1
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2025; 48:e12734. [PMID: 38693715 PMCID: PMC11730842 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M. Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| | - Gajja S. Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| |
Collapse
|
2
|
Zhang W, Narvaez Rivas M, Setchell KD. Tandem mass spectrometry of serum cholestanoic (C 27) acids - Typical concentration ranges and application to the study of peroxisomal biogenesis disorders. J Mass Spectrom Adv Clin Lab 2024; 34:34-43. [PMID: 39584149 PMCID: PMC11584599 DOI: 10.1016/j.jmsacl.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Background Primary bile acid synthesis is impaired in peroxisomal disorders, leading to the accumulation of long-chain bile acids, specifically dihydroxycholestanoic and trihydroxycholestanoic acids. Quantification of the diastereoisomers of these C27 bile acids is essential for the differential diagnosis of these disorders. Methods High-performance liquid chromatography electrospray ionization-tandem mass spectrometry with stable-isotope dilution was used to quantify all eight diastereoisomers of cholestanoic acids in serum. Clinical ranges were established for patients with and without cholestatic liver disease, as well as for those with peroxisomal disorders. Results The assay was linear over the range of 20-2,500 ng/mL, and intra- and inter-assay imprecision was <20 % CV. The mean (±SEM) serum concentration of total C27 bile acids in 20 adult controls was low (0.007 ± 0.004 μmol/L). In non-cholestatic, moderately cholestatic, and severely cholestatic patients, total C27 bile acids measured 0.015 ± 0.011, 0.129 ± 0.034, and 0.986 ± 0.249 μmol/L, respectively. In contrast, patients with confirmed peroxisomal disorders (n = 49) exhibited concentrations >10-fold higher (14.06 ± 2.59 μmol/L). Patients with heterozygous mutations in PEX genes had low concentrations of serum C27 bile acids. In all groups, the (25S)- and (25R)-diastereomers were present in a ratio of 0.3. In cases of 2-methylacyl-CoA racemase deficiency, serum total C27 bile acids were markedly elevated (10.61 ± 0.92 μmol/L) and comprised exclusively the (25R)-diastereoisomer. Conclusions This tandem mass spectrometric assay quantifies all diastereoisomers of the C27 cholestanoic acids in serum and was used to establish typical clinical concentration ranges. The method is applicable to the diagnosis of peroxisomal disorders and differentiates 2-methylacyl-CoA racemase deficiency from other peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Monica Narvaez Rivas
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
4
|
Tang H, Luo Y, Tang Z, Tang J, Fang J. Case report: Episodic psychosis caused by a novel SCP2 splicing mutation. Front Neurol 2023; 14:1270793. [PMID: 37905191 PMCID: PMC10613489 DOI: 10.3389/fneur.2023.1270793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
SCPx deficiency is a rare disorder of peroxisomal beta-oxidation dysfunction, and it has only been documented in two patients thus far. In the previously reported patients, both patients were primarily presented with slowly progressive dystonia or ataxia, and they both displayed symmetrical lesions in the thalamus and brainstem on magnetic resonance imaging. This study presents the third patient exhibiting a similar neuroimaging abnormality but a notably different clinical phenotype characterized by episodic psychosis. Through whole-exome sequencing, we identified a homozygous splicing mutation in SCP2 (c.674 + 1G > C), and further RNA sequencing revealed exon 8 skipping in the mature transcripts of SCP2. This study significantly expands our understanding of the genotypic and phenotypic spectrum associated with SCP2-related metabolic encephalopathy.
Collapse
Affiliation(s)
- Haiyan Tang
- The Second Xiangya Hospital, and Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, Department of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Mohan S, Mayers M, Weaver M, Baudet H, De Biase I, Goldstein J, Mao R, McGlaughon J, Moser A, Pujol A, Suchy S, Yuzyuk T, Braverman NE. Evaluating the strength of evidence for genes implicated in peroxisomal disorders using the ClinGen clinical validity framework and providing updates to the peroxisomal disease nomenclature. Mol Genet Metab 2023; 139:107604. [PMID: 37236006 PMCID: PMC10484331 DOI: 10.1016/j.ymgme.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Peroxisomal disorders are heterogeneous in nature, with phenotypic overlap that is indistinguishable without molecular testing. Newborn screening and gene sequencing for a panel of genes implicated in peroxisomal diseases are critical tools for the early and accurate detection of these disorders. It is therefore essential to evaluate the clinical validity of the genes included in sequencing panels for peroxisomal disorders. The Peroxisomal Gene Curation Expert Panel (GCEP) assessed genes frequently included on clinical peroxisomal testing panels using the Clinical Genome Resource (ClinGen) gene-disease validity curation framework and classified gene-disease relationships as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. Subsequent to gene curation, the GCEP made recommendations to update the disease nomenclature and ontology in the Monarch Disease Ontology (Mondo) database. Thirty-six genes were assessed for the strength of evidence supporting their role in peroxisomal disease, leading to 36 gene-disease relationships, after two genes were removed for their lack of a role in peroxisomal disease and two genes were curated for two different disease entities each. Of these, 23 were classified as Definitive (64%), one as Strong (3%), eight as Moderate (23%), two as Limited (5%), and two as No known disease relationship (5%). No contradictory evidence was found to classify any relationships as Disputed or Refuted. The gene-disease relationship curations are publicly available on the ClinGen website (https://clinicalgenome.org/affiliation/40049/). The changes to peroxisomal disease nomenclature are displayed on the Mondo website (http://purl.obolibrary.org/obo/MONDO_0019053). The Peroxisomal GCEP-curated gene-disease relationships will inform clinical and laboratory diagnostics and enhance molecular testing and reporting. As new data will emerge, the gene-disease classifications asserted by the Peroxisomal GCEP will be re-evaluated periodically.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Megan Mayers
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Heather Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | | | - Jennifer Goldstein
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Ann Moser
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aurora Pujol
- Bellvitge Biomedical Research Institute (IDIBELL Instituto de Investigación Biomédica de Bellvitge), Barcelona, Spain
| | | | | | - Nancy E Braverman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Seizure-Induced Hemoptysis in a Pediatric Patient. Case Rep Pediatr 2022; 2022:6059007. [PMID: 36588923 PMCID: PMC9803558 DOI: 10.1155/2022/6059007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hemoptysis can complicate seizures, albeit rarely. This unfamiliar presentation, reported infrequently in adults, can also affect children. This remains a rare clinical entity in pediatrics and we report one such case and its association with sterol carrier protein (SCP) gene mutation. We present a case of a 16-year-old male with recurrent episodes of hemoptysis following seizures. The diagnostic workup for etiology of the hemoptysis was unrevealing and he was ultimately treated for neurogenic pulmonary edema as a diagnosis of exclusion. He achieved complete resolution with supportive care and diuretics. Our case report describes the clinical and radiological presentation and overall management of post-ictal pulmonary hemorrhage and edema in a pediatric patient. In addition, it reports a new finding of possible association with sterol carrier protein (SCP2) carrier status. It also highlights a rare but potentially life-threatening consequence of inadequate seizure control in pediatric patients.
Collapse
|
8
|
Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int J Mol Sci 2022; 23:ijms232012115. [PMID: 36292972 PMCID: PMC9602805 DOI: 10.3390/ijms232012115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.
Collapse
|
9
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Wong A, Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. MicroRNA and MicroRNA-Target Variants Associated with Autism Spectrum Disorder and Related Disorders. Genes (Basel) 2022; 13:1329. [PMID: 35893067 PMCID: PMC9329941 DOI: 10.3390/genes13081329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Cheung A, Argyriou C, Yergeau C, D’Souza Y, Riou É, Lévesque S, Raymond G, Daba M, Rtskhiladze I, Tkemaladze T, Adang L, La Piana R, Bernard G, Braverman N. Clinical, neuroradiological, and molecular characterization of patients with atypical Zellweger spectrum disorder caused by PEX16 mutations: a case series. Neurogenetics 2022; 23:115-127. [DOI: 10.1007/s10048-022-00684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
13
|
Kolarova H, Tan J, Strom TM, Meitinger T, Wagner M, Klopstock T. Lifetime risk of autosomal recessive neurodegeneration with brain iron accumulation (NBIA) disorders calculated from genetic databases. EBioMedicine 2022; 77:103869. [PMID: 35180557 PMCID: PMC8856992 DOI: 10.1016/j.ebiom.2022.103869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. Methods All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. Findings The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70–1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65–1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48–1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. Interpretation This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions.
Collapse
Affiliation(s)
- Hana Kolarova
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 12000, Czech Republic
| | - Jing Tan
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Institute of Neurogenomics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, Neuherberg 85764, Germany; LMU University Hospital, Department of Pediatrics, Dr. von Hauner Children's Hospital, Division of Pediatric Neurology, LMU Center for Development and Children with Medical Complexity, Ludwig-Maximilians-University, Munich, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Mohseni M, Babanejad M, Booth KT, Jamali P, Jalalvand K, Davarnia B, Ardalani F, Khoshaeen A, Arzhangi S, Ghodratpour F, Beheshtian M, Jahanshad F, Otukesh H, Bahrami F, Seifati SM, Bazazzadegan N, Habibi F, Behravan H, Mirzaei S, Keshavarzi F, Nikzat N, Mehrjoo Z, Thiele H, Nothnagel M, Azaiez H, Smith RJ, Kahrizi K, Najmabadi H. Exome sequencing utility in defining the genetic landscape of hearing loss and novel-gene discovery in Iran. Clin Genet 2021; 100:59-78. [PMID: 33713422 PMCID: PMC8195868 DOI: 10.1111/cge.13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.
Collapse
Affiliation(s)
- Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Organization, Semnan, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fariba Ardalani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hasan Otukesh
- Department of Pediatric Neurology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Habibi
- Genetic Counseling Center of Welfare Organization, Rasht, Guilan, Iran
| | - Hanieh Behravan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sepide Mirzaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- University Hospital Cologne, Cologne, Germany
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
15
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The diagnosis of neurodegeneration with brain iron accumulation (NBIA) typically associates various extrapyramidal and pyramidal features, cognitive and psychiatric symptoms with bilateral hypointensities in the globus pallidus on iron-sensitive magnetic resonance images, reflecting the alteration of iron homeostasis in this area. This article details the contribution of MRI in the diagnosis by summarizing and comparing MRI patterns of the various NBIA subtypes. RECENT FINDINGS MRI almost always shows characteristic changes combining iron accumulation and additional neuroimaging abnormalities. Iron-sensitive MRI shows iron deposition in the basal ganglia, particularly in bilateral globus pallidus and substantia nigra. Other regions may be affected depending on the NBIA subtypes including the cerebellum and dentate nucleus, the midbrain, the striatum, the thalamus, and the cortex. Atrophy of the cerebellum, brainstem, corpus callosum and cortex, and white matter changes may be associated and worsen with disease duration. Iron deposition can be quantified using R2 or quantitative susceptibility mapping. SUMMARY Recent MRI advances allow depicting differences between the various subtypes of NBIA, providing a useful analytical framework for clinicians. Standardization of protocols for image acquisition and analysis may help improving the detection of imaging changes associated with NBIA and the quantification of iron deposition.
Collapse
|
17
|
Das Y, Swinkels D, Baes M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity. Int J Mol Sci 2021; 22:ijms22084101. [PMID: 33921065 PMCID: PMC8071455 DOI: 10.3390/ijms22084101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.
Collapse
|
18
|
Koens LH, de Vries JJ, Vansenne F, de Koning TJ, Tijssen MAJ. How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach. Parkinsonism Relat Disord 2021; 85:124-132. [PMID: 33745796 DOI: 10.1016/j.parkreldis.2021.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/15/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.
Collapse
Affiliation(s)
- Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tom J de Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Clinical Sciences and Department of Pediatrics, Lund University, Box 188, SE-221 00, Lund, Sweden
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
19
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
20
|
Jiang M, Wang S, Li F, Geng J, Ji Y, Li K, Jiang X. A novel 1p33p32.2 deletion involving SCP2, ORC1, and DAB1 genes in a patient with craniofacial dysplasia, short stature, developmental delay, and leukoencephalopathy: A case report. Medicine (Baltimore) 2020; 99:e23033. [PMID: 33157955 PMCID: PMC7647596 DOI: 10.1097/md.0000000000023033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Microdeletion syndromes occur from deletion of 5Mb of a chromosome in approximately 5% of patients with unexplained intellectual disability. Interstitial microdeletions at bands 1p33 and 1p32.2 of the short arm of chromosome 1 are rare and have not been previously reported in relation to disease. PATIENT CONCERNS We present a case of a 39-month boy with Pierre Robin sequence, development delay/intellectual disability, growth retardation, short stature, leukoencephalopathy, craniofacial dysplasia, and speech delay. The child was referred to the Child health care department in October 2014 for his delayed language development and aggravated aggression. DIAGNOSIS Molecular diagnostic testing with G-band karyotyping was normal but clinical microarray analysis detected a 10 Mb microdeletion at 1p33p32.2. INTERVENTIONS The patient received rehabilitation. OUTCOMES Three candidate genes were pinpointed to the deleted area, including ORC1, SCP2, and DAB1. Phenotype-genotype analysis suggested that these three genes are likely to be responsible for the main phenotypes observed in the patient, such as microcephaly, growth retardation, short stature, leukoencephalopathy, and development delay/intellectual disability. CONCLUSIONS The spectrum of phenotypes this case presented with are likely to be caused by 1p33p32.2 deletion which could represent a new microdeletion syndrome.
Collapse
Affiliation(s)
- Maoying Jiang
- Hangzhou Children's Hospital, Behavioral Pediatric Department &Child Primary Care Department, Hangzhou
| | - Shanlin Wang
- Hangzhou Children's Hospital, Behavioral Pediatric Department &Child Primary Care Department, Hangzhou
| | - Fei Li
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, MOE-Shanghai Key Lab for Children's Enviromental Health, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Juan Geng
- Hangzhou Joingenome Diagnostics, Hangzhou
| | - Yiting Ji
- Developmental and Behavioral Pediatric Department, Shanghai Children's Hospital, Affiliated To Shanghai Jiaotong University School of Medicine& MOE-Shanghai Key Lab for Children's Environmental Health, Shanghai, China
| | - Ke Li
- Developmental and Behavioral Pediatric Department, Shanghai Children's Hospital, Affiliated To Shanghai Jiaotong University School of Medicine& MOE-Shanghai Key Lab for Children's Environmental Health, Shanghai, China
| | | |
Collapse
|
21
|
Wanders RJA, Vaz FM, Waterham HR, Ferdinandusse S. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:55-70. [PMID: 33417207 DOI: 10.1007/978-3-030-60204-8_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
23
|
Martin GG, Seeger DR, McIntosh AL, Milligan S, Chung S, Landrock D, Dangott LJ, Golovko MY, Murphy EJ, Kier AB, Schroeder F. Sterol Carrier Protein-2/Sterol Carrier Protein-x/Fatty Acid Binding Protein-1 Ablation Impacts Response of Brain Endocannabinoid to High-Fat Diet. Lipids 2019; 54:583-601. [PMID: 31487051 DOI: 10.1002/lipd.12192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Brain endocannabinoids (EC) such as arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) primarily originate from serum arachidonic acid (ARA), whose level is regulated in part by a cytosolic ARA-binding protein, that is, liver fatty acid binding protein-1 (FABP1), not expressed in the brain. Ablation of the Fabp1 gene (LKO) increases brain AEA and 2-AG by decreasing hepatic uptake of ARA to increase serum ARA, thereby increasing ARA availability for uptake by the brain. The brain also expresses sterol carrier protein-2 (SCP-2), which is also a cytosolic ARA-binding protein. To further resolve the role of SCP-2 independent of FABP1, mice ablated in the Scp-2/Scp-x gene (DKO) were crossed with mice ablated in the Fabp1 gene (LKO) mice to generate triple knock out (TKO) mice. TKO impaired the ability of LKO to increase brain AEA and 2-AG. While a high-fat diet (HFD) alone increased brain AEA, TKO impaired this effect. Overall, these TKO-induced blocks were not attributable to altered expression of brain proteins in ARA uptake, AEA/2-AG synthesis, or AEA/2-AG degrading enzymes. Instead, TKO reduced serum levels of free ARA and/or total ARA and thereby decreased ARA availability for uptake to the brain and downstream synthesis of AEA and 2-AG therein. In summary, Scp-2/Scp-x gene ablation in Fabp1 null (LKO) mice antagonized the impact of LKO and HFD on brain ARA and, subsequently, EC levels. Thus, both FABP1 and SCP-2 participate in regulating the EC system in the brain.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| |
Collapse
|
24
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
25
|
The peroxisomal zebrafish SCP2-thiolase (type-1) is a weak transient dimer as revealed by crystal structures and native mass spectrometry. Biochem J 2019; 476:307-332. [PMID: 30573650 DOI: 10.1042/bcj20180788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the β-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.
Collapse
|
26
|
Abstract
The term NBIA encompasses a heterogeneous group of inherited disorders characterized clinically by progressive extra pyramidal syndrome and pathologically by excessive iron deposition in brain, primarily affecting the basal ganglia (globus pallidus mainly). The hallmark of this syndrome is the age specific phenotypic presentation and intraphenotypic heterogeneity. NBIAs at present include ten subtypes with genes identified in nine subtypes. They form an important differential diagnosis for the phenotype of global developmental delay in infancy/childhood to dystonia-parkinsonism or isolated parkinsonism at all ages and also for the isolated craniocervical dystonia of adult onset. There needs to be a high index of clinical suspicion for this syndrome and the evaluation includes MRI brain T2* weighted imaging which reveal symmetrical iron deposition in bilateral globus pallidi and other basal ganglia. The T2 * imaging pattern of iron deposition varies amongst the different subtypes and the combination of clinical phenotype and MRI signature makes it easier to confidently make a diagnosis of NBIA and to recommend genetic testing. The treatment to date is mostly symptomatic with targeted therapies on the horizon.
Collapse
Affiliation(s)
- Amit Batla
- Honorary Consultant Neurologist, National Hospital for Neurology and Neurosurgery, Queen Square, Luton, United Kingdom.,Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Luton, United Kingdom.,Consultant Neurologist, Luton and Dunstable University Hospital, NHS Foundation Trust, Luton, United Kingdom
| | - Chandana Gaddipati
- Consultant Neurologist, St Joseph's Hospital, Andhra Pradesh, India.,Consultant Neurologist, Vanita Vaidysala, Guntur, Andhra Pradesh, India
| |
Collapse
|
27
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Sharma V, Hiller M. Loss of Enzymes in the Bile Acid Synthesis Pathway Explains Differences in Bile Composition among Mammals. Genome Biol Evol 2018; 10:3211-3217. [PMID: 30388264 PMCID: PMC6296402 DOI: 10.1093/gbe/evy243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Bile acids are important for absorbing nutrients. Most mammals produce cholic and chenodeoxycholic bile acids. Here, we investigated genes in the bile acid synthesis pathway in four mammals that deviate from the usual mammalian bile composition. First, we show that naked-mole rats, elephants, and manatees repeatedly inactivated CYP8B1, an enzyme uniquely required for cholic acid synthesis, which explains the absence of cholic acid in these species. Second, no gene-inactivating mutations were found in any pathway gene in the rhinoceros, a species that lacks bile acids, indicating an evolutionarily recent change in its bile composition. Third, elephants and/or manatees that also lack bile acids altogether have lost additional nonessential enzymes (SLC27A5, ACOX2). Apart from uncovering genomic differences explaining deviations in bile composition, our analysis of bile acid enzymes in bile acid-lacking species suggests that essentiality prevents gene loss, while loss of pleiotropic genes is permitted if their other functions are compensated by functionally related proteins.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden; and German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
29
|
Wanders RJA, Vaz FM, Ferdinandusse S, Kemp S, Ebberink MS, Waterham HR. Laboratory Diagnosis of Peroxisomal Disorders in the -Omics Era and the Continued Importance of Biomarkers and Biochemical Studies. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818810285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Abstract
Peroxisomes play vital roles in a broad spectrum of cellular metabolic pathways. Defects in genes encoding peroxisomal proteins can result in a wide array of disorders, depending upon the metabolic pathways affected. These disorders can be broadly classified into 2 main groups; peroxisome biogenesis disorders (PBDs) and single peroxisomal enzyme deficiencies. Peroxisomal enzyme deficiencies are result of dysfunction of a specific metabolic pathway, while PBDs are due to generalized peroxisomal dysfunction. Mutations in PEX1 gene are the most common cause of PBDs, accounting for two-thirds of cases. Peroxisomal fission defects is a recently recognized entity, included under the subgroup of PBDs. The aim of this article is to provide a comprehensive review on the clinical and neuroimaging spectrum of peroxisomal disorders.
Collapse
|
31
|
Takashima S, Saitsu H, Shimozawa N. Expanding the concept of peroxisomal diseases and efficient diagnostic system in Japan. J Hum Genet 2018; 64:145-152. [PMID: 30237433 DOI: 10.1038/s10038-018-0512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023]
Abstract
The concept of peroxisomal diseases is expanding because of improvements in diagnostic technology based on advanced biochemical analysis and development of next-generation sequencing. For quicker and more accurate diagnosis of as many patients as possible, we developed a new diagnostic system combining the conventional diagnostic system and comprehensive mutational analysis by whole-exome sequencing in Japan. Adrenoleukodystrophy (ALD) is the most common peroxisomal disease. In the cerebral type of ALD, hematopoietic stem cell transplantation is the only treatment in the early stage, and thus prompt diagnosis will improve the prognosis of affected patients. Furthermore, it is also important to identify pre-symptomatic patients by family analysis of probands by providing appropriate disease information and genetic counseling, which will also lead to early intervention. Here, we summarize current information related to peroxisomal diseases and ALD and introduce our efficient diagnostic system for use in Japan, which resulted in the diagnosis of 73 Japanese patients with peroxisome biogenesis disorders, 16 with impaired β-oxidation of fatty acids, three with impaired etherphospholipid biosynthesis, and 191 Japanese families with ALD so far.
Collapse
Affiliation(s)
- Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan.
| |
Collapse
|
32
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
33
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Ablating both Fabp1 and Scp2/Scpx (TKO) induces hepatic phospholipid and cholesterol accumulation in high fat-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:323-338. [PMID: 29307784 DOI: 10.1016/j.bbalip.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 01/16/2023]
Abstract
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
34
|
McIntosh AL, Storey SM, Huang H, Kier AB, Schroeder F. Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism. Arch Biochem Biophys 2017; 635:17-26. [PMID: 29051070 DOI: 10.1016/j.abb.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
While prior studies focusing on male mice suggest a role for sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x; DKO) on hepatic phytol metabolism, its role in females is unresolved. This issue was addressed using female and male wild-type (WT) and DKO mice fed a phytoestrogen-free diet without or with 0.5% phytol. GC/MS showed that hepatic: i) phytol was absent and its branched-chain fatty acid (BCFA) metabolites were barely detectable in WT control-fed mice; ii) accumulation of phytol as well as its peroxisomal metabolite BCFAs (phytanic acid » pristanic and 2,3-pristenic acids) was increased by dietary phytol in WT females, but only slightly in WT males; iii) accumulation of phytol and BCFA was further increased by DKO in phytol-fed females, but much more markedly in males. Livers of phytol-fed WT female mice as well as phytol-fed DKO female and male mice also accumulated increased proportion of saturated straight-chain fatty acids (LCFA) at the expense of unsaturated LCFA. Liver phytol accumulation was not due to increased SCP-2 binding/transport of phytol since SCP-2 bound phytanic acid, but not its precursor phytol. Thus, the loss of Scp-2/Scp-x contributed to a sex-dependent hepatic accumulation of dietary phytol and BCFA.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States.
| |
Collapse
|
35
|
Tello C, Darling A, Lupo V, Pérez-Dueñas B, Espinós C. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 2017; 93:731-740. [PMID: 28542792 DOI: 10.1111/cge.13057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited heterogeneous neurodegenerative rare disorders. These patients present with dystonia, spasticity, parkinsonism and neuropsychiatric disturbances, along with brain magnetic resonance imaging (MRI) evidence of iron accumulation. In sum, they are devastating disorders and to date, there is no specific treatment. Ten NBIA genes are accepted: PANK2, PLA2G6, C19orf12, COASY, FA2H, ATP13A2, WDR45, FTL, CP, and DCAF17; and nonetheless, a relevant percentage of patients remain without genetic diagnosis, suggesting that other novel NBIA genes remain to be discovered. Overlapping complex clinical pictures render an accurate differential diagnosis difficult. Little is known about the pathophysiology of NBIAs. The reported NBIA genes take part in a variety of pathways: CoA synthesis, lipid and iron metabolism, autophagy, and membrane remodeling. The next-generation sequencing revolution has achieved relevant advances in genetics of Mendelian diseases and provide new genes for NBIAs, which are investigated according to 2 main strategies: genes involved in disorders with similar phenotype and genes that play a role in a pathway of interest. To achieve an effective therapy for NBIA patients, a better understanding of the biological process underlying disease is crucial, moving toward a new age of precision medicine.
Collapse
Affiliation(s)
- C Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - A Darling
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - V Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - B Pérez-Dueñas
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
36
|
Morita M, Honda A, Kobayashi A, Watanabe Y, Watanabe S, Kawaguchi K, Takashima S, Shimozawa N, Imanaka T. Effect of Lorenzo's Oil on Hepatic Gene Expression and the Serum Fatty Acid Level in abcd1-Deficient Mice. JIMD Rep 2017; 38:67-74. [PMID: 28560570 DOI: 10.1007/8904_2017_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023] Open
Abstract
Lorenzo's oil is known to decrease the saturated very long chain fatty acid (VLCFA) level in the plasma and skin fibroblasts of X-linked adrenoleukodystrophy (ALD) patients. However, the involvement of Lorenzo's oil in in vivo fatty acid metabolism has not been well elucidated. To investigate the effect of Lorenzo's oil on fatty acid metabolism, we analyzed the hepatic gene expression together with the serum fatty acid level in Lorenzo's oil-treated wild-type and abcd1-deficient mice. The change in the serum fatty acid level in Lorenzo's oil-treated abcd1-defcient mice was quite similar to that in the plasma fatty acid level in ALD patients supplemented with Lorenzo's oil. In addition, we found that the hepatic gene expression of two peroxisomal enzymes, Dbp and Scp2, and three microsomal enzymes, Elovl1, 2, and 3, were significantly stimulated by Lorenzo's oil. Our findings indicate that Lorenzo's oil activates hepatic peroxisomal fatty acid β-oxidation at the transcriptional level. In contrast, the transcriptional stimulation of Elovl1, 2, and 3 by Lorenzo's oil does not cause changes in the serum fatty acid level. It seems likely that the inhibition of these elongation activities by Lorenzo's oil results in a decrease in saturated VLCFA. Thus, these results not only contribute to a clarification of the mechanism by which the saturated VLCFA level is reduced in the serum of ALD patients by Lorenzo's oil-treatment, but also suggest the development of a new therapeutic approach to peroxisomal β-oxidation enzyme deficiency, especially mild phenotype of DBP deficiency.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Ayako Honda
- Division of Genomic Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akira Kobayashi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shigeo Takashima
- Division of Genomic Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.,Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
37
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
38
|
Vaz FM, Ferdinandusse S. Bile acid analysis in human disorders of bile acid biosynthesis. Mol Aspects Med 2017; 56:10-24. [PMID: 28322867 DOI: 10.1016/j.mam.2017.03.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/17/2023]
Abstract
Bile acids facilitate the absorption of lipids in the gut, but are also needed to maintain cholesterol homeostasis, induce bile flow, excrete toxic substances and regulate energy metabolism by acting as signaling molecules. Bile acid biosynthesis is a complex process distributed across many cellular organelles and requires at least 17 enzymes in addition to different metabolite transport proteins to synthesize the two primary bile acids, cholic acid and chenodeoxycholic acid. Disorders of bile acid synthesis can present from the neonatal period to adulthood and have very diverse clinical symptoms ranging from cholestatic liver disease to neuropsychiatric symptoms and spastic paraplegias. This review describes the different bile acid synthesis pathways followed by a summary of the current knowledge on hereditary disorders of human bile acid biosynthesis with a special focus on diagnostic bile acid profiling using mass spectrometry.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands.
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:291-304. [PMID: 27940000 PMCID: PMC5266609 DOI: 10.1016/j.bbalip.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
Abstract
In vitro studies suggest that liver fatty acid binding protein (L-FABP) and sterol carrier protein-2/sterol carrier protein-x (SCP2/SCPx) gene products facilitate uptake and metabolism and detoxification of dietary-derived phytol in mammals. However, concomitant upregulation of L-FABP in SCP2/SCPx null mice complicates interpretation of their physiological phenotype. Therefore, the impact of ablating both the L-FABP gene and SCP2/SCPx gene (L-FABP/SCP2/SCPx null or TKO) was examined in phytol-fed female wild-type (WT) and TKO mice. TKO increased hepatic total lipid accumulation, primarily phospholipid, by mechanisms involving increased hepatic levels of proteins in the phospholipid synthetic pathway. Concomitantly, TKO reduced expression of proteins in targeting fatty acids towards the triacylglycerol synthetic pathway. Increased hepatic lipid accumulation was not associated with any concomitant upregulation of membrane fatty acid transport/translocase proteins involved in fatty acid uptake (FATP2, FATP4, FATP5 or GOT) or cytosolic proteins involved in fatty acid intracellular targeting (ACBP). In addition, TKO exacerbated dietary phytol-induced whole body weight loss, especially lean tissue mass. Since individually ablating SCPx or SCP2/SCPx elicited concomitant upregulation of L-FABP, these findings with TKO mice help to resolve the contributions of SCP2/SCPx gene ablation on dietary phytol-induced whole body and hepatic lipid phenotype independent of concomitant upregulation of L-FABP.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
40
|
Monte MJ, Alonso-Peña M, Briz O, Herraez E, Berasain C, Argemi J, Prieto J, Marin JJG. ACOX2 deficiency: An inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. J Hepatol 2017; 66:581-588. [PMID: 27884763 DOI: 10.1016/j.jhep.2016.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Acyl-CoA oxidase (ACOX2) is involved in the shortening of C27 cholesterol derivatives to generate C24 bile acids. Inborn errors affecting the rest of peroxisomal enzymes involved in bile acid biosynthesis have been described. Here we aimed at investigating the case of an adolescent boy with persistent hypertransaminasemia of unknown origin and suspected dysfunction in bile acid metabolism. METHODS Serum and urine samples were taken from the patient, his sister and parents and underwent HPLC-MS/MS and HPLC-TOF analyses. Coding exons in genes of interest were amplified by high-fidelity PCR and sequenced. Wild-type or mutated (mutACOX2) variants were overexpressed in human hepatoblastoma HepG2 cells to determine ACOX2 enzymatic activity, expression and subcellular location. RESULTS The patient's serum and urine showed negligible amounts of C24 bile acids, but augmented levels of C27 intermediates, mainly tauroconjugated trihydroxycholestanoic acid (THCA). Genetic analysis of enzymes potentially involved revealed a homozygous missense mutation (c.673C>T; R225W) in ACOX2. His only sister was also homozygous for this mutation and exhibited similar alterations in bile acid profiles. Both parents were heterozygous and presented normal C24 and C27 bile acid levels. Immunofluorescence studies showed similar protein size and peroxisomal localization for both normal and mutated variants. THCA biotransformation into cholic acid was enhanced in cells overexpressing ACOX2, but not in those overexpressing mutACOX2. Both cell types showed similar sensitivity to oxidative stress caused by C24 bile acids. In contrast, THCA-induced oxidative stress and cell death were reduced by overexpressing ACOX2, but not mutACOX2. CONCLUSION ACOX2 deficiency, a condition characterized by accumulation of toxic C27 bile acid intermediates, is a novel cause of isolated persistent hypertransaminasemia. LAY SUMMARY Elevation of serum transaminases is a biochemical sign of liver damage due to multiplicity of causes (viruses, toxins, autoimmunity, metabolic disorders). In rare cases the origin of this alteration remains unknown. We have identified by the first time in a young patient and his only sister a familiar genetic defect of an enzyme called ACOX2, which participates in the transformation of cholesterol into bile acids as a cause of increased serum transaminases in the absence of any other symptomatology. This treatable condition should be considered in the diagnosis of those patients where the cause of elevated transaminases remains obscure.
Collapse
Affiliation(s)
- Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Marta Alonso-Peña
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Carmen Berasain
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Josepmaria Argemi
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesus Prieto
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain.
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain.
| |
Collapse
|
41
|
Abstract
The peroxisomal disorders (PDs) are a heterogeneous group of genetic diseases in man caused by an impairment in peroxisome biogenesis or one of the metabolic functions of peroxisomes. Thanks to the revolutionary technical developments in gene sequencing methods and their increased use in patient diagnosis, the field of genetic diseases in general and peroxisomal disorders in particular has dramatically changed in the last few years. Indeed, several novel peroxisomal disorders have been identified recently and in addition it has been realized that the phenotypic spectrum of patients affected by a PD keeps widening, which makes clinical recognition of peroxisomal patients increasingly difficult. Here, we describe these new developments and provide guidelines for the clinical and laboratory diagnosis of peroxisomal patients.
Collapse
|
42
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
43
|
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. J Lipid Res 2016; 57:1712-9. [PMID: 27381048 DOI: 10.1194/jlr.m069682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.
Collapse
Affiliation(s)
- Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| |
Collapse
|
44
|
Ferdinandusse S, Ebberink MS, Vaz FM, Waterham HR, Wanders RJA. The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders. J Inherit Metab Dis 2016; 39:531-43. [PMID: 26943801 PMCID: PMC4920857 DOI: 10.1007/s10545-016-9922-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/13/2023]
Abstract
Peroxisomes are dynamic organelles that play an essential role in a variety of metabolic pathways. Peroxisomal dysfunction can lead to various biochemical abnormalities and result in abnormal metabolite levels, such as increased very long-chain fatty acid or reduced plasmalogen levels. The metabolite abnormalities in peroxisomal disorders are used in the diagnostics of these disorders. In this paper we discuss in detail the different diagnostic tests available for peroxisomal disorders and focus specifically on the important role of biochemical and functional studies in cultured skin fibroblasts in reaching the right diagnosis. Several examples are shown to underline the power of such studies.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Merel S Ebberink
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
46
|
Jouffe C, Gobet C, Martin E, Métairon S, Morin-Rivron D, Masoodi M, Gachon F. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism. Sci Rep 2016; 6:24631. [PMID: 27097688 PMCID: PMC4838911 DOI: 10.1038/srep24631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023] Open
Abstract
Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.
Collapse
Affiliation(s)
- Céline Jouffe
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Sylviane Métairon
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Delphine Morin-Rivron
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Frédéric Gachon
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab 2016; 117:313-21. [PMID: 26750748 PMCID: PMC5214431 DOI: 10.1016/j.ymgme.2015.12.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical phenotypes that typically result in shortened life spans. The extreme variability in disease manifestation ranging from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents practical challenges in disease diagnosis and medical management. Recent advances in biochemical methods for newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of disease in its wide variety of forms. Although we anticipate future progress in the development of more effective targeted interventions, the current guidelines are meant to provide a starting point for the management of these complex conditions in the context of personalized health care.
Collapse
Affiliation(s)
- Nancy E Braverman
- McGill University Health Centre, 1001 Décarie Blvd Block E, EM02230, Montreal, QC H4A3J1, Canada.
| | - Gerald V Raymond
- Department of Neurology, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA,.
| | - William B Rizzo
- Department of Pediatrics, University of Nebraska Medical Center, 985456 Nebraska Medical Center - MMI 3062, Omaha, NE 68198-5456, USA.
| | - Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA.
| | - Mark E Wilkinson
- Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Stephen A. Wynn Institute for Vision Research, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Stephen A. Wynn Institute for Vision Research, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Steven J Steinberg
- Institute of Genetic Medicine and Department of Neurology, Johns Hopkins University School of Medicine, CMSC1004B, 600 N Wolfe Street, Baltimore, MD 21287, USA.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Duncan Neurological Research Institute, DNRI-1050, Houston, TX 77030, USA.
| | - Eric T Rush
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985440 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA.
| | - Mousumi Bose
- Global Foundation for Peroxisomal Disorders, 5147 S. Harvard Avenue, Suite 181, Tulsa, OK 74135, USA.
| |
Collapse
|
48
|
[Hereditary peroxisomal diseases]. Presse Med 2016; 45:302-12. [PMID: 26899150 DOI: 10.1016/j.lpm.2015.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/09/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022] Open
Abstract
Peroxisomes are small intracellular organelles that catalyse key metabolic reactions such as the beta-oxidation of some straight-chain or branched-chain fatty acids and the alpha-oxidation of phytanic acid. These enzyme reactions produce hydrogen peroxide, which is subsequently neutralized by the peroxisomal catalase. Peroxisomes also metabolize glyoxylate to glycine, and catalyze the first steps of plasmalogen biosynthesis. There are more than a dozen inherited peroxisomal disorders in humans. These metabolic diseases are due to monogenic defects that affect either a single function (such as enzyme or a transporter) or more than two distinct functions because of the impairment of several aspects of peroxisome biogenesis. With the notable exception of X-linked adrenoleucodystrophy, these inborn disorders are transmitted as autosomal recessive traits. Their clinical presentation can be very heterogeneous, and include neonatal, infantile or adult forms. The present review describes the symptomatology of these genetic diseases, the underlying genetic and biochemical alterations, and summarizes their diagnostic approach.
Collapse
|
49
|
Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol 2016; 3:83. [PMID: 26858947 PMCID: PMC4729952 DOI: 10.3389/fcell.2015.00083] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/10/2015] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
50
|
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:934-55. [PMID: 26686055 PMCID: PMC4880039 DOI: 10.1016/j.bbamcr.2015.12.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
Collapse
Affiliation(s)
- Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|