1
|
Matveychuk YV, Regel RL, Bartashevich EV. Noncovalent Interactions of Silatranes and Germatranes with the Surface of Stoichiometric and Hydroxylated 2D Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13227-13235. [PMID: 38870102 DOI: 10.1021/acs.langmuir.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Analysis of noncovalent interactions formed by the surface of a 2D silica bilayer and atrane molecules, as precursors of functional layers immobilized on a surface of silicatene, was performed. For this purpose, the systems of substituted silatranes and germatranes adsorbed on silicatene surfaces with different amounts of hydroxyl groups (0, 2, 4, and 30 per cell) were simulated by using quantum chemical modeling with periodic boundary conditions and full-electron basis sets. The observation results for interaction energy changes in the systems "atrane molecule-silicatene surface" with increasing silanol number of the silicatene surface can be used to predict the optimal degree of silicatene hydroxylation in order to control the effective progress of atrane deprotection on activated 2D silica materials. In addition to the typical hydrogen bonds, the ability of atranes to form noncovalent O···O and O···Hal interactions was discovered. In these bonds, the oxygen or halogen atoms of atranes act as electron-donor centers in relation to the silicatene oxygen atoms. The observed weakening of the Ge-O covalent bonds in germatranes, on which further deprotection reaction depends, is more manifested than for the Si-O bonds in adsorbed silatranes.
Collapse
Affiliation(s)
- Yury V Matveychuk
- MMMFM Research Laboratory, South Ural State University, Chelyabinsk 454080, Russia
| | - Roman L Regel
- MMMFM Research Laboratory, South Ural State University, Chelyabinsk 454080, Russia
| | | |
Collapse
|
2
|
Abstract
Two-dimensional (2D) ultrathin silica films have the potential to reach technological importance in electronics and catalysis. Several well-defined 2D-silica structures have been synthesized so far. The silica bilayer represents a 2D material with SiO2 stoichiometry. It consists of precisely two layers of tetrahedral [SiO4] building blocks, corner connected via oxygen bridges, thus forming a self-saturated silicon dioxide sheet with a thickness of ∼0.5 nm. Inspired by recent successful preparations and characterizations of these 2D-silica model systems, scientists now can forge novel concepts for realistic systems, particularly by atomic-scale studies with the most powerful and advanced surface science techniques and density functional theory calculations. This Review provides a solid introduction to these recent developments, breakthroughs, and implications on ultrathin 2D-silica films, including their atomic/electronic structures, chemical modifications, atom/molecule adsorptions, and catalytic reactivity properties, which can help to stimulate further investigations and understandings of these fundamentally important 2D materials.
Collapse
Affiliation(s)
- Jian-Qiang Zhong
- School of Physics, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121 Zhejiang, China
| | - Hans-Joachim Freund
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
3
|
Das T, Tosoni S, Pacchioni G. Role of support in tuning the properties of single atom catalysts: Cu, Ag, Au, Ni, Pd, and Pt adsorption on SiO 2/Ru, SiO 2/Pt, and SiO 2/Si ultrathin films. J Chem Phys 2021; 154:134706. [PMID: 33832274 DOI: 10.1063/5.0048104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of the support in tuning the properties of transition metal (TM) atoms is studied by means of density functional theory calculations. We have considered the adsorption of Cu, Ag, Au, Ni, Pd, and Pt atoms on crystalline silica bilayers, either free-standing or supported on Ru(0001) and Pt(111) metal surfaces. These systems have been compared with an hydroxylated SiO2/Si(100) film simulating the native oxide formed on a silicon wafer. The properties of the TM atoms change significantly on the various supports. While the unsupported silica bilayer weakly binds some of the TM atoms studied, the SiO2/Ru(0001) or SiO2/Pt(111) supports exhibit enhanced reactivity, sometimes resulting in a net electron transfer with the formation of charged species. Differences in the behavior of SiO2/Ru(0001) and SiO2/Pt(111) are rationalized in terms of different work functions and metal/oxide interfacial distances. No electron transfer is observed on the SiO2/Si(100) films. Here, the presence of hydroxyl groups on the surface provides relatively strong binding sites for the TM atoms that can be stabilized by the interaction with one or two OH groups. The final aspect that has been investigated is the porosity of the silica bilayer, at variance with the dense SiO2/Si(100) film. Depending on the atomic size, some TM atoms can penetrate spontaneously through the six-membered silica rings and become stabilized in the pores of the bilayer or at the SiO2/metal interface. This study shows how very different chemical properties can be obtained by depositing the same TM atom on different silica supports.
Collapse
Affiliation(s)
- Tilak Das
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi, 55-20125 Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi, 55-20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi, 55-20125 Milano, Italy
| |
Collapse
|
4
|
Ament K, Köwitsch N, Hou D, Götsch T, Kröhnert J, Heard CJ, Trunschke A, Lunkenbein T, Armbrüster M, Breu J. Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials. Angew Chem Int Ed Engl 2021; 60:5890-5897. [PMID: 33289925 PMCID: PMC7986867 DOI: 10.1002/anie.202015138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/07/2022]
Abstract
Ultrathin layers of oxides deposited on atomically flat metal surfaces have been shown to significantly influence the electronic structure of the underlying metal, which in turn alters the catalytic performance. Upscaling of the specifically designed architectures as required for technical utilization of the effect has yet not been achieved. Here, we apply liquid crystalline phases of fluorohectorite nanosheets to fabricate such architectures in bulk. Synthetic sodium fluorohectorite, a layered silicate, when immersed into water spontaneously and repulsively swells to produce nematic suspensions of individual negatively charged nanosheets separated to more than 60 nm, while retaining parallel orientation. Into these galleries oppositely charged palladium nanoparticles were intercalated whereupon the galleries collapse. Individual and separated Pd nanoparticles were thus captured and sandwiched between nanosheets. As suggested by the model systems, the resulting catalyst performed better in the oxidation of carbon monoxide than the same Pd nanoparticles supported on external surfaces of hectorite or on a conventional Al2 O3 support. XPS confirmed a shift of Pd 3d electrons to higher energies upon coverage of Pd nanoparticles with nanosheets to which we attribute the improved catalytic performance. DFT calculations showed increasing positive charge on Pd weakened CO adsorption and this way damped CO poisoning.
Collapse
Affiliation(s)
- Kevin Ament
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Nicolas Köwitsch
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzGermany
| | - Dianwei Hou
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Thomas Götsch
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Jutta Kröhnert
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Christopher J. Heard
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Annette Trunschke
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Thomas Lunkenbein
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Marc Armbrüster
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzGermany
| | - Josef Breu
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
5
|
Ament K, Köwitsch N, Hou D, Götsch T, Kröhnert J, Heard CJ, Trunschke A, Lunkenbein T, Armbrüster M, Breu J. Nanopartikel auf subnanometer dünnen oxidischen Filmen: Skalierung von Modellsystemen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5954-5961. [PMID: 38505494 PMCID: PMC10946923 DOI: 10.1002/ange.202015138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 03/21/2024]
Abstract
AbstractDurch die Abscheidung von ultradünnen Oxidschichten auf atomar‐flachen Metalloberflächen konnte die elektronische Struktur des Metalls und hierdurch dessen katalytische Aktivität beeinflusst werden. Die Skalierung dieser Architekturen für eine technische Nutzbarkeit war bisher aber kaum möglich. Durch die Verwendung einer flüssigkristallinen Phase aus Fluorhectorit‐Nanoschichten, können wir solche Architekturen in skalierbarem Maßstab imitieren. Synthetischer Natriumfluorhectorit (NaHec) quillt spontan und repulsiv in Wasser zu einer nematischen flüssigkristallinen Phase aus individuellen Nanoschichten. Diese tragen eine permanente negative Schichtladung, sodass selbst bei einer Separation von über 60 nm eine parallele Anordnung der Schichten behalten wird. Zwischen diesen Nanoschichten können Palladium‐Nanopartikel mit entgegengesetzter Ladung eingelagert werden, wodurch die nematische Phase kollabiert und separierte Nanopartikel zwischen den Schichten fixiert werden. Die Aktivität zur CO‐Oxidation des so entstandenen Katalysators war höher als z. B. die der gleichen Nanopartikel auf konventionellem Al2O3 oder der externen Oberfläche von NaHec. Durch Röntgenphotoelektronenspektroskopie konnte eine Verschiebung der Pd‐3d‐Elektronen zu höheren Bindungsenergien beobachtet werden, womit die erhöhte Aktivität erklärt werden kann. Berechnungen zeigten, dass mit erhöhter positiver Ladung des Pd die Adsorptionsstärke von CO erniedrigt und damit auch die Vergiftung durch CO vermindert wird.
Collapse
Affiliation(s)
- Kevin Ament
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthDeutschland
| | - Nicolas Köwitsch
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzDeutschland
| | - Dianwei Hou
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Thomas Götsch
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Jutta Kröhnert
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Christopher J. Heard
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Annette Trunschke
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Thomas Lunkenbein
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Marc Armbrüster
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzDeutschland
| | - Josef Breu
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthDeutschland
| |
Collapse
|
6
|
Heard CJ, Čejka J, Opanasenko M, Nachtigall P, Centi G, Perathoner S. 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801712. [PMID: 30132995 DOI: 10.1002/adma.201801712] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Indexed: 05/24/2023]
Abstract
2D oxide nanomaterials constitute a broad range of materials, with a wide array of current and potential applications, particularly in the fields of energy storage and catalysis for sustainable energy production. Despite the many similarities in structure, composition, and synthetic methods and uses, the current literature on layered oxides is diverse and disconnected. A number of reviews can be found in the literature, but they are mostly focused on one of the particular subclasses of 2D oxides. This review attempts to bridge the knowledge gap between individual layered oxide types by summarizing recent developments in all important 2D oxide systems including supported ultrathin oxide films, layered clays and double hydroxides, layered perovskites, and novel 2D-zeolite-based materials. Particular attention is paid to the underlying similarities and differences between the various materials, and the subsequent challenges faced by each research community. The potential of layered oxides toward future applications is critically evaluated, especially in the areas of electrocatalysis and photocatalysis, biomass conversion, and fine chemical synthesis. Attention is also paid to corresponding novel 3D materials that can be obtained via sophisticated engineering of 2D oxides.
Collapse
Affiliation(s)
- Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Science, Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Gabriele Centi
- Dept.s MIFT and ChiBioFarAm-Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno S'Alcontres 31, 98166, Messina, Italy
| | - Siglinda Perathoner
- Dept.s MIFT and ChiBioFarAm-Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno S'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
7
|
Björkman T, Skakalova V, Kurasch S, Kaiser U, Meyer JC, Smet JH, Krasheninnikov AV. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. ACS NANO 2016; 10:10929-10935. [PMID: 28024359 PMCID: PMC5198257 DOI: 10.1021/acsnano.6b05577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.
Collapse
Affiliation(s)
- Torbjörn Björkman
- Physics/Department
of Natural Sciences, Åbo Akademi, Turku FI-20500, Finland
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box 11100, Aalto 00076, Finland
| | - Viera Skakalova
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Wien 1190, Austria
- STU Center
for Nanodiagnostics, Vazovova 5, Bratislava 81243, Slovakia
| | - Simon Kurasch
- Electron
Microscopy Group of Materials Science, University
of Ulm, Ulm 89081, Germany
| | - Ute Kaiser
- Electron
Microscopy Group of Materials Science, University
of Ulm, Ulm 89081, Germany
| | - Jannik C. Meyer
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Wien 1190, Austria
| | - Jurgen H. Smet
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box 11100, Aalto 00076, Finland
| |
Collapse
|
8
|
Wang S, Xie S, Huang G, Guo H, Cho Y, Chen J, Fujita D, Xu M. Grassy Silica Nanoribbons and Strong Blue Luminescence. Sci Rep 2016; 6:34231. [PMID: 27666663 PMCID: PMC5035931 DOI: 10.1038/srep34231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.
Collapse
Affiliation(s)
- Shengping Wang
- College of Information Science &Electronic Engineering, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027, P. R. China
| | - Shuang Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guowei Huang
- College of Information Science &Electronic Engineering, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027, P. R. China
| | - Hongxuan Guo
- Nano Characterization Unit, National Institute for Materials Science,1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Yujin Cho
- Nano Electronics Materials Unit, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Chen
- Nano Electronics Materials Unit, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Daisuke Fujita
- Nano Characterization Unit, National Institute for Materials Science,1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Mingsheng Xu
- College of Information Science &Electronic Engineering, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027, P. R. China
| |
Collapse
|