1
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
3
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
4
|
Zhou Z, Liu Y, Guo L, Wang T, Yan X, Wei S, Qiu D, Chen D, Zhang X, Ju H. Core-Shell Interface Engineering Strategies for Modulating Energy Transfer in Rare Earth-Doped Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1326. [PMID: 39195364 DOI: 10.3390/nano14161326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core-shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies-one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method-for creating multilayered RENPs show notable differences in spectral performance. To clarify this issue, a thorough comparative analysis of the elemental distribution and spectral characteristics of RENPs synthesized by these two strategies was conducted. The SA strategy, which avoids the partial mixing stage of shell and core precursors inherent in the LBL strategy, produces RENPs with a distinct interface in elemental distribution. This unique elemental distribution reduces unnecessary energy loss via energy transfer between heterogeneous elements in different shell layers. Consequently, the synthesis method choice can effectively modulate the spectral properties of RENPs. This discovery has been applied to the design of orthogonal RENP biomedical probes with appropriate dimensions, where the SA strategy introduces a refined inert interface to prevent unnecessary energy loss. Notably, this strategy has exhibited a 4.3-fold enhancement in NIR-II in vivo imaging and a 2.1-fold increase in reactive oxygen species (ROS)-related photodynamic therapy (PDT) orthogonal applications.
Collapse
Affiliation(s)
- Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lichao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Han B, Chen Y, Wang H, Yan J, Liu G, Huang Z, Zhou C. A Biosensor for Simultaneous Detection of Epinephrine and Ascorbic Acid Based on Fe(III)-Polyhistidine-Functionalized Multi-Wall Carbon Nanotube Composites. Int J Mol Sci 2024; 25:7883. [PMID: 39063124 PMCID: PMC11276898 DOI: 10.3390/ijms25147883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Epinephrine (EP) is a very important chemical transmitter in the transmission of nerve impulses in the central nervous system of mammals. Ascorbic acid (AA) is considered to be the most important extracellular fluid antioxidant and has important antioxidant properties in the cell. In this study, a series of transition metal-polyhistidine-carboxylated multi-wall carbon nanotube nanocomposites were synthesized, and their simultaneous catalytic effects on epinephrine and ascorbic acid were investigated. The results showed that nanocomposites based on iron ions had the highest catalytic activity. The prepared biosensor expressed high selectivity toward EP and AA with LOD values of 0.1 μΜ (AA) and 0.01 μΜ (EP), and sensitivity values of 4.18 μA mM-1 with a range of 0.001-5 mM (AA), 50.98 μA mM-1 with a range of 0.2-100 μM (EP), and 265.75 μA mM-1 with a range of 0.1-1.0 mM (EP). Moreover, it showed good stability, good repeatability and high selectivity in real sample detection. This work is a reference for the design of new electrochemical enzyme-free biosensors and the detection of biomarkers.
Collapse
Affiliation(s)
- Bingkai Han
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | - Yuan Chen
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | - Hongtao Wang
- College of Life Science, Henan University, No. 379 Mingli Road, Kaifeng 475004, China
| | - Jilong Yan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Guang Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Ziru Huang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Chenghang Zhou
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, No. 16 Donghai Road, West Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
6
|
El-Nablaway M, Rashed F, Taher ES, Foda T, Abdeen A, Abdo M, Fericean L, Ioan BD, Mihaela O, Dinu S, Alexandru CC, Taymour N, Mohammed NA, El-Sherbiny M, Ibrahim AM, Zaghamir DE, Atia GA. Prospectives and challenges of nano-tailored biomaterials-assisted biological molecules delivery for tissue engineering purposes. Life Sci 2024; 349:122671. [PMID: 38697279 DOI: 10.1016/j.lfs.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Nano carriers have gained more attention for their possible medical and technological applications. Tailored nanomaterials can transport medications efficiently to targeted areas and allow for sustained medication discharge, reducing undesirable toxicities while boosting curative effectiveness. Nonetheless, transitioning nanomedicines from experimental to therapeutic applications has proven difficult, so different pharmaceutical incorporation approaches in nano scaffolds are discussed. Then numerous types of nanobiomaterials implemented as carriers and their manufacturing techniques are explored. This article is also supported by various applications of nanobiomaterials in the biomedical field.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Tarek Foda
- Oral Health Sciences Department, Temple University's Kornberg School of Dentistry, USA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania.
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania; Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Cucui-Cozma Alexandru
- Tenth Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah 61710, Al-Karak, Jordan
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Ateya M Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Donia E Zaghamir
- Department of Pediatric and Obstetrics Nursing, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Niculescu AG, Munteanu (Mihaiescu) OM, Bîrcă AC, Moroșan A, Purcăreanu B, Vasile BȘ, Istrati D, Mihaiescu DE, Hadibarata T, Grumezescu AM. New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell Fe 3O 4-SA Nanoparticle Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:902. [PMID: 38869527 PMCID: PMC11174075 DOI: 10.3390/nano14110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
This study's main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of Fe3O4 cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate. Synthesis optimization was also performed, employing the variation in the reagents ratio to highlight the concentration domains in which magnetite is mainly produced, the formation of nanoparticles with different diameters and low polydispersity, and the stability of colloidal dispersions in water. The obtained materials were further characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), with the experimental results confirming the production of salicylic acid-functionalized iron oxide (Fe3O4-SA) nanoparticles adapted for different further applications.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Oana Maria Munteanu (Mihaiescu)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
- BIOTEHNOS S.A., Gorunului Rue, No. 3-5, 075100 Otopeni, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Daniela Istrati
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (O.M.M.); (A.C.B.); (B.P.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
8
|
Kulkarni MB, Rajagopal S, Prieto-Simón B, Pogue BW. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024; 272:125817. [PMID: 38402739 DOI: 10.1016/j.talanta.2024.125817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States.
| | - Sivakumar Rajagopal
- School of Electronics Engineering, Vellore Institute of Technology, Vellore Campus, 632014, TN, India
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States
| |
Collapse
|
9
|
Zimmerling A, Sunil C, Zhou Y, Chen X. Development of a Nanoparticle System for Controlled Release in Bioprinted Respiratory Scaffolds. J Funct Biomater 2024; 15:20. [PMID: 38248687 PMCID: PMC10816437 DOI: 10.3390/jfb15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The use of nanoparticle systems for the controlled release of growth factors is a promising approach to mimicking of the biochemical environment of native tissues in tissue engineering. However, sustaining growth factor release inside an appropriate therapeutic window is a challenge, particularly in bioprinted scaffolds. In this study, a chitosan-coated alginate-based nanoparticle system loaded with hepatocyte growth factor was developed and then incorporated into bioprinted scaffolds. The release kinetics were investigated with a focus on identifying the impact of the chitosan coating and culture conditions. Our results demonstrated that the chitosan coating decreased the release rate and lessened the initial burst release, while culturing in dynamic conditions had no significant impact compared to static conditions. The nanoparticles were then incorporated into bioinks at various concentrations, and scaffolds with a three-dimensional (3D) structure were bioprinted from the bioinks containing human pulmonary fibroblasts and bronchial epithelial cells to investigate the potential use of a controlled release system in respiratory tissue engineering. It was found that the bioink loaded with a concentration of 4 µg/mL of nanoparticles had better printability compared to other concentrations, while the mechanical stability of the scaffolds was maintained over a 14-day culture period. The examination of the incorporated cells demonstrated a high degree of viability and proliferation with visualization of the beginning of an epithelial barrier layer. Taken together, this study demonstrates that a chitosan-coated alginate-based nanoparticle system allows the sustained release of growth factors in bioprinted respiratory tissue scaffolds.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Christina Sunil
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada (X.C.)
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
10
|
Alrefaee SH, Alnoman RB, Alenazi NA, Alharbi H, Alkhamis K, Alsharief HH, El-Metwaly NM. Electrospun glass nanofibers to strengthen polycarbonate plastic glass toward photoluminescent smart materials. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122986. [PMID: 37336189 DOI: 10.1016/j.saa.2023.122986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Electrospun glass nanofibers (GNFs) were used to strengthen polycarbonate (PC) to create long-persistent photoluminescent and fluorescent smart materials such as afterglow concrete and smart window. Physical integration of lanthanide-activated aluminate (LA) nanoparticles (NPs) yielded transparent GNFs@PC smart sheets. Spectral investigations utilizing photoluminescence and CIE Lab parameters were performed to confirm that the translucent appearance of GNFs@PC changed to green when exposed to UV light. This fluorescence activity was quickly reversible for the GNFs@PC hybrids with low concentrations of LANPs, which indicate fluorescence emission. Higher phosphor concentrations in GNFs@PC led to longer-lasting afterglow photoluminescence and slower reversibility. The GNFs@PC hybrids showed an emission band detected at 518 nm upon excitation at 368 nm. The morphological characteristics of LANPs and GNFs were analyzed by transmission electron microscopy (TEM), which revealed sizes of 11-26 nm and 250-300 nm, respectively. GNFs were prepared using electrospinning technology and then used as a roughening agent into PC sheets. Morphological characteristics of GNFs and GNFs@PC smart sheets were examined using energy-dispersive X-ray spectroscopy (EDXA), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The GNFs@PC smart sheets were shown to have enhanced scratch resistance in comparison to LANPs-free PC control sample. Increases in LANPs concentration enhanced both hydrophobicity and UV protection.
Collapse
Affiliation(s)
- Salhah H Alrefaee
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia
| | - Rua B Alnoman
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Haifa Alharbi
- Department of Chemistry, College of Science, Northern Border University, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Hatun H Alsharief
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia.
| |
Collapse
|
11
|
de Souza Furtado P, Agnes Silva Camargo de Oliveira A, Santiago Rodrigues P, Rita Santiago de Paula Gonçalves A, Raphaella Autran Colaço A, Pinheiro da Costa S, Muniz da Paz M, Wetler Meireles Carreiros Assumpção P, Pereira Rangel L, Simon A, Almada do Carmo F, Mendes Cabral L, Cunha Sathler P. In vivo evaluation of time-dependent antithrombotic effect of rivaroxaban-loaded poly(lactic-co-glycolic acid)/sodium lauryl sulfate or didodecyl dimethylammonium bromide nanoparticles in Wistar rats. Eur J Pharm Biopharm 2023; 190:184-196. [PMID: 37517449 DOI: 10.1016/j.ejpb.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rivaroxaban (RVX), an oral direct factor Xa inhibitor, is being explored as an alternative to traditional anticoagulans. However, RVX still faces pharmacokinetic limitations and adverse effects, highlighting the need for more effective formulations. In this regard, pharmaceutical nanotechnology, particularly the use of polymeric nanoparticles (PNPs), offers a promising approach for optimizing RVX delivery. This study aimed to develop and physicochemically characterize RVX-loaded poly(lactic-co-glycolic acid) (PLGA)/sodium lauryl sulfate (SLS) or didodecyl dimethylammonium bromide (DMAB) nanoparticles, and also evaluate their pharmacological and toxicological profiles as a potential therapeutic strategy. The PNPs exhibited sizes below 300 nm and spherical morphology, with both negative and positive surface charges, according to surfactant used. They demonstrated high encapsulation efficiency and suitable yields, as well as rapid initial liberation followed by sustained release in different pH environments. Importantly, in vivo evaluations revealed a time-dependent antithrombotic effect surpassing the free form of RVX when administered orally in SLS or DMAB PNP. No hemolytic or cytotoxic effects were observed at various concentrations of the PNPs. Interestingly, the PNPs did not induce hemorrhagic events or cause liver enzyme alterations in vivo. These findings suggest that RVX-loaded SLS or DMAB PNPs are promising innovative therapeutic alternatives for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Priscila de Souza Furtado
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Pryscila Santiago Rodrigues
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Anna Raphaella Autran Colaço
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sandro Pinheiro da Costa
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Mariana Muniz da Paz
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Luciana Pereira Rangel
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alice Simon
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia Almada do Carmo
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Lucio Mendes Cabral
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Plínio Cunha Sathler
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
13
|
Mansour H, Soliman EA, El-Bab AMF, Matsushita Y, Abdel-Mawgood AL. Fabrication and characterization of microfluidic devices based on boron-modified epoxy resin using CO 2 laser ablation for bio-analytical applications. Sci Rep 2023; 13:12623. [PMID: 37537206 PMCID: PMC10400657 DOI: 10.1038/s41598-023-39054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
CO2 laser ablation is a rapid and precise technique for machining microfluidic devices. And also, low-cost epoxy resin (ER) proved the great feasibility of fabricating these devices using the CO2 laser ablation technique in our previous studies. However, such a technique has shown negative impacts on such ER-based microfluidics as rough surface microchannels, and thermal defects. Therefore, incorporating different proportions of boric acid (BA) into epoxy resin formulation was proposed to obviate the genesis of these drawbacks in ER-based microfluidics. The structural and optical properties of plain ER- and B-doped ER-based chips were characterized by Fourier transform infrared (FT-IR) and UV/Vis spectral analyses. Furthermore, their thermal properties were studied by thermo-gravimetric (TGA) and differential scanning calorimetric (DSC) analysis. A CO2 laser ablation machine was used in vector mode to draw the designed micro-channel pattern onto plain ER- and B-doped ER-based chips. The quality of microchannels engraved onto these chips was assessed using 3D laser microscopy. This microscopic examination showed a noticeable reduction in the surface roughness and negligible bulge heights in the laser-ablated micro-channels. On the other hand, overall and specific migration using gravimetric methods and gas chromatography-mass spectrometry (GC-MS), respectively, and PCR compatibility test were performed to explore the convenience of these micro-plates for the biological reactions. These findings validated the applicability of B-doped ER-based microfluidics in bio-analytical applications as a result of the effective role of boric acid in enhancing the thermal properties of these chips leading to get micro-channels with higher quality with no effect on the biological reactions.
Collapse
Affiliation(s)
- Heba Mansour
- Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Emad A Soliman
- Department of Polymeric Materials Research, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Ahmed M Fath El-Bab
- Mechatronics and Robotics Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Yoshihisa Matsushita
- Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Egypt
| | - Ahmed L Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
14
|
Kulkarni MB, Goel S. Mini-thermal platform integrated with microfluidic device with on-site detection for real-time DNA amplification. Biotechniques 2023; 74:158-171. [PMID: 37139914 DOI: 10.2144/btn-2022-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The recent cases of COVID-19 have brought the prospect of and requirement for point-of-care diagnostic devices into the limelight. Despite all the advances in point-of-care devices, there is still a huge requirement for a rapid, accurate, easy-to-use, low-cost, field-deployable and miniaturized PCR assay device to amplify and detect genetic material. This work aims to develop an Internet-of-Things automated, integrated, miniaturized and cost-effective microfluidic continuous flow-based PCR device capable of on-site detection. As a proof of application, the 594-bp GAPDH gene was successfully amplified and detected on a single system. The presented mini thermal platform with an integrated microfluidic device has the potential to be used for the detection of several infectious diseases.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- MEMS, Microfluidics & Nano Electronics (MMNE) Lab, Department of Electrical & Electronics Engineering, Birla Institute of Technology & Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Sanket Goel
- MEMS, Microfluidics & Nano Electronics (MMNE) Lab, Department of Electrical & Electronics Engineering, Birla Institute of Technology & Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| |
Collapse
|
15
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. BIOSENSORS 2023; 13:412. [PMID: 36979624 PMCID: PMC10046286 DOI: 10.3390/bios13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Even today, most biomarker testing is executed in centralized, dedicated laboratories using bulky instruments, automated analyzers, and increased analysis time and expenses. The development of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient's smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible to test biomarkers with reliability in a decentralized setting, but there are still a number of issues and restrictions that must be resolved before the development and use of several biosensors for the proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA, urine, and blood. One of the most promising processes to address some of the issues relating to the growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics is the creation of biosensors. This article critically discusses a short review of biosensors used for detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while considering several essential characteristics.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- School of Electronics and Communication Engineering, KLE Technological University, Vidyanagar, Hubballi 580023, Karnataka, India
- Medical Physics Department, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
16
|
Nathanael K, Cheng S, Kovalchuk NM, Arcucci R, Simmons MJ. Optimization of microfluidic synthesis of silver nanoparticles: a generic approach using machine learning. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
17
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
18
|
Ahmadi F, Simchi M, Perry JM, Frenette S, Benali H, Soucy JP, Massarweh G, Shih SCC. Integrating machine learning and digital microfluidics for screening experimental conditions. LAB ON A CHIP 2022; 23:81-91. [PMID: 36416045 DOI: 10.1039/d2lc00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Digital microfluidics (DMF) has the signatures of an ideal liquid handling platform - as shown through almost two decades of automated biological and chemical assays. However, in the current state of DMF, we are still limited by the number of parallel biological or chemical assays that can be performed on DMF. Here, we report a new approach that leverages design-of-experiment and numerical methodologies to accelerate experimental optimization on DMF. The integration of the one-factor-at-a-time (OFAT) experimental technique with machine learning algorithms provides a set of recommended optimal conditions without the need to perform a large set of experiments. We applied our approach towards optimizing the radiochemistry synthesis yield given the large number of variables that affect the yield. We believe that this work is the first to combine such techniques which can be readily applied to any other assays that contain many parameters and levels on DMF.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Mohammad Simchi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| | - James M Perry
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Stephane Frenette
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Habib Benali
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | - Gassan Massarweh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
19
|
Yuan Y, Wang F, Li H, Su S, Gao H, Han X, Ren S. Potential application of the immobilization of carbonic anhydrase based on metal organic framework supports. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. BIOSENSORS 2022; 12:892. [PMID: 36291028 PMCID: PMC9599941 DOI: 10.3390/bios12100892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/30/2023]
Abstract
In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Department of Research & Development, Renalyx Health Systems (P) Limited, Bengaluru 560004, Karnataka, India
| | - Narasimha H. Ayachit
- Department of Physics, Visvesvaraya Technological University (VTU), Belagavi 590018, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
21
|
Haghighinia A, Movahedirad S. A tri-fluid tortuous microfluidic chip for green synthesis of nanoparticles and inactivation of a model gram-negative bacteria: Intracellular components evaluation. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Biosensors and Microfluidic Biosensors: From Fabrication to Application. BIOSENSORS 2022; 12:bios12070543. [PMID: 35884346 PMCID: PMC9313327 DOI: 10.3390/bios12070543] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical, agricultural, and biomedical areas. They can integrate various point-of-care applications, such as in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and biological domains. Multiple strategies have been employed to develop and fabricate miniaturized biosensors, including design, optimization, characterization, and testing. In view of their interactions with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in small sample volumes. Among the many developed techniques, microfluidics have been widely explored; these use fluid mechanics to operate miniaturized biosensors. The currently used commercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted applications. Microfluidic biosensors have the advantages of mobility, operational transparency, controllability, and stability with a small reaction volume for sensing. This review addresses biosensor technologies, including the design, classification, advances, and challenges in microfluidic-based biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is critically discussed, including fabrication and other associated protocols for application in various point-of-care testing applications.
Collapse
|
23
|
Dataset for hierarchical tetramodal-porous architecture of zinc oxide nanoparticles microfluidically synthesized via dual-step nanofabrication. Data Brief 2022; 42:108137. [PMID: 35496475 PMCID: PMC9046623 DOI: 10.1016/j.dib.2022.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been applied as high-performance intelligent materials to create a hierarchical multimodal-porous architectures for application in biomedical research fields [1]. They were microfluidically synthesized via dual-step nanofabrication compared to the conventional particles including ZnO NPs synthesized at single-pot macroscale, nanosized ZnO, and hybrid ZnO. The physicochemical properties were characterized, including morphology, particle size distribution, atomic composition, crystallinity, purity, reactant viscosity, surface charge, photocatalysis, photoluminescence, and porosity. A hierarchical multimodal-porous three-dimensional (3D) architecture of ZnO NPs was generated and optimized on the solid plate substrate of cellulose paper sheet after solvent evaporation. The dataset provides the nanomaterial design and architecture generation of ZnO NPs, explaining multi-physics phenomena in association with performance optimization processes.
Collapse
|
24
|
Lv H, Chen X. Intelligent control of nanoparticle synthesis through machine learning. NANOSCALE 2022; 14:6688-6708. [PMID: 35450983 DOI: 10.1039/d2nr00124a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The synthesis of nanoparticles is affected by many reaction conditions, and their properties are usually determined by factors such as their size, shape and surface chemistry. In order for the synthesized nanoparticles to have functions suitable for different fields (for example, optics, electronics, sensor applications and so on), precise control of their properties is essential. However, with the current technology of preparing nanoparticles on a microreactor, it is time-consuming and laborious to achieve precise synthesis. In order to improve the efficiency of synthesizing nanoparticles with the expected functionality, the application of machine learning-assisted synthesis is an intelligent choice. In this article, we mainly introduce the typical methods of preparing nanoparticles on microreactors, and explain the principles and procedures of machine learning, as well as the main ways of obtaining data sets. We have studied three types of representative nanoparticle preparation methods assisted by machine learning. Finally, the current problems in machine learning-assisted nanoparticle synthesis and future development prospects are discussed.
Collapse
Affiliation(s)
- Honglin Lv
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
25
|
Green-microfluidics synthesis of thermally stable silver–chitosan composites for antibacterial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Toppo AL, Jujjavarapu SE. New insights for integration of nano particle with microfluidic systems for sensor applications. Biomed Microdevices 2022; 24:13. [PMID: 35171352 DOI: 10.1007/s10544-021-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 11/29/2022]
Abstract
A biosensor is a compact device, which utilizes biological derived recognition component, immobilized on a transducer to analyze an analyte. Nanoparticles with their unique chemical and physical properties are versatile in their applications to develop as sensors. Different nanoparticles play different roles in the sensing systems like metal and metal oxide nanoparticles. The application of Gold, Silver and Copper nanoparticles will be discussed in brief. The nanoparticles typically function as substrates for immobilization of biomolecules, as catalytic agent, electron transfer agent between electrode surface and the biomolecules, and as reactants. Microfluidic deals with manipulating very small volumes of fluids (micro and nanoliters). This miniaturized platform enhances control of flow conditions and mixing rate of fluids. The microfluidics improves the sensitivity of the analysis, and reduces the volumes of sample and reagent in the analysis. The review specifically aims at representing microfluidics-based sensors and nanoparticle based sensors. This review will also focus on probable merger of these two fields to take advantage of both the fields and this will help in pushing the boundaries of these fields further more.
Collapse
Affiliation(s)
- A L Toppo
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - S E Jujjavarapu
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India.
| |
Collapse
|
27
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
28
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
29
|
Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic based nanoparticle synthesis and their potential applications. Electrophoresis 2021; 43:819-838. [PMID: 34758117 DOI: 10.1002/elps.202100242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics for instance compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in production of nanoparticles in microfluidic environs having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, healthcare, including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating in order to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | | | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| |
Collapse
|
30
|
Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. MICROMACHINES 2021; 12:768. [PMID: 34210058 PMCID: PMC8306075 DOI: 10.3390/mi12070768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles have attracted significant attention in various disciplines, including engineering and medicine. Microfluidic chips and lab-on-a-chip devices, with precise control over small volumes of fluids and tiny particles, are appropriate tools for the synthesis, manipulation, and evaluation of nanoparticles. Moreover, the controllability and automation offered by the microfluidic chips in combination with the unique capabilities of the magnetic nanoparticles and their ability to be remotely controlled and detected, have recently provided tremendous advances in biotechnology. In particular, microfluidic chips with magnetic nanoparticles serve as sensitive, high throughput, and portable devices for contactless detecting and manipulating DNAs, RNAs, living cells, and viruses. In this work, we review recent fundamental advances in the field with a focus on biomedical applications. First, we study novel microfluidic-based methods in synthesizing magnetic nanoparticles as well as microparticles encapsulating them. We review both continues-flow and droplet-based microreactors, including the ones based on the cross-flow, co-flow, and flow-focusing methods. Then, we investigate the microfluidic-based methods for manipulating tiny magnetic particles. These manipulation techniques include the ones based on external magnets, embedded micro-coils, and magnetic thin films. Finally, we review techniques invented for the detection and magnetic measurement of magnetic nanoparticles and magnetically labeled bioparticles. We include the advances in anisotropic magnetoresistive, giant magnetoresistive, tunneling magnetoresistive, and magnetorelaxometry sensors. Overall, this review covers a wide range of the field uniquely and provides essential information for designing "lab-on-a-chip" systems for synthesizing magnetic nanoparticles, labeling bioparticles with them, and sorting and detecting them on a single chip.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur 9319774446, Iran
| | | | - Merivan Şaşmaz
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Adiyaman University, Adiyaman 02040, Turkey;
| |
Collapse
|
31
|
Kulkarni MB, Goyal S, Dhar A, Sriram D, Goel S. Miniaturized and IoT enabled Continuous-flow based Microfluidic PCR Device for DNA Amplification. IEEE Trans Nanobioscience 2021; 21:97-104. [PMID: 34170829 DOI: 10.1109/tnb.2021.3092292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Herein, a continuous-flow driven microfluidic device has been designed and fabricated using the CO2 laser ablation method for polymerase chain reaction (PCR). The device consists of a polymethyl methacrylate (PMMA) microfluidic channel with 30 serpentine thermal cycles, an arduino board, two custom-made cartridge heaters, and thermocouple sensors. The portable thermal management system, with aluminium blocks placed on a wooden substrate, working on the PID controller principle, is low-cost, battery-powered, automated, integrated, and IoT-enabled. The device with dimensions 80 × 72 × 36 mm3 (L x W x H) has a temperature accuracy of ±0.2°C. The IoT module enables accessing and storage of real-time temperature values directly onto the smartphone through ThingSpeak analytics. It was developed to achieve desirable accurate temperature at two thermal zones, denaturation and annealing (95°C and 60°C) on the microfluidic thermal management platform. A PCR mixture of 20 μ l was infused into the serpentine-based microchannel using a syringe pump. Amplification of DNA template with 594-base pair (bp) fragment of the rat GAPDH gene was successfully performed on the miniaturized thermal management system. The total time required for a complete PCR reaction was 32 min at an optimum flow rate of 5 μ l/min. The amplified sample of the target DNA obtained from the PCR microchannel was then separated by agarose gel electrophoresis and was further analyzed using a gel-doc system. Finally, the obtained results were compared to the conventional PCR instrument showing excellent performance.
Collapse
|
32
|
Magdalene DJ, Muthuselvam D, Pravinraj T. Microfluidics-based green synthesis of silver nanoparticle from the aqueous leaf extract of Ipomea quamoclit L. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|