1
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int J Mol Sci 2023; 24:14709. [PMID: 37834155 PMCID: PMC10572431 DOI: 10.3390/ijms241914709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of brain in vitro models requires the application of novel biocompatible materials and biopolymers as scaffolds for controllable and effective cell growth and functioning. The "ideal" brain in vitro model should demonstrate the principal features of brain plasticity like synaptic transmission and remodeling, neurogenesis and angiogenesis, and changes in the metabolism associated with the establishment of new intercellular connections. Therefore, the extracellular scaffolds that are helpful in the establishment and maintenance of local microenvironments supporting brain plasticity mechanisms are of critical importance. In this review, we will focus on some carbohydrate metabolites-lactate, pyruvate, oxaloacetate, malate-that greatly contribute to the regulation of cell-to-cell communications and metabolic plasticity of brain cells and on some resorbable biopolymers that may reproduce the local microenvironment enriched in particular cell metabolites.
Collapse
Affiliation(s)
| | - Frida N. Gilmiyarova
- Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University, 443099 Samara, Russia
| | - Anton S. Averchuk
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana I. Baranich
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | | | - Maria V. Kukla
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Pavel P. Tregub
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
3
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Chen Y, Zhang S, Cui Q, Ni J, Wang X, Cheng X, Alem H, Tebon P, Xu C, Guo C, Nasiri R, Moreddu R, Yetisen AK, Ahadian S, Ashammakhi N, Emaminejad S, Jucaud V, Dokmeci MR, Khademhosseini A. Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. LAB ON A CHIP 2020; 20:4205-4214. [PMID: 33048069 DOI: 10.1039/d0lc00446d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microchannels in hydrogels play an essential role in enabling a smart contact lens. However, microchannels have rarely been created in commercial hydrogel contact lenses due to their sensitivity to conventional microfabrication techniques. Here, we report the fabrication of microchannels in poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels that are used in commercial contact lenses with a three-dimensional (3D) printed mold. We investigated the corresponding capillary flow behaviors in these microchannels. We observed different capillary flow regimes in these microchannels, depending on their hydration level. In particular, we found that a peristaltic pressure could reinstate flow in a dehydrated channel, indicating that the motion of eye-blinking may help tears flow in a microchannel-containing contact lens. Colorimetric pH and electrochemical Na+ sensing capabilities were demonstrated in these microchannels. This work paves the way for the development of microengineered poly(HEMA) hydrogels for various biomedical applications such as eye-care and wearable biosensing.
Collapse
Affiliation(s)
- Yihang Chen
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jiahua Ni
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaochen Wang
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Xuanbing Cheng
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Halima Alem
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Institut Jean Lamour, Université de Lorraine-CNRS, 54000 Nancy, France and Institut Universitaire de France, France
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Chun Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Changliang Guo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Rosalia Moreddu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Li H, Wang J, Fang Y. Bioinspired flexible electronics for seamless neural interfacing and chronic recording. NANOSCALE ADVANCES 2020; 2:3095-3102. [PMID: 36134275 PMCID: PMC9417495 DOI: 10.1039/d0na00323a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 05/27/2023]
Abstract
Implantable neural probes are among the most widely applied tools for the understanding of neural circuit functions and the treatment of neurological disorders. Despite remarkable progress in recent years, it is still challenging for conventional rigid probes to achieve stable neural recording over long periods of time. Recently, flexible electronics with biomimetic structures and mechanical properties have been demonstrated for the formation of seamless probe-neural interfaces, enabling long-term recording stability. In this review, we provide an overview of bioinspired flexible electronics, from their structural design to probe-brain interfaces and chronic neural recording applications. Opportunities of bioinspired flexible electronics in fundamental neuroscience and clinical studies are also discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
6
|
Mucoadhesive Nanoparticles for Drug Delivery to the Anterior Eye. NANOMATERIALS 2020; 10:nano10071400. [PMID: 32708500 PMCID: PMC7408143 DOI: 10.3390/nano10071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
While the use of topical drops for the delivery of drugs to the anterior of the eye is well accepted, it is far from efficient with as little as 5% of the drug instilled on the eye actually reaching the target tissue. The ability to prolong the residence time on the eye is desirable. Based on the acceptability of 2-hydroxyethyl methacrylate based polymers in contact lens applications, the current work focuses on the development of a poly(2-hydroxyethyl methacrylate (HEMA)) nanoparticle system. The particles were modified to allow for degradation and to permit mucoadhesion. Size and morphological analysis of the final polymer products showed that nano-sized, spherical particles were produced. FTIR spectra demonstrated that the nanoparticles comprised poly(HEMA) and that 3-(acrylamido)phenylboronic acid (3AAPBA), as a mucoadhesive, was successfully incorporated. Degradation of nanoparticles containing N,N′-bis(acryloyl)cystamine (BAC) after incubation with DL-dithiothreitol (DTT) was confirmed by a decrease in turbidity and through transmission electron microscopy (TEM). Nanoparticle mucoadhesion was shown through an in-vitro zeta potential analysis.
Collapse
|
7
|
YİLDİRİM E. Synthesis and Characterization of Poly (2-hydroxyethyl methacrylate) Homopolymer at Room Temperature via Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization Technique. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.555136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Wu D, Rigo S, Di Leone S, Belluati A, Constable EC, Housecroft CE, Palivan CG. Brushing the surface: cascade reactions between immobilized nanoreactors. NANOSCALE 2020; 12:1551-1562. [PMID: 31859312 DOI: 10.1039/c9nr08502e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functionalization of hard or soft surfaces with, for example, ligands, enzymes or proteins, is an effective and practical methodology for the development of new applications. We report the assembly of two types of nanoreactors based upon poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers as scaffold, uricase and lactoperoxidase as bio-catalysts located within the nanoreactors, and melittin as the biopores inserted into the hydrophobic shell. The nanoreactors were immobilized on poly(2-hydroxyethyl methacrylate)-co-poly(2-aminoethyl methacrylate hydrochloride) (PHEMA-co-P(2-AEMA·HCl) brushes-grafted wafer surfaces by utilizing the strong supramolecular interactions between biotin and streptavidin. The (PHEMA-co-P(2-AEMA·HCl) brushes on silicon surfaces were prepared by a surface initiating atom transfer radical polymerization (ATRP) "graft-from" technique. Cascade reactions between different surface-anchored nanoreactors were demonstrated by converting Amplex® Red to the fluorescent probe resorufin by using the H2O2 produced from uric acid and H2O. The detailed properties of the nanoreactors on the functionalized surface including the binding behaviours and cascade reactions were investigated using emission spectroscopy, transmission electron microscopy (TEM), light scattering (LS), atomic force microscopy (AFM) and a quartz crystal microbalance (QCM-D). The results are proof-of-principle for the preparation of catalytically functional engineered surface materials and lay the foundation for applying this advanced functional surface material in biosensing, implanting and antimicrobial materials preparation.
Collapse
Affiliation(s)
- Dalin Wu
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Golabchi A, Wu B, Cao B, Bettinger CJ, Cui XT. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials 2019; 225:119519. [PMID: 31600673 PMCID: PMC6896321 DOI: 10.1016/j.biomaterials.2019.119519] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The inflammatory brain tissue response to implanted neural electrode devices has hindered the longevity of these implants. Zwitterionic polymers have a potent anti-fouling effect that decreases the foreign body response to subcutaneous implants. In this study, we developed a nanoscale anti-fouling coating composed of zwitterionic poly (sulfobetaine methacrylate) (PSB) and polydopamine (PDA) for neural probes. The addition of PDA improved the stability of the coating compared to PSB alone, without compromising the anti-fouling properties of the film. PDA-PSB coating reduced protein adsorption by 89% compared to bare Si samples, while fibroblast adhesion was reduced by 86%. PDA-PSB coated silicon based neural probes were implanted into mouse brain, and the inflammatory tissue responses to the implants were assessed by immunohistochemistry one week after implantation. The PSB-PDA coated implants showed a significantly decreased expression of glial fibrillary acidic protein (GFAP), a marker for reactive astrocytes, within 70 μm from the electrode-tissue interface (p < 0.05). Additionally, the coating reduced the microglia activation as shown in decreased Iba-1 and lectin staining, and improved blood-brain barrier integrity indicated by reduced immunoglobulin (IgG) leakage into the tissue around the probes. These findings demonstrate that anti-fouling zwitterionic coating is effective in suppressing the acute inflammatory brain tissue response to implants, and should be further investigated for its potential to improve chronic performance of neural implants.
Collapse
Affiliation(s)
- Asiyeh Golabchi
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Bin Cao
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA
| | - Christopher J Bettinger
- Department of Biomedical Engineering, Department of Material Science and Engineering, Carnegie Mellon University, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
10
|
Fabrication of topologically anisotropic microparticles and their surface modification with pH responsive polymer brush. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109894. [PMID: 31499968 DOI: 10.1016/j.msec.2019.109894] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 11/23/2022]
Abstract
This paper describes the fabrication of topologically anisotropic cup shaped polylactide (PLA)/poly[methyl methacrylate‑co‑2‑(2‑bromopropionyloxy) ethyl methacrylate] (poly(MMA-co-BEMA)) (75/25) composite particles of ~6 μm size using electrojetting technique. An attempt was made to understand the mechanism of cup shape formation from the miscible blend by electrojetting. Both the solution parameters and the processing conditions affected the particles' shape which can be varied from cup shaped to discoid type. Surface initiated atom transfer radical polymerization (ATRP) of stimuli responsive DMAEMA (2‑dimethylamino ethyl methacrylate) was subsequently carried out for 1 h onto the surface of cup shaped particles to observe pH responsiveness of the modified anisotropic particles. Interestingly, morphology of the cup shaped particles was changed to elongated cup which did show significant swelling under acidic pH (swelling ratio:~1.6) and enhanced dye adsorption at specific pH as observed by optical microscope and confocal laser scanning microscope implying that DMAEMA polymerization happened onto the surface of the composite microparticles. The Raman microscopy and FTIR spectra obtained from the particles after polymerization further confirmed the immobilization of pH responsive poly(DMAEMA) brushes onto the cup shaped particles which may potentially function as triggered/targeted drug delivery vehicles. Moreover, the brush modified cup shaped particles were found to be two times more efficient in adsorbing dye compared to disc shaped one indicating a clear advantage of using cup shaped particles over other shapes for immobilizing/adsorbing charged species e.g. sensitive biomolecules.
Collapse
|
11
|
Parilti R, Castañon A, Lansalot M, D'Agosto F, Jérôme C, Howdle SM. Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxide. Polym Chem 2019. [DOI: 10.1039/c9py00998a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel polymeric stabilisers were designed for the development of an environmentally-friendly process to prepare well-defined cross-linked particles of poly(2-hydroxyethylmethacrylate) (PHEMA).
Collapse
Affiliation(s)
- Rahmet Parilti
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Alba Castañon
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Muriel Lansalot
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS UMR 5265
- Chemistry
| | - Franck D'Agosto
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS UMR 5265
- Chemistry
| | | | - Steven M. Howdle
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
12
|
Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 2018; 25:90. [PMID: 30572957 PMCID: PMC6300901 DOI: 10.1186/s12929-018-0491-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nervous system is a crucial component of the body and damages to this system, either by of injury or disease, can result in serious or potentially lethal consequences. Restoring the damaged nervous system is a great challenge due to the complex physiology system and limited regenerative capacity.Polymers, either synthetic or natural in origin, have been extensively evaluated as a solution for restoring functions in damaged neural tissues. Polymers offer a wide range of versatility, in particular regarding shape and mechanical characteristics, and their biocompatibility is unmatched by other biomaterials, such as metals and ceramics. Several studies have shown that polymers can be shaped into suitable support structures, including nerve conduits, scaffolds, and electrospun matrices, capable of improving the regeneration of damaged neural tissues. In general, natural polymers offer the advantage of better biocompatibility and bioactivity, while synthetic or non-natural polymers have better mechanical properties and structural stability. Often, combinations of the two allow for the development of polymeric conduits able to mimic the native physiological environment of healthy neural tissues and, consequently, regulate cell behaviour and support the regeneration of injured nervous tissues.Currently, most of neural tissue engineering applications are in pre-clinical study, in particular for use in the central nervous system, however collagen polymer conduits aimed at regeneration of peripheral nerves have already been successfully tested in clinical trials.This review highlights different types of natural and synthetic polymers used in neural tissue engineering and their advantages and disadvantages for neural regeneration.
Collapse
Affiliation(s)
- Rossana Boni
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Azam Ali
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Amin Shavandi
- Bioengineering Research Team, Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- BioMatter-Biomass Transformation Lab (BTL), École interfacultaire de Bioingénieurs (EIB), École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| |
Collapse
|
13
|
Parilti R, Riva R, Howdle SM, Dupont-Gillain C, Jerome C. Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. Int J Pharm 2018; 549:161-168. [PMID: 30056217 DOI: 10.1016/j.ijpharm.2018.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Sulindac loaded poly(HEMA) cross-linked microparticles were synthesized via one-pot free-radical dispersion polymerisation in supercritical carbon dioxide (scCO2) in presence of photocleavable diblock stabilisers based on polyethylene oxide (PEO) and poly(heptadecafluorodecyl acrylate) (PFDA) bearing a o-nitrobenzyl photosensitive junction (hv) (PEO-hv-PFDA), and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Poly(HEMA) cross-linked microparticles either empty or sulindac loaded were obtained with well-defined spherical morphology with the sizes between 250 and 350 nm. Additionally, upon UV-photolysis the stabiliser on the surface was cleaved which permits to microparticles to be redispersed in water leading to water swollen microgels about 2.1-3.6 µm. Moreover, the release behaviour from obtained microgels indicated the sustained release of sulindac over 10 days. Besides, the surface modification after UV-photolysis was studied and proved that the particles can be functionalised with further chemistries.
Collapse
Affiliation(s)
- Rahmet Parilti
- CERM, CESAM Research Unit, University of Liege, 13, Allee du Six Août, B-4000 Liege, Belgium; School of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Raphaël Riva
- CERM, CESAM Research Unit, University of Liege, 13, Allee du Six Août, B-4000 Liege, Belgium
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Christine Jerome
- CERM, CESAM Research Unit, University of Liege, 13, Allee du Six Août, B-4000 Liege, Belgium.
| |
Collapse
|
14
|
Parilti R, Caprasse J, Riva R, Alexandre M, Vandegaart H, Bebrone C, Dupont-Gillain C, Howdle SM, Jérôme C. Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. J Colloid Interface Sci 2018; 532:112-117. [PMID: 30077061 DOI: 10.1016/j.jcis.2018.07.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptide loaded poly(2-hydroxyethyl methacrylate) particles were synthesized in supercritical carbon dioxide via one-pot free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate and a cross-linker. Discrete particles with a well-defined spherical morphology and a diameter as low as 450 nm have been obtained in mild conditions. The encapsulation and release of the peptide were confirmed by antimicrobial tests that demonstrated for the first time a sustained release of the peptide from poly(2-hydroxyethyl methacrylate) microgels prepared by one-pot dispersion polymerization in supercritical carbon dioxide and then dispersed in water.
Collapse
Affiliation(s)
- Rahmet Parilti
- CERM, CESAM Research Unit, University of Liege, 13, Allée du Six Août, B-4000 Liege, Belgium; School of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Jérémie Caprasse
- CERM, CESAM Research Unit, University of Liege, 13, Allée du Six Août, B-4000 Liege, Belgium
| | - Raphaël Riva
- CERM, CESAM Research Unit, University of Liege, 13, Allée du Six Août, B-4000 Liege, Belgium
| | | | | | - Carine Bebrone
- Symbiose Biomaterials, Avenue de l'Hôpital, 1, 4000-Liege, Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Christine Jérôme
- CERM, CESAM Research Unit, University of Liege, 13, Allée du Six Août, B-4000 Liege, Belgium.
| |
Collapse
|
15
|
Parilti R, Alaimo D, Grignard B, Boury F, Howdle SM, Jérôme C. Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide. J Mater Chem B 2017; 5:5806-5815. [PMID: 32264214 DOI: 10.1039/c7tb00740j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate was carried out in supercritical carbon dioxide (scCO2) in the presence of stabilisers based on polyethylene oxide (PEO) and poly(heptadecafluorodecyl acrylate) (PFDA). Different architectures of copolymers (random, palm-tree and diblock) were tested for their surface tension, cloud point and as a stabilising agent. The diblock architecture was found to be the best candidate resulting in poly(HEMA) spherical particles with a size of 316 nm. Furthermore, the effect of the CO2-phobic block (PEO) in the diblock architecture was investigated by using three different chain lengths (1000, 2000, 5000 g mol-1). By optimizing the stabiliser composition and structure, mild reaction conditions have been identified allowing us to obtain well-defined spherical cross-linked poly(HEMA) particles with a mean diameter of unprecedented low size (216 nm) at a temperature as low as 35 °C.
Collapse
Affiliation(s)
- R Parilti
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM RU, Sart Tilman, Building B6a-third floor, Liège, B-4000, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:665-672. [PMID: 27770940 DOI: 10.1016/j.msec.2016.09.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
In order to obtain an ideal material using for artificial corneal skirt, a porous polymer hydrogel containing 2-hydroxyethyl methacrylate (HEMA), trimethylolpropane triacrylate (TMPTA) and butyl acrylate was prepared through one-step radical polymerization method and the usage of CaCO3 whisker as porogen. The physical-chemical properties of the fabricated polymer hydrogel can be adjusted by CaCO3 whisker content, such as pore size, porosity, water content of materials and surface topography. Then a series of cell biology experiments of human corneal fibroblasts (HCFs) were carried out to evaluate its properties as an artificial corneal skirt, such as the adhesion of cells on the materials with different pore size and porosity, the apoptosis on materials with different characteristics, the distribution of the cells on the material surface. The results revealed that high porosity not only could improve water content of hydrogel, but also strengthen the adhesion of HCFs on hydrogel. In addition, high porosity hydrogel with the whisker shape of pores showed much elongate spindle-like morphology than those low porosity hydrogels. MTT assay certified that the resulted polymer hydrogel material possessed excellent biocompatibility and was suitable for HCFs growing, making it promising for being developed as artificial corneal skirt.
Collapse
|
17
|
Zhang H, Kong X, Tang Y, Lin W. Hydrogen Sulfide Triggered Charge-Reversal Micelles for Cancer-Targeted Drug Delivery and Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16227-16239. [PMID: 27280335 DOI: 10.1021/acsami.6b03254] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, the development of polymeric micelles combining diagnosis and targeted therapy is theoretically and practically significant in cancer treatment. In addition, it has been reported that cancer cells can produce large amounts of hydrogen sulfide (H2S) and their survival depends on the content of H2S. In this study, a series of N-(2-hydroxyethyl)-4-azide-1,8-naphthalimide ended amphiphilic diblock copolymer poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) (N3-Nap-PHEMA-b-PMMA-N3) micelles were prepared. Around cancer tissues, the N3-Nap-PHEMA45-b-PMMA42-N3 micelles exhibited dual characteristics of monitoring H2S and H2S triggered charge reversal with the reduction of the azido group. The surface charge of N3-Nap-PHEMA45-b-PMMA42-N3 micelles reversed from negative to positive after monitoring H2S. With H2S triggered charge reversal, the cellular uptake of DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles was effectively enhanced through electrostatic attraction mediated targeting, and a fast doxorubicin (DOX) release rate was observed. The MTT assay demonstrated that N3-Nap-PHEMA45-b-PMMA42-N3 micelles were biocompatible to HeLa cells, and DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles showed enhanced cytotoxicity in HeLa cells in the presence of H2S. Furthermore, in vivo fluorescence imaging and biodistribution experiments revealed that DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles could provide good tumor imaging and accumulate in tumor tissue. Therefore, N3-Nap-PHEMA45-b-PMMA42-N3 micelles can be used as a promising platform for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, People's Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, People's Republic of China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, People's Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
18
|
Wu H, Sariola V, Zhu C, Zhao J, Sitti M, Bettinger CJ. Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3398-3404. [PMID: 25903565 DOI: 10.1002/adma.201500954] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/21/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Haosheng Wu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Veikko Sariola
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Electrical Engineering and Automation, Aalto University, Helsinki, 00076, Finland
| | - Congcong Zhu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jingsi Zhao
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Metin Sitti
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- McGowan Institute of Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA
| |
Collapse
|
19
|
Sommakia S, Lee HC, Gaire J, Otto KJ. Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:319-328. [PMID: 25530703 PMCID: PMC4267064 DOI: 10.1016/j.cossms.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Implantable intracortical microelectrodes face an uphill struggle for widespread clinical use. Their potential for treating a wide range of traumatic and degenerative neural disease is hampered by their unreliability in chronic settings. A major factor in this decline in chronic performance is a reactive response of brain tissue, which aims to isolate the implanted device from the rest of the healthy tissue. In this review we present a discussion of materials approaches aimed at modulating the reactive tissue response through mechanical and biochemical means. Benefits and challenges associated with these approaches are analyzed, and the importance of multimodal solutions tested in emerging animal models are presented.
Collapse
Affiliation(s)
- Salah Sommakia
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Heui C. Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Janak Gaire
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| | - Kevin J. Otto
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| |
Collapse
|
20
|
Schendel AA, Eliceiri KW, Williams JC. Advanced Materials for Neural Surface Electrodes. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:301-307. [PMID: 26392802 PMCID: PMC4574303 DOI: 10.1016/j.cossms.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.
Collapse
Affiliation(s)
- Amelia A Schendel
- Materials Science Program, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53703
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI USA 53706
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53703
| |
Collapse
|
21
|
Preparation and characterization of electrospun curcumin loaded poly(2-hydroxyethyl methacrylate) nanofiber-A biomaterial for multidrug resistant organisms. J Biomed Mater Res A 2014; 103:16-24. [DOI: 10.1002/jbm.a.35138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/15/2022]
|
22
|
Mahmoodian H, Moradi O, Shariatzadeh B. Grafting chitosan and polyHEMA on carbon nanotubes surfaces: “Grafting to” and “Grafting from” methods. Int J Biol Macromol 2014; 63:92-7. [DOI: 10.1016/j.ijbiomac.2013.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/12/2013] [Accepted: 10/21/2013] [Indexed: 11/16/2022]
|
23
|
Yang P, Armes SP. Preparation of well-defined poly(2-hydroxyethyl methacrylate) macromonomers via atom transfer radical polymerization. Macromol Rapid Commun 2013; 35:242-248. [PMID: 24123461 DOI: 10.1002/marc.201300617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/30/2013] [Indexed: 11/08/2022]
Abstract
A series of six near-monodisperse methacrylic macromonomers is prepared via atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate using a tertiary amine-functionalized initiator at 50 °C, followed by quaternization with excess 4-vinylbenzyl chloride at 20 °C. GPC analyses indicate polydispersities of around 1.20 and their mean degrees of polymerization (DP) range from 20 to 70, as judged by both (1) H NMR and UV spectroscopy. The former technique is more convenient but the latter proved more accurate for the higher DP values, provided that an appropriate model compound is utilized for calibration. Finally, these new macromonomers are used to prepare sterically stabilized polystyrene latexes with relatively narrow size distributions via alcoholic dispersion polymerization.
Collapse
Affiliation(s)
- Pengcheng Yang
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
24
|
Rani GU, Mishra S, Pathak G, Jha U, Sen G. Synthesis and applications of poly(2-hydroxyethylmethacrylate) grafted agar: A microwave based approach. Int J Biol Macromol 2013; 61:276-84. [DOI: 10.1016/j.ijbiomac.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
25
|
Avc&&baş&& U, Demiroğlu H, Ediz M, Akal&&n HA, Özçal&&şkan E, Şenay H, Türkcan C, Özcan Y, Akgöl S, Avcıbaşı N. Radiolabeling of new generation magnetic poly(HEMA-MAPA) nanoparticles with131I and preliminary investigation of its radiopharmaceutical potential using albino Wistar rats. J Labelled Comp Radiopharm 2013; 56:708-16. [DOI: 10.1002/jlcr.3108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Uğur Avc&&baş&&
- Department of Chemistry, Faculty of Art and Science; Celal Bayar University; 45030 Manisa Turkey
| | - Hasan Demiroğlu
- Department of Chemistry, Faculty of Art and Science; Celal Bayar University; 45030 Manisa Turkey
| | - Melis Ediz
- Department of Chemistry, Faculty of Art and Science; Celal Bayar University; 45030 Manisa Turkey
| | - Hilmi Arkut Akal&&n
- Department of Chemistry, Faculty of Art and Science; Celal Bayar University; 45030 Manisa Turkey
| | - Emir Özçal&&şkan
- Department of Biochemistry, Faculty of Science; Ege University; 35100 İzmir Turkey
| | - Hilal Şenay
- Department of Biochemistry, Faculty of Science; Ege University; 35100 İzmir Turkey
| | - Ceren Türkcan
- Department of Biochemistry, Faculty of Science; Ege University; 35100 İzmir Turkey
| | - Yeşim Özcan
- Department of Biochemistry, Faculty of Science; Ege University; 35100 İzmir Turkey
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science; Ege University; 35100 İzmir Turkey
| | - Nesibe Avcıbaşı
- Ege University, Ege Higher Vocational School; 35100 İzmir Turkey
| |
Collapse
|
26
|
Gümüşderelioğlu M, Çakmak S, Timuçin HÖ, Çakmak AS. Thermosensitive PHEMA microcarriers: ATRP synthesis, characterization, and usabilities in cell cultures. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2110-25. [DOI: 10.1080/09205063.2013.827104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Chemical Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Nanotechnology and Nanomedicine, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Bioengineering Departments, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Soner Çakmak
- Nanotechnology and Nanomedicine, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - H. Özgen Timuçin
- Chemical Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Anıl S. Çakmak
- Bioengineering Departments, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| |
Collapse
|
27
|
Ramalingam N, Natarajan TS, Rajiv S. Development and Characterization of Electrospun Poly(2-hydroxy ethyl methacrylate) for Tissue Engineering Applications. ADVANCES IN POLYMER TECHNOLOGY 2013. [DOI: 10.1002/adv.21348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Sheeja Rajiv
- Department of Chemistry; Anna University; Chennai; 600 025; India
| |
Collapse
|
28
|
Hanawa T. Research and development of metals for medical devices based on clinical needs. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064102. [PMID: 27877526 PMCID: PMC5099759 DOI: 10.1088/1468-6996/13/6/064102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/13/2012] [Accepted: 10/18/2012] [Indexed: 05/27/2023]
Abstract
The current research and development of metallic materials used for medicine and dentistry is reviewed. First, the general properties required of metals used in medical devices are summarized, followed by the needs for the development of α + β type Ti alloys with large elongation and β type Ti alloys with a low Young's modulus. In addition, nickel-free Ni-Ti alloys and austenitic stainless steels are described. As new topics, we review metals that are bioabsorbable and compatible with magnetic resonance imaging. Surface treatment and modification techniques to improve biofunctions and biocompatibility are categorized, and the related problems are presented at the end of this review. The metal surface may be biofunctionalized by various techniques, such as dry and wet processes. These techniques make it possible to apply metals to scaffolds in tissue engineering.
Collapse
|
29
|
Hynd MR, Turner JN, Shain W. Applications of hydrogels for neural cell engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1223-44. [DOI: 10.1163/156856207782177909] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matthew R. Hynd
- a Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - James N. Turner
- b Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - William Shain
- c Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| |
Collapse
|
30
|
Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci 2011; 41:263-72. [PMID: 22324003 PMCID: PMC3259234 DOI: 10.5051/jpis.2011.41.6.263] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022] Open
Abstract
A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO(2). In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.
Collapse
Affiliation(s)
- Takao Hanawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
31
|
Effect of surface functionalization on the physicomechanical properties of a novel biofunctional copolymer. J Appl Polym Sci 2011. [DOI: 10.1002/app.34157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Bach LG, Rafiqul Islam M, Kim JH, Kim HG, Lim KT. Synthesis and characterization of poly(2-hydroxyethyl methacrylate)-functionalized Fe-Au/core-shell nanoparticles. J Appl Polym Sci 2011. [DOI: 10.1002/app.35530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Rafat M, Raad DR, Rowat AC, Auguste DT. Fabrication of reversibly adhesive fluidic devices using magnetism. LAB ON A CHIP 2009; 9:3016-9. [PMID: 19789760 DOI: 10.1039/b907957b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluidic devices are often made by irreversibly bonding a polydimethylsiloxane (PDMS) mold to itself or a glass substrate by plasma treatment. This method limits the range of materials for fluidic device fabrication and utility for subsequent processing. Here, we present a simple and inexpensive method to fabricate fluidic devices using magnets to reversibly adhere PDMS and other polymer matrices to glass or gel substrates. This approach enables fluidic devices to be fabricated from a variety of materials other than PDMS and glass. Moreover, this method can be used to fabricate composite devices, three-dimensional scaffolds and hydrogel-based fluidic devices.
Collapse
Affiliation(s)
- Marjan Rafat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
34
|
Indolfi L, Causa F, Netti PA. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1541-1551. [PMID: 19267260 DOI: 10.1007/s10856-009-3699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/22/2009] [Indexed: 05/27/2023]
Abstract
In this study, a spray-coating method has been set up with the aim to control the coating of poly(2-hydroxy-ethyl-methacrylate) (pHEMA), an hydrophilic polymeric hydrogel, onto the complex surface of a 316L steel stent for percutaneous coronary intervention (PCI). By varying process parameters, tuneable thicknesses, from 5 to 20 microm, have been obtained with uniform and homogeneous surface without crack or bridges. Surface characteristics of pHEMA coating onto metal surface have been investigated through FTIR-ATR, contact angle measurement, SEM, EDS and AFM. Moreover, results from Single-Lap-Joint and Pull-Off adhesion tests as well as calorimetric analysis of glass transition temperature suggested that pHEMA deposition is firmly adhered on metallic surface. The pHEMA coating evaluation of roughness, wettability together with its morphological and chemical stability after three cycles of expansion-crimping along with preliminary results after 6 months demonstrates the suitability of the coating for surgical implantation of stent.
Collapse
Affiliation(s)
- Laura Indolfi
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples, Naples, Italy
| | | | | |
Collapse
|
35
|
Zhang L, Rodriguez J, Raez J, Myles AJ, Fenniri H, Webster TJ. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. NANOTECHNOLOGY 2009; 20:175101. [PMID: 19420581 DOI: 10.1088/0957-4484/20/17/175101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml(-1) HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites make them promising candidates for further study for bone tissue engineering applications.
Collapse
Affiliation(s)
- Lijie Zhang
- Division of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster TJ. Arginine-glycine-aspartic acid modified rosette nanotube–hydrogel composites for bone tissue engineering. Biomaterials 2009; 30:1309-20. [DOI: 10.1016/j.biomaterials.2008.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/18/2008] [Indexed: 01/31/2023]
|
37
|
Pfluger CA, Carrier RL, Sun B, Ziemer KS, Burkey DD. Cross-Linking and Degradation Properties of Plasma Enhanced Chemical Vapor Deposited Poly(2-hydroxyethyl methacrylate). Macromol Rapid Commun 2008; 30:126-32. [PMID: 21706587 DOI: 10.1002/marc.200800647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/23/2008] [Indexed: 11/09/2022]
Abstract
Plasma Enhanced Chemical Vapor Deposition (PECVD) of poly-2-hydroxyethyl methacrylate (pHEMA) biocompatible, biodegradable polymer films were produced alone and cross-linked with ethylene glycol diacrylate (EGDA). Degree of cross-linking was controlled via manipulation of the EGDA flow rate, which influenced the amount of swelling and the extent of degradation of the films in an aqueous solution over time. Noncross-linked pHEMA films swelled 10% more than cross-linked films after 24 h of incubation in an aqueous environment. Increasing degree of film cross-linking decreased degradation over time. Thus, PECVD pHEMA films with variable cross-linking properties enable tuning of gel formation and degradation properties, making these films useful in a variety of biologically significant applications.
Collapse
Affiliation(s)
- Courtney A Pfluger
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
38
|
Cadotte AJ, DeMarse TB, He P, Ding M. Causal measures of structure and plasticity in simulated and living neural networks. PLoS One 2008; 3:e3355. [PMID: 18839039 PMCID: PMC2556387 DOI: 10.1371/journal.pone.0003355] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/02/2008] [Indexed: 11/21/2022] Open
Abstract
A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network's structural information and then relate that structure to its function. Current statistical methods including cross correlation and coherence have achieved only modest success in characterizing the structural connectivity. Over the last decade an alternative technique known as Granger causality is emerging within neuroscience. This technique, borrowed from the field of economics, provides a strong mathematical foundation based on linear auto-regression to detect and quantify “causal” relationships among different time series. This paper presents a combination of three Granger based analytical methods that can quickly provide a relatively complete representation of the causal structure within a neural network. These are a simple pairwise Granger causality metric, a conditional metric, and a little known computationally inexpensive subtractive conditional method. Each causal metric is first described and evaluated in a series of biologically plausible neural simulations. We then demonstrate how Granger causality can detect and quantify changes in the strength of those relationships during plasticity using 60 channel spike train data from an in vitro cortical network measured on a microelectrode array. We show that these metrics can not only detect the presence of causal relationships, they also provide crucial information about the strength and direction of that relationship, particularly when that relationship maybe changing during plasticity. Although we focus on the analysis of multichannel spike train data the metrics we describe are applicable to any stationary time series in which causal relationships among multiple measures is desired. These techniques can be especially useful when the interactions among those measures are highly complex, difficult to untangle, and maybe changing over time.
Collapse
Affiliation(s)
- Alex J. Cadotte
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Thomas B. DeMarse
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Ping He
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Mingzhou Ding
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
39
|
Zhang L, Ramsaywack S, Fenniri H, Webster TJ. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Eng Part A 2008; 14:1353-64. [PMID: 18588485 DOI: 10.1089/ten.tea.2006.0436] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of the current in vitro study was to improve properties of a commonly used hydrogel for implant applications by incorporating novel self-assembled helical rosette nanotubes (HRNs). Since traditional methods (such as autografts and allografts) used to treat bone defects present various disadvantages (such as donor tissue shortage, extensive inflammation, possible disease transmission, and poor new bone growth), which may lead to implant failure, much effort has been devoted to creating a novel bone substitute that biomimics the nanoscale features of natural bone in order to improve bone growth. HRNs (formed by chemically immobilizing two DNA base pairs) are a novel type of soft nanomaterial that biomimics natural nanostructured components of bone (such as collagen) since they are 3.5 nm in diameter and self-assemble into a helical structure in aqueous solutions. Because HRNs undergo a phase transition from a liquid to a viscous gel when heated to slightly above body temperatures or when added directly to serum-supplemented or serum-free media at body temperatures, they may provide an exciting therapy to heal bone fractures in situ. In this study, HRN-K1 (HRNs functionalized with lysine amino acids) was embedded in and coated on a model hydrogel [specifically, poly(2-hydroxyethyl methacrylate) or pHEMA]. The results of this study showed, for the first time, enhanced osteoblast (bone-forming cell) adhesion on HRN-K1 embedded in and coated on hydrogels compared to hydrogels without HRN-K1. Moreover, the results showed that embedding HRN-K1 into hydrogels can greatly decrease the polymerization time of pHEMA (especially at low temperatures). The presence of lysine in HRN-K1/hydrogels was shown to be one, but not only, property of HRN-K1 that enhanced osteoblast adhesion. In summary, the present results demonstrated that HRNs can improve properties of one particular hydrogel (pHEMA) and, thus, should be further investigated as a bone-healing material.
Collapse
Affiliation(s)
- Lijie Zhang
- Division of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
40
|
Scarlatos A, Cadotte AJ, DeMarse TB, Welt BA. Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J Food Sci 2008; 73:E129-36. [PMID: 18387107 DOI: 10.1111/j.1750-3841.2008.00690.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Botulinum toxin (BoNT) is a potent neurotoxin produced by toxigenic strains of Clostridium botulinum. Botulinum toxin poses a major threat since it could be employed in a deliberate attack on the U.S. food supply. Furthermore, BoNT may be liberated in any insufficiently processed food containing a reduced oxygen atmosphere. Hence, rapid and reliable detection of BoNT in foods is necessary to reduce risks posed through food contamination. We present a BoNT biosensor employing living neural cultures grown in vitro on microelectrode arrays (MEAs). An MEA is a culture dish with a grid of electrodes embedded in its surface, enabling extracellular recording of action potentials of neural cultures grown over the array. Pharmaceutical grade BoNT A was applied to the media bath of mature cortical networks cultured on MEAs. Both spontaneous and evoked activities were monitored over 1 wk to quantify changes in the neural population produced by BoNT A. Introduction of BoNT A resulted in an increased duration and number of spikes in spontaneous and evoked bursts relative to control cultures. Increases were significant within 48 h of BoNT A dosage (P < 0.05). Application of BoNT A also induced unique oscillatory behavior within each burst that is reminiscent of early developmental activity patterns rather than the mature cultures used here. Three or more activity peaks were observed in 50% of the BoNT dosed cultures. Control cultures exhibited only a single activity peak. Thus activity of these cortical networks measured with MEAs could provide a valuable substrate for BoNT detection.
Collapse
Affiliation(s)
- A Scarlatos
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611-0570, USA
| | | | | | | |
Collapse
|
41
|
Ashok Kumar N, Ganapathy HS, Kim JS, Jeong YS, Jeong YT. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2007.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|