1
|
Zhu LY, Ou LX, Mao LW, Wu XY, Liu YP, Lu HL. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. NANO-MICRO LETTERS 2023; 15:89. [PMID: 37029296 PMCID: PMC10082150 DOI: 10.1007/s40820-023-01047-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Wen Mao
- School of Opto-Electronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yi-Ping Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Obeng E, Feng J, Wang D, Zheng D, Xiang B, Shen J. Multifunctional phototheranostic agent ZnO@Ag for anti-infection through photothermal/photodynamic therapy. Front Chem 2022; 10:1054739. [PMID: 36438866 PMCID: PMC9682125 DOI: 10.3389/fchem.2022.1054739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 08/22/2023] Open
Abstract
To overcome the limitations of traditional therapeutics, nanotechnology offers a synergistic therapeutic approach for the treatment of bacterial infection and biofilms that has attracted attention. Herein, we report on a ZnO@Ag nanocomposite with good biocompatibility synthesized by doping ZnO NPs with silver nanoparticles (Ag NPs). ZnO@Ag nanocomposites were synthesized with varying ratios of Ag NPs (0.5%, 2%, 8%). Under the same experimental conditions, ZnO@8%Ag exhibited outstanding properties compared to the other nanocomposites and the pristine ZnO NPs. ZnO@8%Ag demonstrated excellent photothermal and photodynamic properties. Also, ZnO@8%Ag demonstrated over 99% inhibition of Staphylococcus aureus (S. aureus) under photothermal therapy (PTT) or photodynamics therapy (PDT) as a result of the excessive generation of reactive oxygen species (ROS) by the Ag+ released, while the pristine ZnO showed an insignificant inhibition rate compared to the PBS group (control). Furthermore, ZnO@8%Ag completely disrupted S. aureus biofilm under a combined PTT/PDT treatment, a synergetic trimodal therapy, although the molecular mechanism of biofilm inhibition remains unclear. Hence, the excellent photothermal, photodynamic, biocompatibility, and bactericidal properties of ZnO@8%Ag present it as an appropriate platform for bacterial and biofilm treatment or other biomedically related applications.
Collapse
Affiliation(s)
- Enoch Obeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayao Feng
- Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Danyan Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Dongyang Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, China
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
3
|
Pan F, Wu CC, Chen YL, Kung PY, Su YH. Machine learning ensures rapid and precise selection of gold sea-urchin-like nanoparticles for desired light-to-plasmon resonance. NANOSCALE 2022; 14:13532-13541. [PMID: 36004452 DOI: 10.1039/d2nr03727k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustainable energy strategies, particularly solar-to-hydrogen production, are anticipated to overcome the global reliance on fossil fuels. Thereby, materials enabling the production of green hydrogen from water and sunlight are continuously designed, e.g., ZnO nanostructures coated by gold sea-urchin-like nanoparticles, which employ the light-to-plasmon resonance to realize photoelectrochemical water splitting. But such light-to-plasmon resonance is strongly impacted by the size, the species, and the concentration of the metal nanoparticles coating on the ZnO nanoflower surfaces. Therefore, a precise prediction of the surface plasmon resonance is crucial to achieving an optimized nanoparticle fabrication of the desired light-to-plasmon resonance. To this end, we synthesized a substantial amount of metal (gold) nanoparticles of different sizes and species, which are further coated on ZnO nanoflowers. Subsequently, we utilized a genetic algorithm neural network (GANN) to obtain the synergistically trained model by considering the light-to-plasmon conversion efficiencies and fabrication parameters, such as multiple metal species, precursor concentrations, surfactant concentrations, linker concentrations, and coating times. In addition, we integrated into the model's training the data of nanoparticles due to their inherent complexity, which manifests the light-to-plasmon conversion efficiency far from the coupling state. Therefore, the trained model can guide us to obtain a rapid and automatic selection of fabrication parameters of the nanoparticles with the anticipated light-to-plasmon resonance, which is more efficient than an empirical selection. The capability of the method achieved in this work furthermore demonstrates a successful projection of the light-to-plasmon conversion efficiency and contributes to an efficient selection of the fabrication parameters leading to the anticipated properties.
Collapse
Affiliation(s)
- Fei Pan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Physics Department, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Chia-Chen Wu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yu-Lin Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Po-Yen Kung
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yen-Hsun Su
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
4
|
Zhao XW, Maimaiti H, Feng LR, Zhai PS, Bao JZ, Sun JY. Preparation of Coal-Based SiO2/GO-Loaded Ag Nanoparticle Composite Photocatalysts for Photocatalysis Nitrogen Fixation to Ammonia. Catal Letters 2022. [DOI: 10.1007/s10562-022-04150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts 2022. [DOI: 10.3390/catal12090952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, carbon quantum dots (CQDs) have been widely investigated as an enhancing photocatalytic component of various nanocomposites. In this study, hetero-structures containing carbon quantum dots (CQDs) associated to zinc oxide were prepared following two one-pot procedures: (i) a hydrothermal approach in which commercial ZnO was used as carrier for CQDs; and (ii) an approach in which the ZnO/CQDs samples were produced in situ by adding zinc acetate to an aqueous suspension of CQDs. CQDs were prepared in advance by a low-temperature hydrothermal (LHT) treatment of useless humins wastes produced by the glucose dehydration in an acidic medium. These samples were characterized by several techniques such asadsorption-desorption isotherms of liquid nitrogen at 77K, X-ray diffraction (XRD), infrared diffuse reflectance with Fourier transform (DRIFT) and UV-vis spectroscopy. The photocatalytic behavior of these materials was investigated in the degradation of methylene blue (MB). The obtained results revealed electronic interactions between CQDs and ZnO which have as an effect an enhancement of the charge separation and diminution of the charge recombination. In accordance, a correlation between the photocatalytic activity and the intrinsic properties of ZnO/CQDs has been evidenced. The highest photocatalytic activity corresponded to the heterostructure containing highly dispersed narrow sized CQDs onto ZnO. Under visible light irradiation and after 180 min of irradiation, MB was degraded by as much as 97.6%.
Collapse
|
6
|
Application of Zinc Oxide nanoflowers in Environmental and Biomedical Science. BBA ADVANCES 2022; 2:100051. [PMID: 37082596 PMCID: PMC10074957 DOI: 10.1016/j.bbadva.2022.100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Zinc oxide (ZnO) nanostructures can be synthesized in nanoforms of spheres, rods, flowers, disks, walls, etc., among which nanoflowers have gained special attention due to their versatile biomedical and pollutant remedial applications in waste water and air. ZnO nanoflowers have an ultrasmall size with a huge surface area to volume ratio due to their hexagonal petal structures which render them superior compared to the nanoparticles of other shapes. The ZnO nanoflowers have bandgap energy equivalent to a semiconductor that makes them have unique photophysical properties. We have used the appropriate keywords in Google Scholar and PubMed to obtain the recent publications related to our topic. We have selected the relevant papers and utilized them to write this review. The different methods of synthesis of ZnO nanoflowers are chemical vapor deposition, facile hydrothermal, thermal evaporation, chemical reduction, bio route of synthesis, and solvothermal method, etc. which are mentioned in this review. ZnO nanoparticles are used in paints, cosmetics, and other products due to their high photocatalytic activity. The different applications of ZnO nanoflowers in the diagnosis of disease biomarkers, biosensors, catalysts, and the therapeutic process along with wastewater remediation and gas sensing applications will be discussed in this review.
Collapse
|
7
|
Mehtab A, Ahmed J, Alshehri SM, Mao Y, Ahmad T. Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. NANOTECHNOLOGY 2022; 33:142001. [PMID: 34915455 DOI: 10.1088/1361-6528/ac43e7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 05/25/2023]
Abstract
Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.
Collapse
Affiliation(s)
- Amir Mehtab
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, United States of America
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
8
|
Correa MA, Ferreira A, Tromer RM, Machado LD, Gamino M, França Junior SAN, Bohn F, Vaz F. Improving the Room-Temperature Ferromagnetism in ZnO and Low-Doped ZnO:Ag Films Using GLAD Sputtering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5337. [PMID: 34576561 PMCID: PMC8464835 DOI: 10.3390/ma14185337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
ZnO and doped ZnO films with non-ferromagnetic metal have been widely used as biosensor elements. In these studies, the electrochemical measurements are explored, though the electrical impedance of the system. In this sense, the ferromagnetic properties of the material can be used for multifunctionalization of the sensor element using external magnetic fields during the measurements. Within this context, we investigate the room-temperature ferromagnetism in pure ZnO and Ag-doped ZnO films presenting zigzag-like columnar geometry. Specifically, we focus on the films' structural and quasi-static magnetic properties and disclose that they evolve with the doping of low-Ag concentrations and the columnar geometry employed during the deposition. The magnetic characterization reveals ferromagnetic behavior at room temperature for all studied samples, including the pure ZnO one. By considering computational simulations, we address the origin of ferromagnetism in ZnO and Ag-doped ZnO and interpret our results in terms of the Zn vacancy dynamics, its substitution by an Ag atom in the site, and the influence of the columnar geometry on the magnetic properties of the films. Our findings bring to light an exciting way to induce/explore the room-temperature ferromagnetism of a non-ferromagnetic metal-doped semiconductor as a promising candidate for biosensor applications.
Collapse
Affiliation(s)
- Marcio A. Correa
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (L.D.M.); (M.G.); (S.A.N.F.J.); (F.B.)
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Armando Ferreira
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Raphael M. Tromer
- Departamento de Física Aplicada, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil;
- Center for Computational Engineering and Sciences, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Leonardo D. Machado
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (L.D.M.); (M.G.); (S.A.N.F.J.); (F.B.)
| | - Matheus Gamino
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (L.D.M.); (M.G.); (S.A.N.F.J.); (F.B.)
| | - Sergio A. N. França Junior
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (L.D.M.); (M.G.); (S.A.N.F.J.); (F.B.)
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil; (M.A.C.); (L.D.M.); (M.G.); (S.A.N.F.J.); (F.B.)
| | - Filipe Vaz
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
9
|
Kanti Bera K, Chakraborty M, Kanti Bera S, Mandal M, Chatterjee S, Kumar Bhattacharya S. Synthesis of Different Pt‐ZnO Binary Composites for Synergistic Photo‐Electrocatalytic Oxidation of Methanol in Alkali. ChemistrySelect 2021. [DOI: 10.1002/slct.202100562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kamal Kanti Bera
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Malay Chakraborty
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Shyamal Kanti Bera
- School of Chemical Science National Institute of Science Education and Research (NISER) Bhubaneswar 752050 India
| | - Manas Mandal
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
- Department of Chemistry Sree Chaitanya College, Habra, North 24 Parganas West Bengal 743268 India
| | - Sujit Chatterjee
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | | |
Collapse
|
10
|
Gold Nanoparticle-Decorated Bi2S3 Nanorods and Nanoflowers for Photocatalytic Wastewater Treatment. Catalysts 2021. [DOI: 10.3390/catal11030355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colloidal synthesis of photocatalysts with potential to overcome the drawback of low photocatalytic efficiency brought by charge recombination and narrow photo-response has been a challenge. Herein, a general and facile colloidal approach to synthesize orthorhombic phase Bi2S3 particles with rod and flower-like morphology is reported. We elucidate the formation and growth process mechanisms of these synthesized nanocrystals in detail and cooperate these Bi2S3 particles with metallic gold nanoparticles (AuNPs) to construct heterostructured photocatalysts. The unique properties of AuNPs featuring tunable surface plasmon resonance and large field enhancement are used to sensitize the photocatalytic activity of the Bi2S3 semiconductor particles. The morphology, structure, elemental composition, and light absorption ability of the prepared catalysts are characterized by (high-resolution) transmission electron microscopy, scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, and UV–vis absorption spectroscopy. The catalysts exhibit high and stable photocatalytic activity for the degradation of organic pollutants demonstrated using rhodamine B and methyl orange dyes under solar light irradiation. We show that the incorporation of the AuNPs with the Bi2S3 particles increases the photocatalytic activity 1.2 to 3-fold. Radical trapping analysis indicates that the production of hydroxyl and superoxide radicals are the dominant active species responsible for the photodegradation activity. The photocatalysts exhibit good stability and recyclability.
Collapse
|
11
|
Effect of ZnO-based nanophotocatalyst on degradation of aniline. J Mol Model 2021; 27:92. [PMID: 33619651 DOI: 10.1007/s00894-021-04710-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
In this research, a zinc oxide/copper oxide/graphene oxide (ZnO/CuO/GO) nanophotocatalyst was synthesized for photodegradation of aniline as a pollutant, upon exposure to ultraviolet light (UV). Three variables including initial aniline concentration, the nanophotocatalyst dosage, and pH were designed. The statistical test and optimal conditions were determined. The consequences specified that the optimum values of pH, initial aniline concentration, the dosage of nanophotocatalyst, and the reaction time were 6, 150 ppm, 1 g/L, and 3 h, respectively. The obtained results revealed that the photodegradation of aniline was enhanced with doping zinc oxide and CuO on the graphene oxide. Under optimal conditions, 97% photodegradation of aniline was observed. The mechanism of aniline degradation with nanophotocatalyst was evaluated by molecular dynamic (MD) graphs. The interactions between nanophotocatalysts and aniline were considered by energy, density graph.
Collapse
|
12
|
Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 2020; 5:21-45. [PMID: 37118104 DOI: 10.1038/s41570-020-00232-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.
Collapse
|
13
|
Xu B, Maimaiti H, Wang S, Zhai P, Zhang H. Direct photocatalytic synthesis of N2/H2O to ammonia by plasmonic metal Pt supported on coal based graphene oxide/silica dioxide. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01802-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Sun H, Yang Z, Pu Y, Dou W, Wang C, Wang W, Hao X, Chen S, Shao Q, Dong M, Wu S, Ding T, Guo Z. Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloid Interface Sci 2019; 547:40-49. [PMID: 30939343 DOI: 10.1016/j.jcis.2019.03.061] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Low photocatalytic efficiency of visible light and fast recombination of photo-generated carriers are two challenges facing the applications of photocatalyst sterilant zinc oxide (ZnO). Meanwhile, both light and dark photocatalytic activities are important. It is of great theoretical and practical significance to construct a day-night photocatalytic antibacterial material, which is beneficial to the effective use of energy and to tackle the limitation of using photocatalytic bacteriostat. ZnO nanoflowers decorated vanadium pentoxide (V2O5) nanowires heterojunction (ZVH) was firstly fabricated using a facile water-bathing method. The designed ZVH structure efficiently produced abundant reactive oxygen species (ROS) in both light and darkness. It yielded 99.8% and 99.0% of antibacterial rate against S. aureus due to oxidative stress induced by ROS in light and darkness, respectively. The generation of ROS played a major role in the antibacterial activities against S. aureus under both light and dark conditions. The prepared ZVH with improved antibacterial properties provides an alternative for day-night antibacterial agents.
Collapse
Affiliation(s)
- Haiyun Sun
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhaoqing Yang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Pu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenwen Dou
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Caiyu Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiangping Hao
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mengyao Dong
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37934, USA; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37934, USA.
| |
Collapse
|
15
|
Pourrahimi AM, Villa K, Ying Y, Sofer Z, Pumera M. ZnO/ZnO 2/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42688-42697. [PMID: 30500156 DOI: 10.1021/acsami.8b16217] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-motile mesoporous ZnO/Pt-based Janus micromotors accelerated by bubble propulsion that provide efficient removal of explosives and dye pollutants via photodegradation under visible light are presented. Decomposition of H2O2 (the fuel) is triggered by a platinum catalytic layer asymmetrically deposited on the nanosheets of the hierarchical and mesoporous ZnO microparticles. The size-dependent motion behavior of the mesoporous micromotors is studied; the micromotors with average size ∼1.5 μm exhibit enhanced self-diffusiophoretic motion, whereas the fast bubble propulsion is detected for micromotors larger than 5 μm. The bubble-propelled mesoporous ZnO/Pt Janus micromotors show remarkable speeds of over 350 μm s-1 at H2O2 concentrations lower than 5 wt %, which is unusual for Janus micromotors based on dense materials such as ZnO. This high speed is related to efficient bubble nucleation, pinning, and growth due to the highly active and rough surface area of these micromotors, whereas the ZnO/Pt particles with a smooth surface and low surface area are motionless. We discovered new atomic interfaces of ZnO2 introduced into the ZnO/Pt micromotor system, as revealed by X-ray diffraction (XRD), which contribute to enhance their photocatalytic activity under visible light. Such coupling of the rapid movement with the high catalytic performance of ZnO/Pt Janus micromotors provides efficient removal of nitroaromatic explosives and dye pollutants from contaminated water under visible light without the need for UV irradiation. This paves the way for real-world environmental remediation efforts using microrobots.
Collapse
Affiliation(s)
- Amir Masoud Pourrahimi
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Katherine Villa
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Yulong Ying
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| |
Collapse
|
16
|
Huerta-Aguilar CA, Palos-Barba V, Thangarasu P, Koodali RT. Visible light driven photo-degradation of Congo red by TiO 2ZnO/Ag: DFT approach on synergetic effect on band gap energy. CHEMOSPHERE 2018; 213:481-497. [PMID: 30245225 DOI: 10.1016/j.chemosphere.2018.09.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 Ī) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.
Collapse
Affiliation(s)
- Carlos Alberto Huerta-Aguilar
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico
| | - Viviana Palos-Barba
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico.
| | | |
Collapse
|
17
|
Fernando JFS, Shortell MP, Firestein KL, Zhang C, Larionov KV, Popov ZI, Sorokin PB, Bourgeois L, Waclawik ER, Golberg DV. Photocatalysis with Pt-Au-ZnO and Au-ZnO Hybrids: Effect of Charge Accumulation and Discharge Properties of Metal Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7334-7345. [PMID: 29809011 DOI: 10.1021/acs.langmuir.8b00401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal-semiconductor hybrid nanomaterials are becoming increasingly popular for photocatalytic degradation of organic pollutants. Herein, a seed-assisted photodeposition approach is put forward for the site-specific growth of Pt on Au-ZnO particles (Pt-Au-ZnO). A similar approach was also utilized to enlarge the Au nanoparticles at epitaxial Au-ZnO particles (Au@Au-ZnO). An epitaxial connection at the Au-ZnO interface was found to be critical for the site-specific deposition of Pt or Au. Light on-off photocatalysis tests, utilizing a thiazine dye (toluidine blue) as a model organic compound, were conducted and confirmed the superior photodegradation properties of Pt-Au-ZnO hybrids compared to Au-ZnO. In contrast, Au-ZnO type hybrids were more effective toward photoreduction of toluidine blue to leuco-toluidine blue. It was deemed that photoexcited electrons of Au-ZnO (Au, ∼5 nm) possessed high reducing power owing to electron accumulation and negative shift in Fermi level/redox potential; however, exciton recombination due to possible Fermi-level equilibration slowed down the complete degradation of toluidine blue. In the case of Au@Au-ZnO (Au, ∼15 nm), the photodegradation efficiency was enhanced and the photoreduction rate reduced compared to Au-ZnO. Pt-Au-ZnO hybrids showed better photodegradation and mineralization properties compared to both Au-ZnO and Au@Au-ZnO owing to a fast electron discharge (i.e. better electron-hole seperation). However, photoexcited electrons lacked the reducing power for the photoreduction of toluidine blue. The ultimate photodegradation efficiencies of Pt-Au-ZnO, Au@Au-ZnO, and Au-ZnO were 84, 66, and 39%, respectively. In the interest of effective metal-semiconductor type photocatalysts, the present study points out the importance of choosing the right metal, depending on whether a photoreduction and/or photodegradation process is desired.
Collapse
Affiliation(s)
- Joseph F S Fernando
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
| | - Matthew P Shortell
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
| | - Konstantin L Firestein
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
| | - Chao Zhang
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
| | - Konstantin V Larionov
- Inorganic Nanomaterials Laboratory , National University of Science and Technology MISIS , Leninsky prospect 4 , Moscow 119049 , Russian Federation
| | - Zakhar I Popov
- Inorganic Nanomaterials Laboratory , National University of Science and Technology MISIS , Leninsky prospect 4 , Moscow 119049 , Russian Federation
| | - Pavel B Sorokin
- Inorganic Nanomaterials Laboratory , National University of Science and Technology MISIS , Leninsky prospect 4 , Moscow 119049 , Russian Federation
| | - Laure Bourgeois
- Monash Centre for Electron Microscopy, Department of Materials Science and Engineering , Monash University , Melbourne , Victoria 3800 , Australia
| | - Eric R Waclawik
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
| | - Dmitri V Golberg
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology (QUT) , Brisbane , Queensland 4000 , Australia
- International Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science (NIMS) , Namiki 1-1 , Tsukuba , Ibaraki 3050044 , Japan
| |
Collapse
|
18
|
Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.012] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Lai Z, Zhou F, Chen H, Wuliji H, Zhu J. Nanosilver Seeds Growth of Uniform Urchin-like ZnO Particles. CHEM LETT 2016. [DOI: 10.1246/cl.160744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
|
21
|
Zeng D, Gong P, Chen Y, Zhang Q, Xie Q, Peng DL. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties. NANOSCALE 2016; 8:11602-10. [PMID: 27216552 DOI: 10.1039/c6nr02055k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.
Collapse
Affiliation(s)
- Deqian Zeng
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | - Pingyun Gong
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | - Qinfu Zhang
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | - Qingshui Xie
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| |
Collapse
|
22
|
Kang Y, Bu X, Wang G, Wang X, Li Q, Feng Y. A Highly Active Cu–Pt/SiO2 Bimetal for the Hydrogenolysis of Glycerol to 1,2-Propanediol. Catal Letters 2016. [DOI: 10.1007/s10562-016-1766-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Güy N, Çakar S, Özacar M. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. J Colloid Interface Sci 2016; 466:128-37. [DOI: 10.1016/j.jcis.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 02/01/2023]
|
24
|
Mishra M, Park H, Chun DM. Photocatalytic properties of Au/Fe 2 O 3 nano-composites prepared by co-precipitation. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2015.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Mohd Adnan MA, Julkapli NM, Abd Hamid SB. Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. REV INORG CHEM 2016; 36. [DOI: 10.1515/revic-2015-0015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc oxide (ZnO) is one of the most widely used benchmark standard photocatalysts in the field of environmental applications. However, the large band gap of ZnO and the massive recombination of photogenerated charge carriers, especially in its nanosize, limit the overall photocatalytic efficiency. This can be further overcome by modifying the electronic band structure of ZnO by hybridization with a narrow band gap material, including metal, metal oxide, carbon based, and polymeric based. Indeed, ZnO hybridization with the respective materials contributed to its sensitizer by shifting the absorption wavelength to the visible region of the spectrum. This review encompasses several advancements made in the mentioned aspects, and also some of the new physical insights related to the charge transfer events, such as charge carrier generation, trapping, detrapping, and their transfer to surface, are discussed for each strategy of the hybrid ZnO. The synergistic effects in the mixed polymorphs of ZnO and also the theories proposed for their enhanced activity are reported. The review also highlights the potential application of ZnO hybrid for different kinds of pollutants from different wastewater sources.
Collapse
|
26
|
Wang H, Liu X, Han S. The synthesis of a Ag–ZnO nanohybrid with plasmonic photocatalytic activity under visible-light irradiation: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity. CrystEngComm 2016. [DOI: 10.1039/c5ce02381e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Zeng D, Chen Y, Wang Z, Wang J, Xie Q, Peng DL. Synthesis of Ni-Au-ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity. NANOSCALE 2015; 7:11371-11378. [PMID: 26073646 DOI: 10.1039/c5nr01124h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The functional synergy between the metal and the semiconductor in metal-semiconductor hybrid nanocrystals with specific structures and morphologies makes them suitable candidates for a wide range of applications. To date, the synthesis and the corresponding properties of ternary metal-semiconductor hetero-nanostructures, especially for hybrid nanocrystals containing magnetic metals, are seldom discussed and thus worthy of extensive research. In this study, we report a nonaqueous approach for the synthesis of Ni-Au-ZnO ternary hybrid nanocrystals with three morphologies, including nanomultipods, matchstick-like nanorods and nanopyramids. In the synthetic strategy, the Ni precursor dissolved in oleylamine was injected into a hot solution containing preformed Au-ZnO nanocrystals with specific morphologies. Then Ni prefers to grow on the unoccupied surfaces of Au, thus forming a hybrid hetero-nanostructure which retains the main morphologies of Au-ZnO nanocrystals. The ultraviolet-visible spectra not only show the band gap absorption of ZnO but also exhibit a broadened and weakened surface plasmon resonance (SPR) band of Au. The Ni-Au-ZnO nanocrystals exhibit much higher photocatalytic efficiency than pure ZnO in the degradation of Rhodamine B. Meanwhile, these hybrid nanocrystals are superparamagnetic at room temperature and can be readily recycled by a magnetic field for reuse. The as-prepared ternary Ni-Au-ZnO hybrid nanocrystals possess plasmonic, magnetic and enhanced photocatalytic properties, and thus are expected to find wide applications in the future.
Collapse
Affiliation(s)
- Deqian Zeng
- Department of Materials Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Chen Y, Zeng D, Cortie MB, Dowd A, Guo H, Wang J, Peng DL. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1460-9. [PMID: 25356536 DOI: 10.1002/smll.201401853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/03/2014] [Indexed: 05/10/2023]
Abstract
The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.
Collapse
Affiliation(s)
- Yuanzhi Chen
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, 361005, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wu Z, Xue Y, Wang H, Wu Y, Yu H. ZnO nanorods/Pt and ZnO nanorods/Ag heteronanostructure arrays with enhanced photocatalytic degradation of dyes. RSC Adv 2014. [DOI: 10.1039/c4ra10753e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Chen Y, Zeng D, Zhang K, Lu A, Wang L, Peng DL. Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. NANOSCALE 2014; 6:874-881. [PMID: 24270554 DOI: 10.1039/c3nr04558g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The preparation of noble metal-semiconductor hybrid nanocrystals with controlled morphologies has received intensive interest in recent years. In this study, facile one-pot reactions have been developed for the synthesis of Au-ZnO hybrid nanocrystals with different interesting morphologies, including petal-like and urchin-like nanoflowers, nanomultipods and nanopyramids. In the synthesis strategy, oleylamine-containing solution serves as the reaction medium, and the in situ generated Au seeds play an important role in the subsequently induced growth of ZnO nanocrystals. With the aid of several surfactants, hybrid nanocrystals with different morphologies that have considerable influences on their optical and photocatalytic activities are readily achieved. Through high-resolution transmission electron microscopy measurements, an observed common orientation relationship between ZnO and Au is that ZnO nanocrystals prefer to grow with their polar {001} facets on the {111} facets of Au nanocrystals, and well-defined interfaces are evident. Surface plasmon resonance bands of Au with different positions are observed in the UV-vis spectra, and the UV and visible emissions of ZnO are found to be dramatically reduced. Finally, the as-prepared Au-ZnO nanocrystals exhibit excellent photocatalytic activity for the photodegradation of rhodamine B compared with pure ZnO nanocrystals. The Au-ZnO hybrid nanopyramids show the highest catalytic efficiency, which is correlated with the exposed crystal facets, crystallinity and the formation of hybrid nanostructures. The as-prepared Au-ZnO hybrid nanocrystals are expected to find diverse potential applications in the fields such as photocatalysis, solar energy conversion, sensing and biological detection.
Collapse
Affiliation(s)
- Yuanzhi Chen
- Department of Materials Science and Engineering, College, of Materials, Xiamen University, Xiamen, 361005, P.R. China.
| | | | | | | | | | | |
Collapse
|
31
|
Fageria P, Gangopadhyay S, Pande S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv 2014. [DOI: 10.1039/c4ra03158j] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A simple approach for the deposition of Au and Ag nanoparticles on ZnO surface and to investigate their application in pollutant degradation.
Collapse
Affiliation(s)
- Pragati Fageria
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani, India
| | | | - Surojit Pande
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani, India
| |
Collapse
|
32
|
Yan F, Wang Y, Zhang J, Lin Z, Zheng J, Huang F. Schottky or Ohmic metal-semiconductor contact: influence on photocatalytic efficiency of Ag/ZnO and Pt/ZnO model systems. CHEMSUSCHEM 2014; 7:101-104. [PMID: 24458735 DOI: 10.1002/cssc.201300818] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/23/2013] [Indexed: 06/03/2023]
Abstract
The relationship between the contact type in metal-semiconductor junctions and their photocatalytic efficiencies is investigated. Two metal-semiconductor junctions, silver on zinc oxide (Ag/ZnO) and platinum on zinc oxide (Pt/ZnO) serve as model system for Ohmic and Schottky metal-semiconductor contact, respectively. Ag/ZnO, with Ohmic contact, exhibits a higher photocatalytic efficiency than Pt/ZnO, with Schottky contact. The direction of electric fields within the semiconductor is found to play a crucial role in the separation of photogenerated charges, and thus strongly influences the photocatalytic efficiency.
Collapse
Affiliation(s)
- Fengpo Yan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (PR China)
| | | | | | | | | | | |
Collapse
|
33
|
Zhang Q, Zhang Q, Wang H, Li Y. A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:318-324. [PMID: 23643956 DOI: 10.1016/j.jhazmat.2013.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
A high efficiency microreactor with Pt coated ZnO (Pt/ZnO) nanorod arrays on the inner wall was successfully fabricated by pumping a Pt sol into the microchannel containing preformed ZnO nanorod arrays. Phenol was selected as a persistent organic pollutant to evaluate the photocatalytic performance of the microreactors. The microreactor which was coated by Pt sol for 5 min showed the best photocatalytic performance compared with other Pt/ZnO nanorod array-modified microreactors. The presence of Pt nanoparticles on the surfaces of ZnO nanorods promoted the separation of photoinduced electron-hole pairs and thus enhanced the photocatalytic activity. In addition, the recyclable property of the microcreator was investigated. It was found that the microreactor displayed higher durability during the continuous photocatalytic process.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
34
|
Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA. Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules 2013; 18:6269-80. [PMID: 23760028 PMCID: PMC6269905 DOI: 10.3390/molecules18066269] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/16/2022] Open
Abstract
Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNCs-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.
Collapse
Affiliation(s)
- Susan Azizi
- Authors to whom correspondence should be addressed; E-Mails: (S.A.); (M.B.A.); Tel.: +601-622-8029 (S.A.); Tel.: +603-8946-6775 (M.B.A.); Fax: +603-8943-5380 (M.B.A.)
| | - Mansor B. Ahmad
- Authors to whom correspondence should be addressed; E-Mails: (S.A.); (M.B.A.); Tel.: +601-622-8029 (S.A.); Tel.: +603-8946-6775 (M.B.A.); Fax: +603-8943-5380 (M.B.A.)
| | | | | |
Collapse
|
35
|
Saravanan R, Gupta V, Prakash T, Narayanan V, Stephen A. Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2012.11.012] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Kochuveedu ST, Jang YH, Kim DH. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 2013; 42:8467-93. [DOI: 10.1039/c3cs60043b] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Zhang N, Liu S, Xu YJ. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. NANOSCALE 2012; 4:2227-38. [PMID: 22362188 DOI: 10.1039/c2nr00009a] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The creation of core-shell nanocomposites (CSNs) has attracted considerable attention and developed into an increasingly important research area at the frontier of advanced materials chemistry. CSNs, which are nanoscaled assemblies with a chemical composition that is different on the surface compared to the core region, have found versatile applications in many fields, such as electrooptics, quantum dots, microscopy labels, drug delivery, chemical sensors, nanoreactors and catalysis. This review is primarily focused on the applications of metal core@semiconductor shell nanocomposites in heterogeneous photocatalysis, including photocatalytic nonselective processes for environmental remediation, selective organic transformations to fine chemicals and water splitting to clean hydrogen energy. It is hoped that this minireview can inspire multidisciplinary research interest in the precisely morphology-controlled synthesis of a variety of metal core@semiconductor shell nanoassemblies and their wide applications in the realm of heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Nan Zhang
- Fujian Provincial Key Laboratory of Photocatalysis-State Key Laboratory Breeding Base, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China
| | | | | |
Collapse
|