1
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
2
|
Lim JW. Polymer Materials for Optoelectronics and Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3698. [PMID: 39124361 PMCID: PMC11312893 DOI: 10.3390/ma17153698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton-vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it outlines charge trapping and recombination in the materials and draws the corresponding practical implications. The following section focuses on the practical application of organic materials in optoelectronics devices and highlights the detailed structure, operational principle, and performance metrics of organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs), organic photodetectors, and organic transistors in detail. Finally, this study underscores the transformative impact of organic materials on the evolution of optoelectronics, providing a comprehensive understanding of their properties, mechanisms, and diverse applications that contribute to advancing innovative technologies in the field.
Collapse
Affiliation(s)
- Ju Won Lim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 495 Tech Way, NW, Atlanta, GA 30318, USA
| |
Collapse
|
3
|
Cardia R, Dardenne N, Mula G, Pinna E, Rignanese GM, Charlier JC, Cappellini G. First-Principles Investigation of the Optical Properties of Eumelanin Protomolecules. J Phys Chem A 2023; 127:10797-10806. [PMID: 38109190 DOI: 10.1021/acs.jpca.3c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Using first-principles calculations, we investigate the absorption spectra (in the near-infrared, visible, and first UV range) of the two most probable eumelanin tetrameric molecules exhibiting either a linear open-chain or a cyclic porphyrine-like configuration. In order to simulate a realistic molecular system, an implicit solvent model is used in our calculations to mimic the effect of the solvated environment around the eumelanin molecule. Although the presence of solvent is found not to significantly affect the absorption pattern of both molecules, the onset of the spectra are shifted toward higher energies, especially for the linear tetramer. Interestingly, the absorption spectra and optical onsets of the two molecules differ significantly both in a vacuum and in ethanol. However, the two predicted spectra do not allow us to definitely discriminate between the two configurations when comparing the theoretical predictions with the available experimental spectrum. In addition, a mix of the two eumelanin configurations (close to fifty-fifty) leads to a maximum overlap between theoretical and experimental spectra. Consequently, this theoretical research shows that deeper insight can be gained using beyond DFT techniques on the real form of eumelanin protomolecules present in living systems as well as on their possible use in hybrid solar cells.
Collapse
Affiliation(s)
- Roberto Cardia
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Nicolas Dardenne
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Guido Mula
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Elisa Pinna
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Giancarlo Cappellini
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
- European Theoretical Spectroscopy Facility (ETSF)
| |
Collapse
|
4
|
Demir Gİ, Tekin A. NICE-FF: A non-empirical, intermolecular, consistent, and extensible force field for nucleic acids and beyond. J Chem Phys 2023; 159:244117. [PMID: 38153156 DOI: 10.1063/5.0176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
A new non-empirical ab initio intermolecular force field (NICE-FF in buffered 14-7 potential form) has been developed for nucleic acids and beyond based on the dimer interaction energies (IEs) calculated at the spin component scaled-MI-second order Møller-Plesset perturbation theory. A fully automatic framework has been implemented for this purpose, capable of generating well-polished computational grids, performing the necessary ab initio calculations, conducting machine learning (ML) assisted force field (FF) parametrization, and extending existing FF parameters by incorporating new atom types. For the ML-assisted parametrization of NICE-FF, interaction energies of ∼18 000 dimer geometries (with IE < 0) were used, and the best fit gave a mean square deviation of about 0.46 kcal/mol. During this parametrization, atom types apparent in four deoxyribonucleic acid (DNA) bases have been first trained using the generated DNA base datasets. Both uracil and hypoxanthine, which contain the same atom types found in DNA bases, have been considered as test molecules. Three new atom types have been added to the DNA atom types by using IE datasets of both pyrazinamide and 9-methylhypoxanthine. Finally, the last test molecule, theophylline, has been selected, which contains already-fitted atom-type parameters. The performance of NICE-FF has been investigated on the S22 dataset, and it has been found that NICE-FF outperforms the well-known FFs by generating the most consistent IEs with the high-level ab initio ones. Moreover, NICE-FF has been integrated into our in-house developed crystal structure prediction (CSP) tool [called FFCASP (Fast and Flexible CrystAl Structure Predictor)], aiming to find the experimental crystal structures of all considered molecules. CSPs, which were performed up to 4 formula units (Z), resulted in NICE-FF being able to locate almost all the known experimental crystal structures with sufficiently low RMSD20 values to provide good starting points for density functional theory optimizations.
Collapse
Affiliation(s)
- Gözde İniş Demir
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), Kocaeli, Türkiye
| |
Collapse
|
5
|
Zhang M, Sun F, Wen Y, Zheng Q, Xie Z, Liu B, Mao Y. A self-powered intelligent integrated sensing system for sports skill monitoring. NANOTECHNOLOGY 2023; 35:035501. [PMID: 37832528 DOI: 10.1088/1361-6528/ad0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The use of green intelligent sensing systems which are based on triboelectric nanogenerators have sparked a surge of research in recent years. The development has made significant contributions to the field of promoting human health. However, the integration of an intelligent sensing system with multi-directional triboelectric nanogenerators (TENGs) remains challenges in the field of motion monitoring. To solve this research issue, this study designed a self-powered multifunctional fitness blanket (SF-MFB) which incorporates four TENGs, features multi-sensors and wireless motion monitoring capabilities. It presents a self-powered integrated sensing system which utilizes four TENG sensing units to monitor human motion. Each TENG sensing unit collects the mechanical energy generated during motion. The system is composed of SF-MFB, Bluetooth transmission terminal, and upper computer analysis terminal. Its main purpose is to wirelessly monitor and diagnose human sports skills and enables real-time human-computer interaction. The TENG integrated self-powered sensing system demonstrates practicality in sports skills monitoring, diagnosis, human-computer interaction and entertainment. This research introduces a novel approach for the application of TENG self-powered intelligent integrated sensing system in health promotion.
Collapse
Affiliation(s)
- Mengqi Zhang
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
| | - Fengxin Sun
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yuzhang Wen
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qinglan Zheng
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhenning Xie
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
| | - Bing Liu
- School of Martial Arts and Dance, Shenyang Sport University, Shenyang 110102, People's Republic of China
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang 110819, People's Republic of China
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
DeMarco M, Ballard M, Grage E, Nourigheimasi F, Getter L, Shafiee A, Ghadiri E. Enhanced photochemical activity and ultrafast photocarrier dynamics in sustainable synthetic melanin nanoparticle-based donor-acceptor inkjet-printed molecular junctions. NANOSCALE 2023; 15:14346-14364. [PMID: 37602764 DOI: 10.1039/d3nr02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Melanin is a stable, widely light-absorbing, photoactive, and biocompatible material viable for energy conversion, photocatalysis, and bioelectronic applications. To achieve multifunctional nanostructures, we synthesized melanin nanoparticles of uniform size and controlled chemical composition (dopamelanin and eumelanin) and used them with titanium dioxide to fabricate donor-acceptor bilayers. Their size enhances the surface-to-volume ratio important for any surface-mediated functionality, such as photocatalysis, sensing, and drug loading and release, while controlling their chemical composition enables to control the film's functionality and reproducibility. Inkjet printing uniquely allowed us to control the deposited amount of materials with minimum ink waste suitable for reproducible materials deposition. We studied the photochemical characteristics of the donor-acceptor melanin-TiO2 nanostructured films via photocatalytic degradation of methylene blue dye under selective UV-NIR and Vis-NIR irradiation conditions. Under both irradiation conditions, they exhibited photocatalytic characteristics superior to pure melanin and, under UV-NIR irradiation, superior to TiO2 alone; TiO2 is photoactive only under UV irradiation. The enhanced photocatalytic characteristics of the melanin-TiO2 nanostructured bilayer films, particularly when excited by visible light, point to charge separation at the melanin-TiO2 interface as a possible mechanism. We performed ultrafast laser spectroscopy to investigate the photochemical characteristics of pure melanin and the melanin-TiO2 constructs and found that their time-resolved photoexcited spectral patterns differ. We performed singular value decomposition analysis to quantitatively deconvolute and compare the dynamics of photochemical processes for melanin and melanin-TiO2 heterostructures. This observation supports electronic interactions, namely, interfacial charge separation at the melanin and TiO2 interface. The excited-state relaxation in melanin-TiO2 increases markedly from 5 ps to 400 ps. The results are remarkable for the future intriguing application of melanin-based constructs for bioelectronics and energy conversion.
Collapse
Affiliation(s)
- Max DeMarco
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Matthew Ballard
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Elinor Grage
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Farnoush Nourigheimasi
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Lillian Getter
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Ashkan Shafiee
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| | - Elham Ghadiri
- Chemistry Department, Wake Forest University, USA.
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| |
Collapse
|
7
|
Coppola ME, Petritz A, Irimia CV, Yumusak C, Mayr F, Bednorz M, Matkovic A, Aslam MA, Saller K, Schwarzinger C, Ionita MD, Schiek M, Smeds AI, Salinas Y, Brüggemann O, D'Orsi R, Mattonai M, Ribechini E, Operamolla A, Teichert C, Xu C, Stadlober B, Sariciftci NS, Irimia‐Vladu M. Pinaceae Pine Resins (Black Pine, Shore Pine, Rosin, and Baltic Amber) as Natural Dielectrics for Low Operating Voltage, Hysteresis-Free, Organic Field Effect Transistors. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300062. [PMID: 37745829 PMCID: PMC10517313 DOI: 10.1002/gch2.202300062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Indexed: 09/26/2023]
Abstract
Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.
Collapse
Affiliation(s)
| | - Andreas Petritz
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
| | - Cristian Vlad Irimia
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Cigdem Yumusak
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Felix Mayr
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Mateusz Bednorz
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Aleksandar Matkovic
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Muhammad Awais Aslam
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Klara Saller
- Institut for Chemical Technologies of Organic MaterialsJohannes Kepler University LinzAltenberger Str. Nr. 69Linz4040Austria
| | - Clemens Schwarzinger
- Institut for Chemical Technologies of Organic MaterialsJohannes Kepler University LinzAltenberger Str. Nr. 69Linz4040Austria
| | - Maria Daniela Ionita
- National Institute for LaserPlasma and Radiation PhysicsPO Box Mg‐36, MagureleBucharest077125Romania
| | - Manuela Schiek
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
- Johannes Kepler University LinzCenter for Surface and Nanoanalytics (ZONA) Altenberger Str. 69Linz4040Austria
| | - Annika I. Smeds
- Laboratory of Natural Materials Technology/Wood and Paper ChemistryÅbo Akademi UniversityPorthansgatan 3‐5, ÅboTurku20500Finland
| | - Yolanda Salinas
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Str. 69Linz4040Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Str. 69Linz4040Austria
| | - Rosarita D'Orsi
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Marco Mattonai
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Erika Ribechini
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Alessandra Operamolla
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Christian Teichert
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Chunlin Xu
- Laboratory of Natural Materials Technology/Wood and Paper ChemistryÅbo Akademi UniversityPorthansgatan 3‐5, ÅboTurku20500Finland
| | - Barbara Stadlober
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
| | - Niyazi Serdar Sariciftci
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Mihai Irimia‐Vladu
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
- Present address:
Mihai Irimia‐VladuJohannes Kepler University LinzInstitute of Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz40040Austria
| |
Collapse
|
8
|
Abstract
The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.
Collapse
|
9
|
Light-emitting crystals of aptamer-hybrid organic semiconductor signaling on human cells expressing EpCAM. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Demir Gİ, Demir S, Tekin A. 2D‐FFCASP—A New Approach for 2D Structure Prediction Applied to Self‐Assemblies of DNA Bases. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gözde İniş Demir
- Informatics Institute Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Samet Demir
- Informatics Institute Istanbul Technical University Maslak Istanbul 34469 Turkey
- TÜBİTAK Research Institute for Fundamental Sciences Gebze Kocaeli 41470 Turkey
| | - Adem Tekin
- Informatics Institute Istanbul Technical University Maslak Istanbul 34469 Turkey
- TÜBİTAK Research Institute for Fundamental Sciences Gebze Kocaeli 41470 Turkey
| |
Collapse
|
11
|
Kapoor U, Jayaraman A. Impact of Polydopamine Nanoparticle Surface Pattern and Roughness on Interactions with Poly(ethylene glycol) in Aqueous Solution: A Multiscale Modeling and Simulation Study. J Phys Chem B 2022; 126:6301-6313. [PMID: 35969690 DOI: 10.1021/acs.jpcb.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant research effort in the past few years has been devoted to engineering synthetic mimics of naturally occurring eumelanin. One such effort has involved the assembly of oligomers of 5,6-dihydroxyindole (DHI), a synthetic precursor of polydopamine (PDA), into melanin-mimicking nanoparticles for use in a variety of applications with desired optical, photonic, thermal, and electrical properties. In many of these applications, the PDA nanoparticles are mixed with other polymers or oligomers, thus motivating this specific study to understand how the surface characteristics of the assembled PDA-nanoparticles affect their interaction with poly(ethylene glycol) (PEG) chains in aqueous solution. We use molecular dynamics (MD) simulations to study the interaction of linear 20-mer PEG chains with different PDA-nanoparticles assembled using four types of oligomers of 5,6-DHI: two isomers of 5,6-DHI 2-mers with the monomers bonding either at the 2-2' position (A-type isomer) or 7-7' position (B-type isomer), denoted as A:2-mer and B:2-mer, respectively, and a 4-mer and an 8-mer of B-type chemistry denoted as B:4-mer and B:8-mer, respectively. Using explicit-solvent atomistic MD simulations, we find that PDA-nanoparticle surfaces assembled from B:8-mer exhibit smaller density fluctuations of water molecules and, as a result, are relatively more hydrophilic than the PDA-nanoparticle surfaces assembled from A:2-mer, B:2-mer, and B:4-mer. The surface composition of PDA-nanoparticles assembled from A:2-mer contains relatively fewer hydroxyl (-OH) groups compared to PDA-nanoparticles assembled from a B:2-mer, B:4-mer, or B:8-mer, yet the sample of PEG chains show more collapsed and adsorbed conformations on A:2-mer nanoparticles' surface. To explain the atomistically observed behavior of PEG chains on the nanoparticles' surfaces, we use coarse-grained (CG) MD simulations and explain the roles of the pattern formed by the attractive sites (e.g.,-OH groups) exposed on the surface and the roughness of the surface on interactions with a genric PEG-like copolymer chain. By comparing atomistic and CG MD simulation results, we confirm that the -OH groups' pattern on the surface of the PDA-nanoparticle assembled from A:2-mer is patchier than the random or string-like patterns on the PDA-nanoparticle assembled from B:2-mer, B:4-mer, or B:8-mer, and it is this -OH groups' surface pattern that dictates the PEG chain conformations and adsorption on the PDA-nanoparticle surface. Overall, these results guide the design of chemically and physically heterogeneous nanoparticle surfaces for the desired polymer interaction and conformations.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
High conductivity Sepia melanin ink films for environmentally benign printed electronics. Proc Natl Acad Sci U S A 2022; 119:e2200058119. [PMID: 35914170 PMCID: PMC9371694 DOI: 10.1073/pnas.2200058119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Melanins (from the Greek μέλας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown-black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can readily be extracted from the ink sac of cuttlefish. Eumelanin features broadband optical absorption, metal-binding affinity and antioxidative and radical-scavenging properties. It is a prototype of benign material for sustainable organic electronics technologies. Here, we report on an electronic conductivity as high as 10-3 S cm-1 in flexographically printed Sepia melanin films; such values for the conductivity are typical for well-established high-performance organic electronic polymers but quite uncommon for bio-sourced organic materials. Our studies show the potential of bio-sourced materials for emerging electronic technologies with low human- and eco-toxicity.
Collapse
|
13
|
Huang P, Yoshida Y, Nakano Y, Yamochi H, Hayashi M, Kitagawa H. Strong Proton‐Electron Coupling in π‐Planar Metal Complex with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022; 61:e202204521. [DOI: 10.1002/anie.202204521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pingping Huang
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiaki Nakano
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Mikihiro Hayashi
- Faculty of Education Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
14
|
Mostert AB. The importance of water content on the conductivity of biomaterials and bioelectronic devices. J Mater Chem B 2022; 10:7108-7121. [PMID: 35735112 DOI: 10.1039/d2tb00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive biocompatible-, bioinspired- and biomaterials are increasing in importance, especially in bioelectronic applications where these materials are used in a variety of devices. Given the intended purpose of many of these devices is to interface with the human body, a pertinent issue is the effect of water from the environment on the electrical properties of the materials and devices. A researcher on biomaterials may currently not be aware, but the conductivity of these materials and device performances can be significantly altered with the presence of hydration in the environment. Examples will be given to highlight the problem that the conductivity of biomaterials can change by orders of magnitude depending on water content. Furthermore, case studies will be discussed in which control of the water content was key to understanding the underlying charge transport mechanism of conductive biomaterials. Examples of various devices and their response to hydration content will also be covered. Finally, this perspective will also mention the various methods of hydration control (including contrast studies) that can be used to perform careful work on conductive biomaterials and devices. Overall, water content should be considered an environmental variable as important as temperature to control for sound scientific investigation and to yield understanding of conductive biomaterials and bioelectronic devices.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Physics, Swansea University, Singleton Park, SA2, 8PP, Wales, UK.
| |
Collapse
|
15
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
16
|
Huang P, Yoshida Y, Nakano Y, Yamochi H, Hayashi M, Kitagawa H. Strong Proton‐Electron Coupling in π‐Planar Metal Complex with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pingping Huang
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiaki Nakano
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Mikihiro Hayashi
- Faculty of Education Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
17
|
Gagkayeva ZV, Gorshunov BP, Kachesov AY, Motovilov KA. Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Phys Rev E 2022; 105:044409. [PMID: 35590571 DOI: 10.1103/physreve.105.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.
Collapse
Affiliation(s)
- Z V Gagkayeva
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - B P Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - A Ye Kachesov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| |
Collapse
|
18
|
Lairenjam PD, Sukumaran SK, Satapathy DK. Modulation of Optical Anisotropy in Chitosan Thin Films: Role of Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pradipkanti Devi Lairenjam
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Molecular Electronics Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Sathish K. Sukumaran
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Dillip K. Satapathy
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
19
|
Martinez-Gonzalez JA, Cavaye H, McGettrick JD, Meredith P, Motovilov KA, Mostert AB. Interfacial water morphology in hydrated melanin. SOFT MATTER 2021; 17:7940-7952. [PMID: 34378618 DOI: 10.1039/d1sm00777g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The importance of electrically functional biomaterials is increasing as researchers explore ways to utilise them in novel sensing capacities. It has been recognised that for many of these materials the state of hydration is a key parameter that can heavily affect the conductivity, particularly those that rely upon ionic or proton transport as a key mechanism. However, thus far little attention has been paid to the nature of the water morphology in the hydrated state and the concomitant ionic conductivity. Presented here is an inelastic neutron scattering (INS) experiment on hydrated eumelanin, a model bioelectronic material, in order to investigate its 'water morphology'. We develop a rigorous new methodology for performing hydration dependent INS experiments. We also model the eumelanin dry spectra with a minimalist approach whereas for higher hydration levels we are able to obtain difference spectra to extract out the water scattering signal. A key result is that the physi-sorbed water structure within eumelanin is dominated by interfacial water with the number of water layers between 3-5, and no bulk water. We also detect for the first time, the potential signatures for proton cations, most likely the Zundel ion, within a biopolymer/water system. These new signatures may be general for soft proton ionomer systems, if the systems are comprised of only interfacial water within their structure. The nature of the water morphology opens up new questions about the potential ionic charge transport mechanisms within hydrated bioelectronics materials.
Collapse
Affiliation(s)
- J A Martinez-Gonzalez
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | | | | | | | | | | |
Collapse
|
20
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
|
22
|
Terranova ML. Radioactivity to Rethink the Earth's Energy Balance. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000094. [PMID: 34141445 PMCID: PMC8182276 DOI: 10.1002/gch2.202000094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/09/2021] [Indexed: 05/27/2023]
Abstract
This contribution invites to re-examine the whole matter of radioactivity, reconsidering it from the point of view of a realistic source of energy. State-of-the-art and technical aspects are briefly illustrated in this note that aims to open a discussion on this challenging topic.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Tor Vergata University of RomaDepartment of Chemical Sciences and TechnologiesVia della Ricerca ScientificaRoma00133Italy
| |
Collapse
|
23
|
Mostert AB. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers (Basel) 2021; 13:1670. [PMID: 34065580 PMCID: PMC8161012 DOI: 10.3390/polym13101670] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
Today, western society is facing challenges to create new medical technologies to service an aging population as well as the ever-increasing e-waste of electronic devices and sensors. A key solution to these challenges will be the use of biomaterials and biomimetic systems. One material that has been receiving serious attention for its biomedical and device applications is eumelanin. Eumelanin, or commonly known as melanin, is nature's brown-black pigment and is a poly-indolequinone biopolymer, which possess unique physical and chemical properties for material applications. Presented here is a review, aimed at polymer and other materials scientists, to introduce eumelanin as a potential material for research. Covered here are the chemical and physical structures of melanin, an overview of its unique physical and chemical properties, as well as a wide array of applications, but with an emphasis on device and sensing applications. The review is then finished by introducing interested readers to novel synthetic protocols and post synthesis fabrication techniques to enable a starting point for polymer research in this intriguing and complex material.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Wales SA2 8PP, UK
| |
Collapse
|
24
|
Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q. Interfacial Gated Graphene Photodetector with Broadband Response. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22796-22805. [PMID: 33966386 DOI: 10.1021/acsami.1c02738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A much stronger interfacial gating effect was observed in the graphene/HfO2/Si photodetector when compared with that in the graphene/SiO2/Si photodetector. We found that this improvement was due to the higher interface state density at the HfO2/Si interface and the higher dielectric constant of the HfO2 layer. The photoresponsivity of the graphene/HfO2/Si photodetector is as high as 45.8 A W-1. Germanium and amorphous MoS2 (a-MoS2) were used to prepare graphene/HfO2/Ge and graphene/HfO2/a-MoS2 photodetectors, further demonstrating the high efficiency of the interfacial gating mechanism for photodetection. Because of the 0.196 eV bandgap of a-MoS2, which was verified in our previous report, the graphene/HfO2/a-MoS2 photodetector realized ultrabroadband photodetection over the range from 473 nm (visible) to 2712 nm (mid-infrared) at room temperature with photoresponsivity as high as 5.36 A W-1 and response time as fast as 68 μs, which represent significant improvements from the corresponding properties of the pure a-MoS2 photodetectors in our previous report and are comparable with those of state-of-the-art broadband photodetectors. By taking full advantage of the interfacial gating mechanism, a fast response, high photoresponsivity and ultrabroadband photodetection were achieved simultaneously. These interfacial gated graphene photodetectors also offer simple fabrication and full semiconductor process compatibility. The advantages described here indicate that the proposed photodetectors have significant potential for use in electronic and optoelectronic applications and offer a new path toward the development of ultrabroadband photodetectors.
Collapse
Affiliation(s)
- Zhongzheng Huang
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
| | - Junku Liu
- Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
| | - Tianfu Zhang
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
| | - Yuanhao Jin
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiaping Wang
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
| | - Shoushan Fan
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
| | - Qunqing Li
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Xu C, Kandel N, Qiao X, Khan MI, Pratakshya P, Tolouei NE, Chen B, Gorodetsky AA. Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20938-20946. [PMID: 33938723 DOI: 10.1021/acsami.0c18929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein- and peptide-based proton conductors have been extensively studied because of their important roles in biological processes and established potential for bioelectronic device applications. However, despite much progress, the demonstration of long-range proton transport for such materials has remained relatively rare. Herein, we fabricate, electrically interrogate, and physically characterize films from a reflectin-derived polypeptide. The electrical measurements indicate that device-integrated films exhibit proton conductivities with values of ∼0.4 mS/cm and sustain proton transport over distances of ∼1 mm. The accompanying physical characterization indicates that the polypeptide possesses characteristics analogous to those of the parent protein class and furnishes insight into the relationship between the polypeptide's electrical functionality and structure in the solid state. When considered together, our findings hold significance for the continued development and engineering of not only reflectin-based materials but also other bioinspired proton conductors.
Collapse
Affiliation(s)
- Chengyi Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Nabin Kandel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xin Qiao
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Md Imran Khan
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nadia E Tolouei
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Bo Chen
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Alon A Gorodetsky
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
27
|
Zhang L, Lu JR, Waigh TA. Electronics of peptide- and protein-based biomaterials. Adv Colloid Interface Sci 2021; 287:102319. [PMID: 33248339 DOI: 10.1016/j.cis.2020.102319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Biologically inspired peptide- and protein-based materials are at the forefront of organic bioelectronics research due to their inherent conduction properties and excellent biocompatibility. Peptides have the advantages of structural simplicity and ease of synthesis providing credible prospects for mass production, whereas naturally expressed proteins offer inspiration with many examples of high performance evolutionary optimised bioelectronics properties. We review recent advances in the fundamental conduction mechanisms, experimental techniques and exemplar applications for the bioelectronics of self-assembling peptides and proteins. Diverse charge transfer processes, such as tunnelling, hopping and coupled transfer, are found in naturally occurring biological systems with peptides and proteins as the predominant building blocks to enable conduction in biology. Both theory and experiments allow detailed investigation of bioelectronic properties in order to design functionalized peptide- and protein-based biomaterials, e.g. to create biocompatible aqueous electrodes. We also highlight the design of bioelectronics devices based on peptides/proteins including field-effect transistors, piezoelectric energy harvesters and optoelectronics.
Collapse
Affiliation(s)
- L Zhang
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - J R Lu
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - T A Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
28
|
Paulin JV, Batagin-Neto A, Meredith P, Graeff CFO, Mostert AB. Shedding Light on the Free Radical Nature of Sulfonated Melanins. J Phys Chem B 2020; 124:10365-10373. [PMID: 33153262 DOI: 10.1021/acs.jpcb.0c08097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin, an important class of natural pigment found in the human body, has stood out as a promising bioelectronic material due to its rather unique collection of electrical properties and biocompatibility. Among the available melanin derivatives, the sulfonated form has proven to not only be able to produce homogeneous device quality thin films with excellent adhesion, even on hydrophobic surfaces, but also to act as an ion to electron transducing element. It has recently been shown that the transport physics (and dominant carrier generation) may be related to a semiquinone free radical species in these materials. Hence, a better understanding of the paramagnetic properties of sulfonated derivatives could shed light on their charge transport behavior and thus enable improvement in regard to use in bioelectronics. Motivated by this question, in this work, different sulfonated melanin derivatives were investigated by hydration-controlled, continuous-wave X-band electron paramagnetic resonance spectroscopy and electronic structure calculations. Our results show that sulfonated melanin behaves similarly to non-functionalized melanin, but demonstrates a less pronounced response to humidity vis-à-vis standard melanin. We thus speculate on the structural and charge transport behavior in light of these differences with a view to further engineering structure-property relationships.
Collapse
Affiliation(s)
- J V Paulin
- School of Sciences, Postgraduate Program in Science and Technology of Materials (POSMAT), São Paulo State University (UNESP), Bauru, Brazil.,Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - A Batagin-Neto
- School of Sciences, Postgraduate Program in Science and Technology of Materials (POSMAT), São Paulo State University (UNESP), Bauru, Brazil.,São Paulo State University (UNESP), Campus of Itapeva, Itapeva, Brazil
| | - P Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.,School of Mathematics and Physics, University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia
| | - C F O Graeff
- School of Sciences, Postgraduate Program in Science and Technology of Materials (POSMAT), São Paulo State University (UNESP), Bauru, Brazil.,School of Sciences, Department of Physics, São Paulo State University (UNESP), Bauru, Brazil
| | - A B Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
29
|
Reddy SMM, Raßlenberg E, Sloan-Dennison S, Hesketh T, Silberbush O, Tuttle T, Smith E, Graham D, Faulds K, Ulijn RV, Ashkenasy N, Lampel A. Proton-Conductive Melanin-Like Fibers through Enzymatic Oxidation of a Self-Assembling Peptide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003511. [PMID: 33058283 DOI: 10.1002/adma.202003511] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Melanin pigments have various properties that are of technological interest including photo- and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory-based synthesis of melanin and melanin-like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin-like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking. Specifically, a minimalistic self-assembling peptide, Lys-Tyr-Tyr (KYY) with strong propensity to form supramolecular fibers, is utilized. Analysis by Raman spectroscopy shows that the tyrosines are pre-organized inside these fibers and, upon enzymatic oxidation, result in connected catechols. These form 1D conducting tracks along the length of the fiber, which gives rise to a level of internal disorder, but retention of the fiber morphology. This results in highly conductive structures demonstrated to be dominated by proton conduction. This work demonstrates the ability to control oxidation but retain a well-defined fibrous morphology that does not have a known equivalent in biology, and demonstrate exceptional conductivity that is enhanced by enzymatic oxidation.
Collapse
Affiliation(s)
- Samala Murali Mohan Reddy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Eileen Raßlenberg
- Organisch-Chemisches Institut, University of Muenster, Corrensstraße 40, Muenster, 48149, Germany
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Travis Hesketh
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ohad Silberbush
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ewen Smith
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Ph.D. programs in Biochemistry and Chemistry, The Graduate Center of the City, University of New York, New York, NY, 10016, USA
| | - Nurit Ashkenasy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
30
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Paul Meredith
- Department of Physics Swansea University Vivian Building, Singleton Campus SA2 8PP Swansea UK
| | - Markus Buehler
- Laboratory for Atomistic and Molecular Mechanics School of Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
31
|
Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020; 59:11196-11205. [DOI: 10.1002/anie.201914276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/17/2022]
|
32
|
Kim E, Panzella L, Napolitano A, Payne GF. Redox Activities of Melanins Investigated by Electrochemical Reverse Engineering: Implications for their Roles in Oxidative Stress. J Invest Dermatol 2020; 140:537-543. [DOI: 10.1016/j.jid.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/05/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
|
33
|
Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P. Organic field-effect transistor-based flexible sensors. Chem Soc Rev 2020; 49:3423-3460. [DOI: 10.1039/c9cs00811j] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flexible transistors are the next generation sensing technology, due to multiparametric analysis, reduced complexity, biocompatibility, lightweight with tunable optoelectronic properties. We summarize multitude of applications realized with OFETs.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Ali Nawaz
- Departamento de Física
- Universidade Federal do Paraná
- Caixa Postal 19044
- Curitiba
- Brazil
| | - Qian Liu
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Sandeep G. Surya
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Khaled N. Salama
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
34
|
Mostert AB, Rienecker SB, Sheliakina M, Zierep P, Hanson GR, Harmer JR, Schenk G, Meredith P. Engineering proton conductivity in melanin using metal doping. J Mater Chem B 2020; 8:8050-8060. [DOI: 10.1039/d0tb01390k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proton conductivity in the model bioelectronic material melanin, is increased via a unique doping strategy utilising the chelation of the transition metal ion copper II. We also propose a potential mechanism for future such ionic studies.
Collapse
Affiliation(s)
| | | | | | - Paul Zierep
- Institut für Physikalische Chemie
- Albert-Ludwigs-Universität
- Freiburg
- Germany
| | - Graeme R. Hanson
- Centre of Advanced Imaging
- University of Queensland
- St. Lucia
- Australia
| | - Jeffrey R. Harmer
- Centre of Advanced Imaging
- University of Queensland
- St. Lucia
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St. Lucia
- Australia
| | - Paul Meredith
- School of Mathematics and Physics
- University of Queensland
- St. Lucia
- Australia
- Department of Physics
| |
Collapse
|
35
|
Xu R, Soavi F, Santato C. An Electrochemical Study on the Effect of Metal Chelation and Reactive Oxygen Species on a Synthetic Neuromelanin Model. Front Bioeng Biotechnol 2019; 7:227. [PMID: 31681735 PMCID: PMC6813213 DOI: 10.3389/fbioe.2019.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Neuromelanin is present in the cathecolaminergic neuron cells of the substantia nigra and locus coeruleus of the midbrain of primates. Neuromelanin plays a role in Parkinson's disease (PD). Literature reports that neuromelanin features, among others, antioxidant properties by metal ion chelation and free radical scavenging. The pigment has been reported to have prooxidant properties too, in certain experimental conditions. We propose an explorative electrochemical study of the effect of the presence of metal ions and reactive oxygen species (ROS) on the cyclic voltammograms of a synthetic model of neuromelanin. Our work improves the current understanding on experimental conditions where neuromelanin plays an antioxidant or prooxidant behavior, thus possibly contributing to shed light on factors promoting the appearance of PD.
Collapse
Affiliation(s)
- Ri Xu
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC, Canada
| | - Francesca Soavi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Clara Santato
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
36
|
Tian Z, Hwang W, Kim YJ. Mechanistic understanding of monovalent cation transport in eumelanin pigments. J Mater Chem B 2019; 7:6355-6361. [PMID: 31465076 DOI: 10.1039/c9tb01211g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent research advances in charge-conducting materials have enabled the transformation of the naturally-occurring materials into crucial components in many technologies, including renewable energy storage devices or bioelectronics. Among various candidates, eumelanins are promising charge storage materials, exhibiting hybrid electronic ionic conductivity in a hydrated environment. The chemical and electrochemical properties of eumelanins are relatively well studied; however, the structure-property relationship is still elusive up to date. Herein, we reported the mesoscale structure of eumelanins and its impact on the charge transport. X-ray scattering suggests that eumelanin pigments exhibit the semi-crystalline structure with ordered d-spacings. These unique mesoscale structures further influence the charge transport mechanism with the cations of various sizes. Understanding the structures with consequent electrochemical properties suggest that eumelanins can further be tuned to serve as high-performance naturally-occurring charge storage materials.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Wonseok Hwang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20740, USA
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
37
|
Backler F, Wilson GJ, Wang F. Rational use of ligand to shift the UV–vis spectrum of Ru-complex sensitiser dyes for DSSC applications. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Xu R, Gouda A, Caso MF, Soavi F, Santato C. Melanin: A Greener Route To Enhance Energy Storage under Solar Light. ACS OMEGA 2019; 4:12244-12251. [PMID: 31460340 PMCID: PMC6682057 DOI: 10.1021/acsomega.9b01039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 05/28/2023]
Abstract
The development of technologies integrating solar energy conversion and energy storage functions is critical for limiting the anthropogenic effects on climate change and preventing possible energy shortages related to the increase of the world population. In our work, we explored the possibility to integrate the conversion and storage functions within the same multifunctional biosourced material. We identified the redox-active, quinone-based, melanin pigment, featuring a broadband absorption in the UV-vis region, as the ideal candidate for such an exploration. Electrodes of melanin on carbon paper were investigated for their morphological, optical, and voltammetric characteristics prior to being assembled into symmetric supercapacitors operating in aqueous electrolytes. We observed that, under solar light, the capacity and capacitance of melanin electrodes significantly increase with respect to the dark conditions (by 22 and 39%, respectively). Once in a supercapacitor configuration, besides featuring a Coulombic efficiency close to 100% after 5000 cycles, the capacitance and capacity of the electrodes, rated by the initial values, improve after prolonged illumination, as it is the case for the energy and power density.
Collapse
Affiliation(s)
- Ri Xu
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Abdelaziz Gouda
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Maria Federica Caso
- Nanofaber
Spin-Off at ENEA, Casaccia Research Centre, Via Anguillarese 301, Roma 00123, Italy
| | - Francesca Soavi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Clara Santato
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
39
|
Di Capua R, Gargiulo V, Alfè M, De Luca GM, Skála T, Mali G, Pezzella A. Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity. Front Chem 2019; 7:121. [PMID: 30937300 PMCID: PMC6432792 DOI: 10.3389/fchem.2019.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
The recent development of eumelanin pigment-based blends integrating "classical" organic conducting materials is expanding the scope of eumelanin in bioelectronics. Beyond the achievement of high conductivity level, another major goal lays in the knowledge and feasible control of structure/properties relationship. We systematically investigated different hybrid materials prepared by in situ polymerization of the eumelanin precursor 5,6-dihydroxyindole (DHI) in presence of various amounts of graphene-like layers. Spectroscopic studies performed by solid state nuclear magnetic resonance (ss-NMR), x-ray photoemission, and absorption spectroscopies gave a strong indication of the direct impact that the integration of graphene-like layers into the nascent polymerized DHI-based eumelanin has on the structural organization of the pigment itself, while infrared, and photoemission spectroscopies indicated the occurrence of negligible changes as concerns the chemical units. A tighter packing of the constituent units could represent a strong factor responsible for the observed improved electrical conductivity of the hybrid materials, and could be possible exploited as a tool for electrical conductivity tuning.
Collapse
Affiliation(s)
- Roberto Di Capua
- Department of Physics “E. Pancini”, University of Naples “Federico II” and Superconducting and Other Innovative Materials and Devices Institute (SPIN), CNR, Naples, Italy
| | | | - Michela Alfè
- Institute for Research on Combustion (IRC), CNR, Naples, Italy
| | - Gabriella Maria De Luca
- Department of Physics “E. Pancini”, University of Naples “Federico II” and Superconducting and Other Innovative Materials and Devices Institute (SPIN), CNR, Naples, Italy
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Alessandro Pezzella
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, Pozzuoli, Italy
| |
Collapse
|
40
|
Erker S, Hofmann OT. Fractional and Integer Charge Transfer at Semiconductor/Organic Interfaces: The Role of Hybridization and Metallicity. J Phys Chem Lett 2019; 10:848-854. [PMID: 30732451 DOI: 10.1021/acs.jpclett.8b03857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inorganic/organic interfaces show two phenomenologically different types of charge transfer: On inert substrates, charge is localized, leading to a coexistence of neutral and charged molecules. Conversely, on metals, which have more available charge carriers and a larger propensity to hybridize, the charge is homogeneously delocalized. In this contribution, we use hybrid density functional theory to study the adsorption of the strong electron acceptor F4TCNQ on ZnO(10-10) as a function of the substrate's doping concentration. This system undergoes a joint charge donation/backdonation reaction. Because only the former is driven by hybridization, this allows us to study the impact of hybridization and the availability of charge carriers separately. We find that here both charge-transfer types are simultaneously at work. Whereas hybridization determines the charge localization, the charge-carrier concentration determines the amount of transferred charge. Consequently, at low doping concentrations, most of the electron acceptors become slightly positively, rather than negatively, charged.
Collapse
Affiliation(s)
- Simon Erker
- Institute of Solid State Physics , Graz University of Technology, NAWI Graz , Petersgasse 16 , 8010 Graz , Austria
| | - Oliver T Hofmann
- Institute of Solid State Physics , Graz University of Technology, NAWI Graz , Petersgasse 16 , 8010 Graz , Austria
| |
Collapse
|
41
|
San-Fabián E, Louis E, Díaz-García MA, Chiappe G, Vergés JA. Transport and Optical Gaps in Amorphous Organic Molecular Materials. Molecules 2019; 24:E609. [PMID: 30744125 PMCID: PMC6384593 DOI: 10.3390/molecules24030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
The standard procedure to identify the hole- or electron-acceptor character of amorphous organic materials used in OLEDs is to look at the values of a pair of basic parameters, namely, the ionization potential (IP) and the electron affinity (EA). Recently, using published experimental data, the present authors showed that only IP matters, i.e., materials with IP > 5.7 (<5.7) showing electron (hole) acceptor character. Only three materials fail to obey this rule. This work reports ab initio calculations of IP and EA of those materials plus two materials that behave according to that rule, following a route which describes the organic material by means of a single molecule embedded in a polarizable continuum medium (PCM) characterized by a dielectric constant ε . PCM allows to approximately describe the extended character of the system. This "compound" system was treated within density functional theory (DFT) using several combinations of the functional/basis set. In the preset work ε was derived by assuming Koopmans' theorem to hold. Optimal ε values are in the range 4.4⁻5.0, close to what is expected for this material family. It was assumed that the optical gap corresponds to the excited state with a large oscillator strength among those with the lowest energies, calculated with time-dependent DFT. Calculated exciton energies were in the range 0.76⁻1.06 eV, and optical gaps varied from 3.37 up to 4.50 eV. The results are compared with experimental data.
Collapse
Affiliation(s)
- Emilio San-Fabián
- Departamento de Química Física, Universidad de Alicante, 03080 Alicante, Spain.
| | - Enrique Louis
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - María A Díaz-García
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Guillermo Chiappe
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - José A Vergés
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain;.
| |
Collapse
|
42
|
Argoubi W, Rabti A, Ben Aoun S, Raouafi N. Sensitive detection of ascorbic acid using screen-printed electrodes modified by electroactive melanin-like nanoparticles. RSC Adv 2019; 9:37384-37390. [PMID: 35542308 PMCID: PMC9075527 DOI: 10.1039/c9ra07948c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, we report on the design of an enzyme-less sensitive and selective electrochemical electrode for ascorbic acid (AA) detection using a modified screen-printed electrode of melanin-like nanoparticles (Mel-NPs). Cyclic voltammetry shows that the melanin-modified electrode exhibits high electrocatalytic activity for ascorbic acid. The melanin-like nanoparticles serve as a shuttle to transport electrons from ascorbic acid to the electrode surface. The modified electrode is endowed with a large dynamic window ranging from 5 to 500 ppb. The detection and quantification limits were estimated to be 0.07 and 0.23 ppb, respectively. The modified electrode was successfully used to determine AA in human blood serum, urine and saliva with satisfactory recovery levels. A melanin-like nanoparticle modified screen-printed electrode for enzyme-less detection of ascorbic acid.![]()
Collapse
Affiliation(s)
- Wicem Argoubi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Amal Rabti
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Sami Ben Aoun
- Taibah University
- Faculty of Science
- Chemistry Department
- Al-Madinah Al-Munawarah
- Saudi Arabia
| | - Noureddine Raouafi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| |
Collapse
|
43
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
44
|
Motovilov KA, Grinenko V, Savinov M, Gagkaeva ZV, Kadyrov LS, Pronin AA, Bedran ZV, Zhukova ES, Mostert AB, Gorshunov BP. Redox chemistry in the pigment eumelanin as a function of temperature using broadband dielectric spectroscopy. RSC Adv 2019; 9:3857-3867. [PMID: 35518099 PMCID: PMC9060503 DOI: 10.1039/c8ra09093a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
We demonstrate on synthetic eumelanin that biomolecular conductivity models should account for temperature and hydration effects coherently.
Collapse
Affiliation(s)
| | - V. Grinenko
- Institute for Solid State and Materials Physics
- TU Dresden
- Dresden
- Germany
- Institute for Metallic Materials
| | - M. Savinov
- Institute of Physics AS CR
- Praha 8
- Czech Republic
| | | | | | - A. A. Pronin
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Moscow
- Russia
| | - Z. V. Bedran
- Moscow Institute of Physics and Technology
- Russia
| | - E. S. Zhukova
- Moscow Institute of Physics and Technology
- Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Moscow
- Russia
| | | | - B. P. Gorshunov
- Moscow Institute of Physics and Technology
- Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
45
|
Chatterjee S, Prados-Rosales R, Tan S, Phan VC, Chrissian C, Itin B, Wang H, Khajo A, Magliozzo RS, Casadevall A, Stark RE. The melanization road more traveled by: Precursor substrate effects on melanin synthesis in cell-free and fungal cell systems. J Biol Chem 2018; 293:20157-20168. [PMID: 30385508 PMCID: PMC6311522 DOI: 10.1074/jbc.ra118.005791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Natural brown-black eumelanin pigments confer structural coloration in animals and potently block ionizing radiation and antifungal drugs. These functions also make them attractive for bioinspired materials design, including coating materials for drug-delivery vehicles, strengthening agents for adhesive hydrogel materials, and free-radical scavengers for soil remediation. Nonetheless, the molecular determinants of the melanin "developmental road traveled" and the resulting architectural features have remained uncertain because of the insoluble, heterogeneous, and amorphous characteristics of these complex polymeric assemblies. Here, we used 2D solid-state NMR, EPR, and dynamic nuclear polarization spectroscopic techniques, assisted in some instances by the use of isotopically enriched precursors, to address several open questions regarding the molecular structures and associated functions of eumelanin. Our findings uncovered: 1) that the identity of the available catecholamine precursor alters the structure of melanin pigments produced either in Cryptococcus neoformans fungal cells or under cell-free conditions; 2) that the identity of the available precursor alters the scaffold organization and membrane lipid content of melanized fungal cells; 3) that the fungal cells are melanized preferentially by an l-DOPA precursor; and 4) that the macromolecular carbon- and nitrogen-based architecture of cell-free and fungal eumelanins includes indole, pyrrole, indolequinone, and open-chain building blocks that develop depending on reaction time. In conclusion, the availability of catecholamine precursors plays an important role in eumelanin development by affecting the efficacy of pigment formation, the melanin molecular structure, and its underlying scaffold in fungal systems.
Collapse
Affiliation(s)
- Subhasish Chatterjee
- From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031,.
| | - Rafael Prados-Rosales
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461,; CIC bioGUNE, Derio, Vizcaya 48160, Spain
| | - Sindy Tan
- From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031
| | - Van Chanh Phan
- the Department of Natural Sciences, CUNY Hostos Community College, Bronx, New York 10451
| | - Christine Chrissian
- From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031,; the City University of New York, Ph.D. Program in Biochemistry, New York, New York 10036
| | - Boris Itin
- the New York Structural Biology Center, New York, New York 10027
| | - Hsin Wang
- From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031
| | - Abdelahad Khajo
- the Department of Chemistry, CUNY Brooklyn College, Brooklyn, New York 11210,; the City University of New York, Ph.D. Program in Chemistry, New York, New York 10036, and
| | - Richard S Magliozzo
- the City University of New York, Ph.D. Program in Biochemistry, New York, New York 10036,; the Department of Chemistry, CUNY Brooklyn College, Brooklyn, New York 11210,; the City University of New York, Ph.D. Program in Chemistry, New York, New York 10036, and
| | - Arturo Casadevall
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ruth E Stark
- From the Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031,; the City University of New York, Ph.D. Program in Biochemistry, New York, New York 10036,; the City University of New York, Ph.D. Program in Chemistry, New York, New York 10036, and
| |
Collapse
|
46
|
Ju KY, Fischer MC, Warren WS. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin. ACS NANO 2018; 12:12050-12061. [PMID: 30500158 DOI: 10.1021/acsnano.8b04905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the relationship between the complex hierarchical assembly structure of eumelanin, its characteristic broad absorption band, and the highly unusual nonlinear dynamics revealed by pump-probe or transient absorption microscopy. Melanin-like nanoparticles (MelNPs), generated by spontaneous oxidation of dopamine, were created with uniform but adjustable size distributions, and kinetically controlled oxidation was probed with a wide range of characterization methods. This lets us explore the broad absorption bands of eumelanin models at different assembly levels, such as small subunit fractions (single monomeric and oligomeric units and small oligomer stacks), stacked oligomer fractions (protomolecules), and large-scale aggregates of protomolecules (parental particles). Both the absorption and pump-probe dynamics are very sensitive to these structural differences or to the size of intact particles (a surprising result for an organic polymer). We show that the geometric packing order of protomolecules in long-range aggregation is key secondary interactions to extend the absorption band of eumelanin to the low energy spectrum and produce drastic changes in the transient absorption spectrum.
Collapse
Affiliation(s)
- Kuk-Youn Ju
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Martin C Fischer
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
- Department of Physics , Duke University , Durham , North Carolina 27708 , United States
| | - Warren S Warren
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
- Department of Physics , Duke University , Durham , North Carolina 27708 , United States
- Department of Radiology , Duke University , Durham , North Carolina 27710 , United States
| |
Collapse
|
47
|
Cao C, Kim E, Liu Y, Kang M, Li J, Yin JJ, Liu H, Qu X, Liu C, Bentley WE, Payne GF. Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules 2018; 19:3502-3514. [DOI: 10.1021/acs.biomac.8b00809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunhua Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, P R China
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Mijeong Kang
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P R China
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| |
Collapse
|
48
|
Kim H, Kim G, Song I, Lee J, Abdullah H, Yang C, Oh JH. Ambipolar organic phototransistors based on 6,6'-dibromoindigo. RSC Adv 2018; 8:14747-14752. [PMID: 35541344 PMCID: PMC9079942 DOI: 10.1039/c8ra02346h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Ambipolar organic phototransistors were fabricated using a natural pigment 6,6'-dibromoindigo (6-BrIG) as the active channel. These phototransistors yielded significantly enhanced currents upon light illumination with photoresponsivities and external quantum efficiencies as high as 10.3 A W-1 and 2437% for the n-channel, and 55.4 mA W-1 and 13.1% for the p-channel, respectively. In addition, simple inverter complementary circuits were fabricated by integrating two ambipolar phototransistors. Channel current was dependent on light intensity and voltage bias. This study provides a basis for an in-depth understanding of the optoelectronic characteristics of 6-BrIG, and introduces this material as an ecofriendly candidate for optoelectronic applications.
Collapse
Affiliation(s)
- Hyoeun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 790-784 South Korea
| | - Gyoungsik Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun Ulsan 44919 South Korea
| | - Inho Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 790-784 South Korea
| | - Jungho Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun Ulsan 44919 South Korea
| | - Hanum Abdullah
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 790-784 South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun Ulsan 44919 South Korea
| | - Joon Hak Oh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 790-784 South Korea
| |
Collapse
|
49
|
Mostert AB, Rienecker SB, Noble C, Hanson GR, Meredith P. The photoreactive free radical in eumelanin. SCIENCE ADVANCES 2018; 4:eaaq1293. [PMID: 29600273 PMCID: PMC5873843 DOI: 10.1126/sciadv.aaq1293] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/13/2018] [Indexed: 05/12/2023]
Abstract
Melanin is the primary photoprotecting pigment in humans as well as being implicated in the development of deadly melanoma. The material also conducts electricity and has thus become a bioelectronic model for proton-to-electron transduction. Central to these phenomena are its spin properties-notably two linked species derived from carbon-centered and semiquinone radicals. Using a novel in situ photoinduced electron paramagnetic resonance technique with simultaneous electrical measurements, we have elucidated for the first time the distinct photoreactivity of the two different radical species. We find that the production of the semiquinone is light- and water-driven, explaining the electrical properties and revealing biologically relevant photoreactivity.
Collapse
Affiliation(s)
- Albertus B. Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Shermiyah B. Rienecker
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Christopher Noble
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| |
Collapse
|
50
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2392-2398. [PMID: 29731543 PMCID: PMC5929988 DOI: 10.1016/j.snb.2017.08.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polymerization of intracellular sickle hemoglobin induced by low oxygen tension has been recognized as a primary determinant of the pathophysiologic manifestations in sickle cell disease. Existing flow cytometry techniques for detection of sickle cells are typically based on fluorescence markers or cellular morphological analysis. Using microfluidics and electrical impedance spectroscopy, we develop a new, label-free flow cytometry for non-invasive measurement of single cells under controlled oxygen level. We demonstrate the capability of this new technique by determining the electrical impedance differential of normal red blood cells obtained from a healthy donor and sickle cells obtained from three sickle cell patients, under normoxic and hypoxic conditions and at three different electrical frequencies, 156 kHz, 500 kHz and 3 MHz. Under normoxia, normal cells and sickle cells can be separated completely using electrical impedance at 156 kHz and 500 kHz but not at 3 MHz. Sickle cells, intra-patient and inter-patient show significantly different electrical impedance between normoxia and hypoxia at all three frequencies. This study shows a proof of concept that electrical impedance signal can be used as an indicator of the disease state of a red blood cell as well as the cell sickling events in sickle cell disease. Electrical impedance-based microflow cytometry with oxygen control is a new method that can be potentially used for sickle cell disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Jia Liu
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ofelia Alvarez
- Division of Pediatric Hematology and Oncology, University of Miami, Miami, FL 33136, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
- Corresponding author at: Department of Ocean and Mechanical Engineering, 777 Glades Road, Bldg. 36-175, Boca Raton, FL 33431-0991, USA. (E. Du)
| |
Collapse
|