1
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
2
|
Cataldo R, De Nunzio G, Millithaler JF, Alfinito E. Aptamers Which Target Proteins: What Proteotronics Suggests to Pharmaceutics. Curr Pharm Des 2020; 26:363-371. [PMID: 31942851 DOI: 10.2174/1381612826666200114095027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Aptamers represent a challenging field of research, relevant for diagnosis in macular degeneration, cancer, thrombosis and many inflammatory diseases, and promising in drug discovery and development. Their selection is currently performed by a stable in vitro technology, namely, SELEX. Furthermore, computationalstatistical tools have been developed to complement the SELEX selection; they work both in the preliminary stage of selection, by designing high affinity aptamers for the assigned target, and also in the final stage, analyzing the features of the best performers to implement the selection technique further. A massive use of the in silico approach is, at present, only restricted by the limited knowledge of the specific aptamer-target topology. Actually, only about fifty X-ray structures of aptamer-protein complexes have been experimentally resolved, highlighting how this knowledge has to be improved. The structure of biomolecules like aptamer-protein complexes can be represented by networks, from which several parameters can be extracted. This work briefly reviews the literature, discussing if and how general network parameters in the framework of Proteotronics and graph theory (such as electrical features, link number, free energy change, and assortativity), are important in characterizing the complexes, anticipating some features of the biomolecules. To better explain this topic, a case-study is proposed, constituted by a set of anti-angiopoietin (Ang2) aptamers, whose performances are known from the experiments, and for which two different types of conformers were predicted. A topological indicator is proposed, named Möbius (M), which combines local and global information, and seems able to discriminate between the two possible types of conformers, so that it can be considered as a useful complement to the in vitro screening for pharmaceutical aims.
Collapse
Affiliation(s)
- Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy.,Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), University of Salento and ASL (Local Health Authority), Lecce, Italy
| | - Giorgio De Nunzio
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy.,Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), University of Salento and ASL (Local Health Authority), Lecce, Italy
| | - Jean-Francois Millithaler
- Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, United States
| | - Eleonora Alfinito
- Department of Innovation Engineering, University of Salento, Lecce, Italy
| |
Collapse
|
3
|
|
4
|
Alfinito E, Reggiani L, Cataldo R, De Nunzio G, Giotta L, Guascito MR. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors. NANOTECHNOLOGY 2017; 28:065502. [PMID: 28050975 DOI: 10.1088/1361-6528/aa510f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione. Università del Salento, via Monteroni, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Alfinito E, Reggiani L. Modeling Current-Voltage Charateristics of Proteorhodopsin and Bacteriorhodopsin: Towards an Optoelectronics Based on Proteins. IEEE Trans Nanobioscience 2016; 15:775-780. [DOI: 10.1109/tnb.2016.2617678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Alfinito E, Reggiani L. Mechanisms responsible for the photocurrent in bacteriorhodopsin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032702. [PMID: 25871139 DOI: 10.1103/physreve.91.032702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 06/04/2023]
Abstract
Recently, there has been growing interest in the electrical properties of bacteriorhodopsin (bR), a protein belonging to the transmembrane protein family. Several experiments pointed out the role of green light in enhancing the current flow in nanolayers of bR, thus confirming potential applications of this protein in the field of optoelectronics. By contrast, the mechanisms underlying the charge transfer and the associated photocurrent are still far from being understood at a microscopic level. To take into account the structure-dependent nature of the current, in a previous set of papers we suggested a mechanism of sequential tunneling among neighboring amino acids. As a matter of fact, when irradiated with green light, bR undergoes a conformational change at a molecular level. Thus, the role played by the protein tertiary-structure in modeling the charge transfer cannot be neglected. The aim of this paper is to go beyond previous models, in the framework of a new branch of electronics we call proteotronics, which exploits the ability of using proteins as reliable, well-understood materials for the development of novel bioelectronic devices. In particular, the present approach assumes that the conformational change is not the unique transformation the protein undergoes when irradiated by light. Instead, the light can also promote an increase of the protein state free energy that, in turn, should modify its internal degree of connectivity. This phenomenon is here described by the change of the value of an interaction radius associated with the physical interactions among amino acids. The implemented model enables us to achieve a better agreement between theory and experiments in the region of a low applied bias by preserving the level of agreement at high values of applied bias. Furthermore, results provide new insights on the mechanisms responsible for bR photoresponse.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| | - Lino Reggiani
- Dipartimento di Matematica e Fisica, "Ennio de Giorgi," Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| |
Collapse
|
7
|
Roy T, Barman S. Performance Analysis of Network Model to Identify Healthy and Cancerous Colon Genes. IEEE J Biomed Health Inform 2015; 20:710-6. [PMID: 25730835 DOI: 10.1109/jbhi.2015.2408366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Modeling of cancerous and healthy Homo Sapiens colon gene using electrical network is proposed to study their behavior. In this paper, the individual amino acid models are designed using hydropathy index of amino acid side chain. The phase and magnitude responses of genes are examined to screen out cancer from healthy genes. The performance of proposed modeling technique is judged using various performance measurement metrics such as accuracy, sensitivity, specificity, etc. The network model performance is increased with frequency, which is analyzed using the receiver operating characteristic curve. The accuracy of the model is tested on colon genes and achieved maximum 97% at 10-MHz frequency.
Collapse
|
8
|
Yi X, Zhang Y, Wang P, Qi J, Hu M, Zhong G. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein. Int J Biol Sci 2015; 11:75-87. [PMID: 25552932 PMCID: PMC4278257 DOI: 10.7150/ijbs.9872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023] Open
Abstract
Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications.
Collapse
Affiliation(s)
- Xin Yi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yanbo Zhang
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Peidan Wang
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiangwei Qi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Alfinito E, Pousset J, Reggiani L, Lee K. Photoreceptors for a light biotransducer: a comparative study of the electrical responses of two (type-1) opsins. NANOTECHNOLOGY 2013; 24:395501. [PMID: 24013479 DOI: 10.1088/0957-4484/24/39/395501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increasing interest in photoactivated proteins as natural replacements for standard inorganic materials in photocells leads to the comparison analysis of bacteriorhodopsin and proteorhodopsin, two widely diffused proteins belonging to the family of type-1 opsins. These proteins share similar behaviors but exhibit relevant differences in the sequential chain of the amino acids constituting their tertiary structure. The use of an impedance network analog to model the protein main features provides a microscopic interpretation of a set of experiments on their photo-conductance properties. In particular, this model links the protein electrical responses to the tertiary structure and to the interactions between neighboring amino acids. The same model is also used to predict the small-signal response in terms of the Nyquist plot. Interestingly, these rhodopsins are found to behave like a wide-gap semiconductor with intrinsic conductivities of the order of 10⁻⁷ S cm⁻¹.
Collapse
Affiliation(s)
- E Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy, EU. CNISM-Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, via della Vasca Navale, 84, I-00146 Roma, Italy, EU
| | | | | | | |
Collapse
|
10
|
Alfinito E, Pousset J, Reggiani L. The electrical properties of olfactory receptors in the development of biological smell sensors. Methods Mol Biol 2013; 1003:67-83. [PMID: 23585034 DOI: 10.1007/978-1-62703-377-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present here the results of the investigation of the electrical properties of two olfactory receptors (ORs): rat, OR I7, and human, OR 17-40, which are of interest in the creation of smell nanobiosensors. Described here is our investigation comparing the results from experiments using electrochemical impedance spectroscopy with the theoretical predictions obtained from a recently developed impedance network protein analog. The changes in the OR response following excitation correlated with the protein conformational change. The satisfactory agreement between theory and experiment points to a promising development of a new class of nanobiosensors based on the electrical properties of sensing proteins.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | | |
Collapse
|
11
|
Reggiani L, Millithaler JF, Pennetta C. Microscopic modeling of charge transport in sensing proteins. NANOSCALE RESEARCH LETTERS 2012; 7:340. [PMID: 22726939 PMCID: PMC3512477 DOI: 10.1186/1556-276x-7-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/22/2012] [Indexed: 06/01/2023]
Abstract
: Sensing proteins (receptors) are nanostructures that exhibit very complex behaviors (ions pumping, conformational change, reaction catalysis, etc). They are constituted by a specific sequence of amino acids within a codified spatial organization. The functioning of these macromolecules is intrinsically connected with their spatial structure, which modifications are normally associated with their biological function. With the advance of nanotechnology, the investigation of the electrical properties of receptors has emerged as a demanding issue. Beside the fundamental interest, the possibility to exploit the electrical properties for the development of bioelectronic devices of new generations has attracted major interest. From the experimental side, we investigate three complementary kinds of measurements: (1) current-voltage (I-V) measurements in nanometric layers sandwiched between macroscopic contacts, (2) I-V measurements within an AFM environment in nanometric monolayers deposited on a conducting substrate, and (3) electrochemical impedance spectroscopy measurements on appropriate monolayers of self-assembled samples. From the theoretical side, a microscopic interpretation of these experiments is still a challenging issue. This paper reviews recent theoretical results carried out within the European project, Bioelectronic Olfactory Neuron Device, which provides a first quantitative interpretation of charge transport experiments exploiting static and dynamic electrical properties of several receptors. To this purpose, we have developed an impedance network protein analogue (INPA) which considers the interaction between neighboring amino acids within a given radius as responsible of charge transfer throughout the protein. The conformational change, due to the sensing action produced by the capture of the ligand (photon, odour), induces a modification of the spatial structure and, thus, of the electrical properties of the receptor. By a scaling procedure, the electrical change of the receptor when passing from the native to the active state is used to interpret the macroscopic measurement obtained within different methods. The developed INPA model is found to be very promising for a better understanding of the role of receptor topology in the mechanism responsible of charge transfer. Present results point favorably to the development of a new generation of nano-biosensors within the lab-on-chip strategy.
Collapse
Affiliation(s)
- Lino Reggiani
- Dipartimento di Ingegneria dell’Innovazione and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica Ennio De Giorgi and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| | - Jean-Francois Millithaler
- Dipartimento di Ingegneria dell’Innovazione and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| | - Cecilia Pennetta
- Dipartimento di Matematica e Fisica Ennio De Giorgi and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| |
Collapse
|
12
|
Alfinito E, Reggiani L. Role of topology in electrical properties of bacterio-rhodopsin and rat olfactory receptor I7. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:032902. [PMID: 20365799 DOI: 10.1103/physreve.81.032902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Indexed: 05/29/2023]
Abstract
We report on electrical properties of the two sensing proteins: bacteriorhodopsin and rat olfactory receptor OR-I7. As relevant transport parameters we consider the small-signal impedance spectrum and the static current-voltage characteristics. Calculations are compared with available experimental results and the model predictability is tested for future perspectives.
Collapse
Affiliation(s)
- E Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
13
|
Carminati M, Ferrari G, Sampietro M. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:124701. [PMID: 20059158 DOI: 10.1063/1.3245343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present an instrument that enables electrochemical measurements (cyclic voltammetry, impedance tracking, and impedance spectroscopy) on submicrometric samples. The system features a frequency range from dc to 1 MHz and a current resolution of 10 fA for a measurement time of 1 s, giving a sensitivity of few attofarads in terms of measurable capacitance with an applied voltage of only 100 mV. These performances are obtained using a low-noise wide-bandwidth integrator/differentiator stage to sense the input current and a modular approach to minimize the effect of input stray capacitances. A digitally implemented lock-in filter optimally extracts the impedance of the sample, providing time tracking and spectroscopy operating modes. This computer-based and flexible instrument is well suited for characterizing and tracking the electrical properties of biomolecules kept in the physiological solution down to the nanoscale.
Collapse
Affiliation(s)
- Marco Carminati
- Dipartimento di Elettronica e Informazione, Unità IIT Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | | |
Collapse
|