D, Qian W, Wang Y, Meng M, Wei L, Li Z, Kang L, Peng J, Xia Q. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1. PLoS One 2014; 9:e109111. [PMID: 25280016 PMCID: PMC4184850 DOI: 10.1371/journal.pone.0109111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.
Collapse
Affiliation(s)
- Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing, China
| | - Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
24
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
Affiliation(s)
- Wen-Li Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chun-Yan Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
25
|
Denton D, Aung-Htut MT, Lorensuhewa N, Nicolson S, Zhu W, Mills K, Cakouros D, Bergmann A, Kumar S. UTX coordinates steroid hormone-mediated autophagy and cell death. Nat Commun 2014; 4:2916. [PMID: 24336022 DOI: 10.1038/ncomms3916] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023] Open
Abstract
Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development.
Collapse
Affiliation(s)
- Donna Denton
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - May T Aung-Htut
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Nirmal Lorensuhewa
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Wenying Zhu
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Kathryn Mills
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Dimitrios Cakouros
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Andreas Bergmann
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sharad Kumar
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia [3] Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
26
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
27
|
Ihry RJ, Sapiro AL, Bashirullah A. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades. PLoS Genet 2012; 8:e1003085. [PMID: 23209440 PMCID: PMC3510042 DOI: 10.1371/journal.pgen.1003085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone. Pulses of steroid hormones regulate a variety of biological processes, but how these simple global cues are converted into specific local responses remains unclear. While steroid responses have traditionally been thought to be regulated at the transcriptional level, here we demonstrate that translational control plays a novel role in refining steroid signals. The DEAD box RNA helicase belle directly regulates the translation of E74A mRNA, which encodes a transcription factor that is induced by the fly steroid hormone ecdysone and then rapidly repressed. This process is disrupted in belle mutant tissues, where E74A mRNA accumulates to abnormally high levels but is not translated. We demonstrate that Belle-dependent translation of E74A is required to both repress its own transcription and to induce tissue-specific target genes. These findings confirm the prediction that auto-regulation is important for the self-limiting behavior of steroid responses and demonstrate a critical role for translational control in refining a global hormonal signal into specific biological responses.
Collapse
Affiliation(s)
- Robert J. Ihry
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Anne L. Sapiro
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
28
|
Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol 2012; 32:1433-41. [PMID: 22290439 DOI: 10.1128/mcb.06315-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main impairment to tissue maintenance during aging is the reduced capacity for stem cell self-renewal over time due to senescence, the irreversible block in proliferation. We have previously described that the basic helix-loop-helix (bHLH) transcription factor Twist-1 can greatly enhance the life span of bone marrow-derived mesenchymal stem/stromal cells (MSCs). In the present study, we show that Twist-1 potently suppresses senescence and the Ink4A/Arf locus with a dramatic decrease in the expression of p16 and to some extent a decrease in p14. Furthermore, the polycomb group protein and histone methyltransferase Ezh2, which suppresses the Ink4A/Arf locus, was found to be induced by Twist-1, resulting in an increase in H3K27me3 along the Ink4A/Arf locus, repressing transcription of both p16/p14 and senescence of human MSCs. Furthermore, Twist-1 inhibits the expression of the bHLH transcription factor E47, which is normally expressed in senescent MSCs and induces transcription of the p16 promoter. Reduced Twist-1 wild-type expression and function in bone cells derived from Saethre-Chotzen patients also revealed an increase in senescence. These studies for the first time link Twist-1 to histone methylation of the Ink4A/Arf locus by controlling the expression of histone methyltransferases as well as the expression of other bHLH factors.
Collapse
|
29
|
Abdou MA, He Q, Wen D, Zyaan O, Wang J, Xu J, Baumann AA, Joseph J, Wilson TG, Li S, Wang J. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:938-945. [PMID: 21968404 DOI: 10.1016/j.ibmb.2011.09.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The Drosophila Methoprene-tolerant (Met) and Germ cell-expressed (Gce) bHLH-PAS transcription factors are products of two paralogous genes. Both proteins potentially mediate the effect of juvenile hormone (JH) as candidate JH receptors. Here we report that Met and Gce are partially redundant in transducing JH action. Both Met and gce null single mutants are fully viable, but the Met gce double mutant, Met(27) gce(2.5k), dies during the larval-pupal transition. Precocious and enhanced caspase-dependent programmed cell death (PCD) appears in fat body cells of Met(27) gce(2.5k) during the early larval stages. Expression of Kr-h1, a JH response gene that inhibits 20-hydroxyecdysone (20E)-induced broad (br) expression, is abolished in Met(27) gce(2.5k) during larval molts. Consequently, expression of br occurs precociously in Met(27) gce(2.5k), which may cause precocious caspase-dependent PCD during the early larval stages. Defective phenotypes and gene expression changes in Met(27) gce(2.5k) double mutants are similar to those found in JH-deficient animals. Importantly, exogenous application of JH agonists rescued the JH-deficient animals but not the Met(27) gce(2.5k) mutants. Our data suggest a model in which Drosophila Met and Gce redundantly transduce JH action to prevent 20E-induced caspase-dependent PCD during larval molts by induction of Kr-h1 expression and inhibition of br expression.
Collapse
Affiliation(s)
- Mohamed A Abdou
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.
Collapse
|
31
|
Gonsalves SE, Neal SJ, Kehoe AS, Westwood JT. Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster. BMC Genomics 2011; 12:475. [PMID: 21958154 PMCID: PMC3228561 DOI: 10.1186/1471-2164-12-475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
Background The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in Drosophila different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in Drosophila Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response. Results Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3rd instar larvae and we show that 20E-induced levels of EcR isoforms EcR-RA, ER-RC, and EcR-RD/E differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types. Conclusions We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.
Collapse
Affiliation(s)
- Sarah E Gonsalves
- Department of Cell & Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev 2011; 6:15. [PMID: 21521537 PMCID: PMC3098771 DOI: 10.1186/1749-8104-6-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metamorphosis of Drosophila melanogaster is accompanied by elimination of obsolete neurons via programmed cell death (PCD). Metamorphosis is regulated by ecdysteroids, including 20-hydroxyecdysone (20E), but the roles and modes of action of hormones in regulating neuronal PCD are incompletely understood. RESULTS We used targeted expression of GFP to track the fate of a larval motoneuron, RP2, in ventral ganglia. RP2s in abdominal neuromeres two through seven (A2 to A7) exhibited fragmented DNA by 15 hours after puparium formation (h-APF) and were missing by 20 h-APF. RP2 death began shortly after the 'prepupal pulse' of ecdysteroids, during which time RP2s expressed ecdysteroid receptors (EcRs). Genetic manipulations showed that RP2 death required the function of EcR-B isoforms, the death-activating gene, reaper (but not hid), and the apoptosome component, Dark. PCD was blocked by expression of the caspase inhibitor p35 but unaffected by manipulating Diap1. In contrast, aCC motoneurons in neuromeres A2 to A7, and RP2s in neuromere A1, expressed EcRs during the prepupal pulse but survived into the pupal stage under all conditions tested. To test the hypothesis that ecdysteroids trigger RP2's death directly, we placed abdominal GFP-expressing neurons in cell culture immediately prior to the prepupal pulse, with or without 20E. 20E induced significant PCD in putative RP2s, but not in control neurons, as assessed by morphological criteria and propidium iodide staining. CONCLUSIONS These findings suggest that the rise of ecdysteroids during the prepupal pulse acts directly, via EcR-B isoforms, to activate PCD in RP2 motoneurons in abdominal neuromeres A2 to A7, while sparing RP2s in A1. Genetic manipulations suggest that RP2's death requires Reaper function, apoptosome assembly and Diap1-independent caspase activation. RP2s offer a valuable 'single cell' approach to the molecular understanding of neuronal death during insect metamorphosis and, potentially, of neurodegeneration in other contexts.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, 97403-1254, USA
| | | |
Collapse
|
33
|
Kijimoto T, Andrews J, Moczek AP. Programed cell death shapes the expression of horns within and between species of horned beetles. Evol Dev 2011; 12:449-58. [PMID: 20883214 DOI: 10.1111/j.1525-142x.2010.00431.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Holometabolous insects provide an excellent opportunity to study both the properties of development as well as their evolution and diversification across taxa. Here we investigate the developmental basis and evolutionary diversification of secondary trait loss during development in the expression of beetle horns, a novel and highly diverse class of secondary sexual traits. In many species, horn growth during late larval development is followed by a period of dramatic remodeling during the pupal stage, including the complete resorption of horns in many cases. Here we show that programed cell death plays an important and dynamic role in the secondary resorption of pupal horn primordia during pupal development. Surprisingly, the degree of cell death mediated horn resorption depended on species, sex, and body region, suggesting the existence of regulatory mechanisms that can diversify quickly over short phylogenetic distances. More generally, our results illustrate that secondary, differential loss of structures during development can be a powerful mechanism for generating considerable morphological diversity both within and between species.
Collapse
Affiliation(s)
- Teiya Kijimoto
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
34
|
Li Q, Deng X, Yang W, Huang Z, Tettamanti G, Cao Y, Feng Q. Autophagy, apoptosis, and ecdysis-related gene expression in the silk gland of the silkworm (Bombyx mori) during metamorphosis. CAN J ZOOL 2010. [DOI: 10.1139/z10-083] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degeneration of larval-specific tissues during insect metamorphosis has been suggested to be the result of apoptosis and autophagy and is triggered by ecdysteroids. However, the relationship between autophagy and apoptosis pathways and the mechanism of regulation by ecdysteroids remain to be elucidated. This study examined the events of autophagy, apoptosis, and the expression of ecdysis-related genes in the silk gland of the silkworm ( Bombyx mori L., 1758) during the larval to pupal transformation. The results indicated that autophagic features appeared in the silk gland at the wandering and spinning stages of the larvae, whereas the apoptotic features such as apoptotic bodies and DNA fragmentation occurred at the prepupal or early-pupal stages. The autophagic granules fused with each other to form large vacuoles where the cytoplasmic material was degraded. Autophagosomes, autolysosomes, and apoptotic bodies were found later in the degenerating silk-gland cells. Expression of the ecdysone receptor gene BmEcR and the transcription factor genes BmE74A and BmBR-C preceded the onset of autophagy and apoptosis, indicating that they may be responsible for triggering these programmed cell death pathways in the silk gland. The results suggest that both autophagy and apoptosis occur in the silk-gland cells during degeneration, but autophagy precedes apoptosis.
Collapse
Affiliation(s)
- Qingrong Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Xiaojuan Deng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Wanying Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Yang Cao
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Qili Feng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Department of Sericulture Science, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
35
|
Mané-Padrós D, Cruz J, Vilaplana L, Nieva C, Ureña E, Bellés X, Martín D. The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. Dev Biol 2010; 346:150-60. [DOI: 10.1016/j.ydbio.2010.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
36
|
Xiang Y, Liu Z, Huang X. br regulates the expression of the ecdysone biosynthesis gene npc1. Dev Biol 2010; 344:800-8. [PMID: 20621708 DOI: 10.1016/j.ydbio.2010.05.510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 12/24/2022]
Abstract
The growth and metamorphosis of insects are regulated by ecdysteroid hormones produced in the ring gland. Ecdysone biosynthesis-related genes are both highly and specifically expressed in the ring gland. However, the intrinsic regulation of ecdysone biosynthesis has received little attention. Here we used the Drosophila npc1 gene to study the mechanism of ring gland-specific gene expression. npc1 is important for sterol trafficking in the ring gland during ecdysone biosynthesis. We have identified a conserved ring gland-specific cis-regulatory element (RSE) in the npc1 promoter using promoter fusion reporter analysis. Furthermore, genetic loss-of-function analysis and in vitro electrophoretic mobility shift assays revealed that the ecdysone early response gene broad complex (br) is a vital factor in the positive regulation of npc1 ring gland expression. Moreover, br also affects the ring gland expression of many other ecdysone biosynthetic genes as well as torso and InR, two key factors in the regulation of ecdysone biosynthesis. These results imply that ecdysone could potentially act through its early response gene br to achieve positive feedback regulation of ecdysone biosynthesis during development.
Collapse
Affiliation(s)
- Yanhui Xiang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
37
|
Filipiak M, Bilska E, Tylko G, Pyza E. Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:383-390. [PMID: 19941868 DOI: 10.1016/j.jinsphys.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn(2+), an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn(2+), and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn(2+) increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn(2+) also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.
Collapse
Affiliation(s)
- Marta Filipiak
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | |
Collapse
|
38
|
Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell Death Differ 2010; 17:1266-76. [PMID: 20150917 PMCID: PMC2902690 DOI: 10.1038/cdd.2010.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most of the 131 cells that die during the development of a C. elegans hermaphrodite do so ~30 min after being generated. Furthermore, in these cells, the pro-caspase proCED-3 is inherited from progenitors and the transcriptional upregulation of the BH3-only gene egl-1 is thought to be sufficient for apoptosis induction. In contrast, the four CEM neurons, which die in hermaphrodites, but not males, die ~150 min after being generated. We found that in the CEMs, the transcriptional activation of both the egl-1 and ced-3 gene is necessary for apoptosis induction. In addition, we show that the Bar homeodomain transcription factor CEH-30 represses egl-1 and ced-3 transcription in the CEMs, thereby permitting their survival. Furthermore, we identified three genes, unc-86, lrs-1 and unc-132, which encode a POU homeodomain transcription factor, a leucyl-tRNA synthetase and a novel protein with limited sequence similarity to the mammalian proto-oncoprotein and kinase PIM-1, respectively, that promote the expression of the ceh-30 gene in the CEMs. Based on these results, we propose that egl-1 and ced-3 transcription are co-regulated in the CEMs to compensate for limiting proCED-3 levels, which most probably are a result of proCED-3 turn over. Similar co-regulatory mechanisms for BH3-only proteins and pro-caspases may function in higher organisms to allow efficient apoptosis induction during development. Finally, we present evidence that the timing of the death of the CEMs is controlled by TRA-1 Gli, the terminal global regulator of somatic sexual fate in C. elegans.
Collapse
|
39
|
Wang HB, Nita M, Iwanaga M, Kawasaki H. betaFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:624-633. [PMID: 19580866 DOI: 10.1016/j.ibmb.2009.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/15/2009] [Accepted: 06/28/2009] [Indexed: 05/28/2023]
Abstract
The present study was undertaken to clarify the mechanism regulating cuticle protein gene expression. Expression of BMWCP5 was strong at around pupation and weak at the mid-pupal stage in wing tissues of Bombyx mori. We analyzed the upstream region of the BMWCP5 gene using a transient reporter assay with a gene gun system to identify the regulatory elements responsible for its unique expression pattern. We identified two betaFTZ-F1 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. We also found that the regions carrying the binding sites for the ecdysone-responsive factor BR-C Z4 (BR-Z4) were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z4 binding sites decreased the reporter activity. The nuclear proteins that bound to these betaFTZ-F1 and BR-Z4 sites were identified by an electrophoretic mobility shift assay (EMSA). The results demonstrate for the first time that the BR-Z4 isoform can bind to the upstream region of the cuticle protein gene, BMWCP5, and activate its expression. The results also suggest that the BMWCP5 transcription is primarily regulated by the ecdysone pulse through betaFTZ-F1, and the stage-specific enhancement is brought about through BR-Z4.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | |
Collapse
|
40
|
Chittaranjan S, McConechy M, Hou YCC, Freeman JD, DeVorkin L, Gorski SM. Steroid hormone control of cell death and cell survival: molecular insights using RNAi. PLoS Genet 2009; 5:e1000379. [PMID: 19214204 PMCID: PMC2632862 DOI: 10.1371/journal.pgen.1000379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022] Open
Abstract
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.
Collapse
Affiliation(s)
| | - Melissa McConechy
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ying-Chen Claire Hou
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - J. Douglas Freeman
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Lindsay DeVorkin
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
41
|
Abstract
The elimination of unwanted cells by programmed cell death is a common feature of animal development. Genetic studies in the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have not only revealed the molecular machineries that cause the programmed demise of specific cells, but have also allowed us to get a glimpse of the types of pathways that regulate these machineries during development. Rather than serving as a broad overview of programmed cell death during development, this review focuses on recent advances in our understanding of the regulation of specific programmed cell death events during nematode, fly, and mouse development. Recent studies have revealed that many of the regulatory pathways involved play additional important roles in development, which confirms that the programmed cell death fate is an integral aspect of animal development.
Collapse
Affiliation(s)
- Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
42
|
Cakouros D, Mills K, Denton D, Paterson A, Daish T, Kumar S. dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes. ACTA ACUST UNITED AC 2008; 182:481-95. [PMID: 18695041 PMCID: PMC2500134 DOI: 10.1083/jcb.200712169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sequential modifications of histones form the basis of the histone code that translates into either gene activation or repression. Nuclear receptors recruit a cohort of histone-modifying enzymes in response to ligand binding and regulate proliferation, differentiation, and cell death. In Drosophila melanogaster, the steroid hormone ecdysone binds its heterodimeric receptor ecdysone receptor/ultraspiracle to spatiotemporally regulate the transcription of several genes. In this study, we identify a novel cofactor, Drosophila lysine ketoglutarate reductase (dLKR)/saccharopine dehydrogenase (SDH), that is involved in ecdysone-mediated transcription. dLKR/SDH binds histones H3 and H4 and suppresses ecdysone-mediated transcription of cell death genes by inhibiting histone H3R17me2 mediated by the Drosophila arginine methyl transferase CARMER. Our data suggest that the dynamic recruitment of dLKR/SDH to ecdysone-regulated gene promoters controls the timing of hormone-induced gene expression. In the absence of dLKR/SDH, histone methylation occurs prematurely, resulting in enhanced gene activation. Consistent with these observations, the loss of dLKR/SDH in Drosophila enhances hormone-regulated gene expression, affecting the developmental timing of gene activation.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide SA 5000, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Horigane M, Ogihara K, Nakajima Y, Taylor D. Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2008; 156:298-311. [PMID: 18342313 DOI: 10.1016/j.ygcen.2008.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXR) exist broadly from invertebrates to vertebrates, and play essential roles in physiological processes of these organisms. In arthropods, RXRs form a complex with the ecdysteroid receptor (EcR) and ecdysteroids to mediate the regulation of ecdysis and reproduction. Compared to EcR, RXR and its homologue ultraspiracle (USP) are much less well understood. Therefore, we identified RXR of the soft tick Ornithodoros moubata (OmRXR) and used real-time PCR to examine the expression of OmRXR. This is the first report of RXR from a soft tick. OmRXR showed higher homology to hard tick, crustacean and vertebrate RXRs than insect RXRs and USPs. OmRXR expression was observed during molting in the last instar nymphs coinciding with EcR expression and increases in ecdysteroid titers. Tick vitellogenesis normally occurs soon after engorgement and OmRXR expression coinciding with EcR expression and ecdysteroid titers in engorged females occurred before vitellogenin (Vg) synthesis and egg maturation. The ecdysteroid/EcR/RXR complex appears to be important in the regulation of molting and vitellogenesis of soft ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
44
|
Horigane M, Ogihara K, Nakajima Y, Shinoda T, Taylor D. Cloning and expression of the ecdysteroid receptor during ecdysis and reproduction in females of the soft tick, Ornithodoros moubata (Acari: Argasidae). INSECT MOLECULAR BIOLOGY 2007; 16:601-12. [PMID: 17894558 DOI: 10.1111/j.1365-2583.2007.00754.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Molecular mechanisms of ecdysteroid regulation in development and reproduction have been thoroughly investigated in Diptera and Lepidoptera, but few studies report the molecular actions of ecdysteroids in hemimetabolous insects and more primitive arthropods. Ecdysteroids appear to be the main hormones regulating development and vitellogenesis in ticks. An ecdysteroid receptor that showed high homology with EcRs of other arthropods was isolated from Ornithodoros moubata (OmEcRA). OmEcR expression patterns coincided with ecdysteroid titres in the haemolymph during moulting and vitellogenesis and differed between mated and virgin females. Therefore, OmEcR appears to mediate the regulation of moulting and vitellogenesis by ecdysteroids in O. moubata females as seen in other arthropods.
Collapse
Affiliation(s)
- M Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
45
|
Phan VH, Herr DR, Panton D, Fyrst H, Saba JD, Harris GL. Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. Dev Biol 2007; 309:329-41. [PMID: 17706961 PMCID: PMC2094363 DOI: 10.1016/j.ydbio.2007.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/10/2007] [Accepted: 07/21/2007] [Indexed: 01/20/2023]
Abstract
Sphingolipid signaling is thought to regulate apoptosis via mechanisms that are dependent on the concentration of ceramide relative to that of sphingosine-1-phosphate (S1P). This study reports defects in reproductive structures and function that are associated with enhanced apoptosis in Drosophila Sply05091 mutants that lack functional S1P lyase and thereby accumulate sphingolipid long chain base metabolites. Analyses of reproductive structures in these adult mutants unmasked multiple abnormalities, including supernumerary spermathecae, degenerative ovaries, and severely reduced testes. TUNEL assessment revealed increased cell death in mutant egg chambers at most oogenic stages and in affected mutant testes. These reproductive abnormalities and elevated gonadal apoptosis were also observed, to varying degrees, in other mutants affecting sphingolipid metabolism. Importantly, the reproductive defects seen in the Sply05091 mutants were ameliorated both by a second site mutation in the lace gene that restores long chain base levels towards normal and by genetic disruption of the proapoptotic genes reaper, hid and grim. These data thus provide the first evidence in Drosophila that accumulated sphingolipids trigger elevated levels of apoptosis via the modulation of known signaling pathways.
Collapse
Affiliation(s)
- Van H. Phan
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA
| | - Deron R. Herr
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA
| | - Dionne Panton
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA
| | - Henrik Fyrst
- Children’s Hospital Oakland Research Institute, Oakland, CA
| | - Julie D. Saba
- Children’s Hospital Oakland Research Institute, Oakland, CA
| | - Greg L. Harris
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA
- Correspondence to Greg L. Harris:
| |
Collapse
|
46
|
Yang D, Chai L, Wang J, Zhao X. Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 2007; 35:405-12. [PMID: 17541728 DOI: 10.1007/s11033-007-9100-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Members of the caspase family play a central and evolutionary role in programmed cell death (PCD), which removes unwanted, damaged and dangerous cells during development to maintain homeostasis. In this paper, we describe the cloning and characterization of a caspase from the cotton bollworm, Helicoverpa armigera, named Hearm caspase-1. The 1,350 bp full-length cDNA contains an 885 bp open reading frame (ORF) that encodes a Hearm caspase-1 proenzyme of 294 amino acids. The deduced protein is highly homologous to Spodoptera frugiperda Sf caspase-1 and Drosophila melanogaster ICE and has the highly conserved pentapeptide QACQG, the recognized catalytic site of caspases, suggesting that it is an effector caspase of the cotton bollworm. Northern blot and RT-PCR analyses demonstrate that Hearm caspase-1 is expressed in embryos and the fat body, midgut and haemocytes of feeding and wandering larvae. Expression of Hearm caspase-1 in the haemocytes appears to be correlated with the pulse of ecdysone, and it is up-regulated by ecdysone agonist RH-2485, implying that Hearm caspase-1 activation is regulated by ecdysone.
Collapse
Affiliation(s)
- Dantong Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
47
|
Maurer CW, Chiorazzi M, Shaham S. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 2007; 134:1357-68. [PMID: 17329362 DOI: 10.1242/dev.02818] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temporal control of programmed cell death is necessary to ensure that cells die at only the right time during animal development. How such temporal regulation is achieved remains poorly understood. In some Caenorhabditis elegans somatic cells, transcription of the egl-1/BH3-only gene promotes cell-specific death. The EGL-1 protein inhibits the CED-9/Bcl-2 protein, resulting in the release of the caspase activator CED-4/Apaf-1. Subsequent activation of the CED-3 caspase by CED-4 leads to cell death. Despite the important role of egl-1 transcription in promoting CED-3 activity in cells destined to die, it remains unclear whether the temporal control of cell death is mediated by egl-1 expression. Here, we show that egl-1 and ced-9 play only minor roles in the death of the C. elegans tail-spike cell, demonstrating that temporal control of tail-spike cell death can be achieved in the absence of egl-1. We go on to show that the timing of the onset of tail-spike cell death is controlled by transcriptional induction of the ced-3 caspase. We characterized the developmental expression pattern of ced-3, and show that, in the tail-spike cell, ced-3 expression is induced shortly before the cell dies, and this induction is sufficient to promote the demise of the cell. Both ced-3 expression and cell death are dependent on the transcription factor PAL-1, the C. elegans homolog of the mammalian tumor suppressor gene Cdx2. PAL-1 can bind to the ced-3 promoter sites that are crucial for tail-spike cell death, suggesting that it promotes cell death by directly activating ced-3 transcription. Our results highlight a role that has not been described previously for the transcriptional regulation of caspases in controlling the timing of cell death onset during animal development.
Collapse
Affiliation(s)
- Carine W Maurer
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
48
|
Iga M, Iwami M, Sakurai S. Nongenomic action of an insect steroid hormone in steroid-induced programmed cell death. Mol Cell Endocrinol 2007; 263:18-28. [PMID: 17045392 DOI: 10.1016/j.mce.2006.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/08/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
Programmed cell death (PCD) of the silkworm silk glands is triggered by the insect steroid hormone, 20-hydroxyecdysone (20E), and proceeds sequentially through cell shrinkage, nuclear condensation, DNA fragmentation, nuclear fragmentation and apoptotic body formation. A protein synthesis inhibitor, cycloheximide (CHX, 2 mM) induced a cell death that exhibited only nuclear and DNA fragmentation. A concentration of 0.2 mM CHX was ineffective at inducing the cell death when added alone, but in the presence of 20E, a cell death similar to that induced by 2 mM CHX was resulted with accompanying nuclear condensation. Since 2 and 0.2 mM CHX inhibited protein synthesis equally, the DNA and nuclear fragmentation appear to be mediated by a nongenomic action of 20E. In addition, we show a possible involvement of Ca2+-PKC-caspase-3 like protease pathway in the nongenomic action. The data suggest that 20E-induced PCD is accomplished through the integration of genomic and nongenomic actions.
Collapse
Affiliation(s)
- Masatoshi Iga
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
49
|
Abstract
The first proapoptotic caspase, CED-3, was cloned from Caenorhabditis elegans in 1993 and shown to be essential for the developmental death of all somatic cells. Following the discovery of CED-3, caspases have been cloned from several vertebrate and invertebrate species. As reviewed in other articles in this issue of Cell Death and Differentiation, many caspases function in nonapoptotic pathways. However, as is clear from the worm studies, the evolutionarily conserved role of caspases is to execute programmed cell death. In this article, I will specifically focus on caspases that function primarily in cell death execution. In particular, the physiological function of caspases in apoptosis is discussed using examples from the worm, fly and mammals.
Collapse
Affiliation(s)
- S Kumar
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Nishita Y, Takiya S. Differential usage of two promoters of the Broad-Complex gene in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:779-88. [PMID: 17027844 DOI: 10.1016/j.ibmb.2006.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 05/12/2023]
Abstract
The Broad-Complex gene encodes one of the key regulators of the ecdysone signal cascade. We previously isolated part of the genomic DNA and cDNAs of Broad-Complex in Bombyx mori (BmBR-C). Here, we report structures of the entire genomic DNA and 5' untranslated region (5'-UTR) of the cDNAs. BmBR-C was found to span about 158 kbp including 13 exons. In the 5'-UTR, additional alternatively spliced exons were identified. The 5' ends of the cDNAs were mapped to two different positions, the distal promoter (P(dist)) and proximal promoter (P(prox)), separated by 86 kbp. Expression from these promoters was controlled differentially. Semi-quantitative PCR using cDNAs from the carcass, silk glands and fat body revealed that expression from P(prox) was changed moderately and expression from P(dist) was weak and constant during the fourth ecdysis. At the onset of pupation, expression from P(prox) was suppressed in all tissues, but that from P(dist) was induced in the carcass and ASG. In the fat body, expression from both promoters increased in the prepupal stage. A combination of promoters differing in responsiveness to an ecdysone signal may serve to achieve a complex regulation of downstream genes in reply to a simple hormonal signal.
Collapse
Affiliation(s)
- Yoshinori Nishita
- Laboratory of Gene function and Regulation, Division of Genome Dynamics, Creative Research Initiative Sousei, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | |
Collapse
|